RCU vs. Locking
Perfor mance on Differ ent
Typesof CPUs

Paul E. McKenney
|BM Linux Technology Center
Paul .McKenney@us.Ibm.com

Who Is Paul McKenney, Anyway?

> Oregon State University
- BSCS & BSME 1981, MSCS 1988
> Self-employed contract programer 1981-1985

> Unix® sysadm, packet-radio/l nternet research,
SRI International, 1986-1990

> TCP performance, SMP/NUMA hacking, co-
Inventor of RCU, Seguent 1990-1999

> AIX®, Linux, IBM 1999-present
> Oregon Graduate Institute Ph.D. I1n progress

Overview

V)

Why I1sn't Moore's Law helping my code???
. Hash-table mini-benchmark
. How can we fix this?

— Linked-list insertion and removal
Performance results

- On x86, IPF/x86, Opteron, and PPC
Summary and Conclusions

)

V)

Why Isn't Moore's Law Helping My
Code?

> Moore's Law provided uneven benefits,

— Instruction execution overhead much improved
— Pipeline-flush overhead has not improved much
- Memory latencies have not improved much

— Contention overhead not helped

> Moore's Law speeds up instructions

> But SMP SW does pipeline flushes, memory
accesses, and suffers contention

Operation Costs: How Bad??7?
4-CPU 700MHz 1386 P-II1

Operation Nanoseconds
Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Atomic Increment 58.2
Cmpxchg Atomic Increment 107.3
Atomic Incr. Cache Transfer 113.2
Main Memory 162.4
CPU-Local Lock 163.7
Cmpxchg Blind Cache Transfer 170.4
Cmpxchg Cache Transfer and Invalidate 360.9

t 4

But Wait!!!

How bad isthis, really???

Don't speculate, run a benchmark!

Hash-Table Mini-Benchmark

Dense array of buckets
Doubly-linked hash chains
One element per hash chain

-~

-~

-~

— You do tune your hash tables, don't you???
Mix of operations:

— Search
- Delete followed by reinsertion: maintain loading

-~

— Random run lengths selected for specified mix

Hash-Table Mini-Benchmark

> Locking Designs Tested:

— Global spinlock & rwlock

— Per-bucket spinlock & rwlock
— brlock

- RCU

- “ldeal”: take single-CPU results without locking, and
multiply by the number of CPUs

» Can be achieved in some cases using per-CPU data
> No whining, no excuses!!!

Global Locking

35 I I
"ideal" ———
global” «—————
30 "globalrw" -------

Hash Table Searches per Microsecond

H DIl e

What 1s With rwlock???

Uo1199S
LoD

|

| oseo Slacile

Bleg Alows

/

SSe9 [Py {0esy

Bueg Alows

l

CPU O

Bleg Alows

- al INbO 7 {0eay

/

Beg Alows

al1inboy{eay -

\

CPU 1

uo1es
=o]ilT'e)

“Scalable” Locking

35 , |
"Ideal" ———

Hash Table Searches per Microsecond

How Can We Fix This???

> What do we want?

- Good locking for read-mostly data structures!!!

- Want to avoid expensive operations for readers

> No memory latency (cache thrashing)
- No pipeline flushing (memory barriers)
> NO contention

— Can accept some additional overhead for writers

> But must stay within the realm of reason

We Can Do Linked-List Insertion...

> Initialize then insert

— Readerswill either see it or not
— But list will always be properly formatted

> Need memory barriers on weakly ordered
machines (pretty much all of them)

» Taken care of for you by rcu() list macros:

—- Uselist_add rcu() to insert into the list
—- Uselist_for _each entry rcu() to scan thelist

But Sooner Or Later...

Something will need to be removed
from the list

Just hop the pointer over
the element to be deleted!!!

L ock-Free Removal Animation (1)

L ock-Free Removal Animation (2)

] e [

L ock-Free Removal Animation (3)

] e &

But Sooner Or Later...

It will be necessary to free up € ements removed
from thelist...

Unlessit is OK to wantonly leak memory!!!

But readers might be referencing the removed
element for quite some time...

When Are Readers Done?

» Read-side rwlock critical section:
— Preemption disabled
— No blocking
— No return to user-mode execution
— No page faults or exceptions
— No holding references from one CS to another!

> If aCPU does a context switch, it Is donel

— All prior read-side critical sections complete
— With no lockina onerations! !

Grace Periods

CPUO

:

CPU1

Implemented In 2.6 kernel

Itiscaled “RCU”

(Short for “Read-Copy Update”)

RCU Performance Testing

> Four-CPU 700MHz P-l11 System

» Four-CPU 1.4GHz IPF System (running x86
code)

> Four-CPU 1.4GHz Opteron System
> Elght-CPU 1.45GHz Power4+ System

— Only four CPUs were used in these benchmarks

Test Scenarios

> Read-only test

— For data structures that are amost never modified
» Routing tables, HW/SW configuration, policies

> Mixed workload

— Vary fraction of accesses that are updates
— See how things change as read-intensity varies
— Expect breakeven point for RCU and locking

Overview of Results. Read-only

» Global spinlock/rwlock scale negatively

» Per-bucket schemes scale, but poorly

—~ 10-20% of 1deal at 4 CPUs

— Lessthan half of ideal on single CPU
> But why would you run CONFIG_SMP on one CPU?

. brlock scales better

— But still less than 40% of ideal
— And brlock 1s known to have trouble on writes...

X86 Read-Only Results

s
$)

w

2.5

1:5

Searches/Updates per Unit Time

0.5

"ideal"
!lb kt"

!lbktrwﬂ
"briock"
"refcnt”

TTrCUH
i
/
- “N
o
o
- / ’

e e e e

|PF Read-Only Results

Searches/Updates per Unit Time

4

3.5

3

2.5

2

1.5

1

0.5

ideal" —— o
- !lbktl! ______ -~ -
DI s
N Pk v il
refent” ——-—=
IFrCUH R 'f.-
|
2 4

Opteron Read-Only Results

4.5 | I
"ideal"

@ 4 11 rrbk.tn ______
= "bIIPW!" =
= 35 ‘brlock" oo
= "refent” —o—e—s g
:j 8 Hrcu!l _____ "_," -
;_g" ,
W 2.5 T
2
3 2 —~
joR
. |
» 1.5 -
QD
S
A N
3]

0.5 | T et

0 —_“Ty‘m l
1 2 3 4

PPC Read-Only Results

4 |
"Ildeal" ———

3.5 o i
£ L)
= 3 Priogk™ ==ssmeems
= "refcnt" ——-— —
- MOL" sssemseas)

E 2.5 f_;—"
Q -
m -
@ 2 e
(40] -
2 AP
= 1Lb e
{rj e
qJ e
@ I i ___-__‘__-_:__.__—-_-'.':'_:F-'_:'
{1) s ,_T____,_a-.-‘-'""_' ST)
@ 05 — smmee =TT T T
0 l |
1 2 3

Overview of Results; Mixed
Workload

CPU Type | Crossover

X86 0.2-0.5
IPF/x86 0.1-04
Opteron 0.2-0.5

PPC 0.3-0.5

X86 Results for Mixed Workload

b
&=
— 1
=
3
D
o
F)
2 0.1
¢
o
S
il
i
)
D
3
= .01
D
)

3 ot TR "Ideal"

0O 02 04 06 0.8

Update Fraction (lambda=10)

_ _:1 ﬂbk.tﬂ ______
H YDking’ wess s e
41 "brlock" ---
1 ‘“refent” —
Hrcuﬂ o
1

| PF Results for Mixed Workload

Update Fraction (lambda=10)

ol e o

@

E

Z 1 | | I

= 3

- - N\

E_) l:‘-h":.""}-l-'-._ _

Q S L ettt oS TS

0 e Croaai ideal

9 0.1 s - W

S e g " n
g : . bktrw" -------
o : : "brlock" ---
= _ 1 refent" —
E urCuH —
S 0.01 11 |

% O 0.2 04 06 0.8 1

Opteron Results for Mixed Workload

D
£
- 1
=
—
@
O
7))
2 0.1
gy,
e
O
-
@
D
[
S 0.01
@
)

Update Fraction (lambda=10)

L
!
-
A
!
— =4
1
L =
L L]
L]
&
-t \ L=
P L]
s S -
.
. T
. o
Bk T T R o i -
1 - e
-) T S e e D T i S
L ‘l__‘_‘_-.__' e
] |. P i e TS -
P — i
= Tl
= ==
- L
2] =~ -
= =2
0 0|2 OI | 0-6 0-8 -1

"Ideal"
ku.l.ll
Flbktrwll
"brlock”
"refcnt”
"['CU“

PPC Results for Mixed Workload

QO

E

= 1 T T S

= 5. =

D - i

ES 3'?:‘377%7-“*:;%4-____“ 1

Q T e ,

0 -~ "Ideal"

% O‘I = e ‘ = nbk.trl ______
] - 3 "bktrw" -------
=) i 1 ‘"brlock" -----oeee
@ [1 Crefent" —-—-—-
E llrcurl .
% 0.01 | I I I

2 O 0.2 04 0.6 0.8 1

Update Fraction (lambda=10)

Summary and Conclusions (1)

> RCU Isgreat for read-mostly data structures

— But not so great for update-mostly situations

— RCU optimal when less then 10% of accesses are
updates

» RCU updates cannot exclude readers

— Good for deadlock avoidance and scalability

— Adds complexity in some cases
> But need 1,000s of instructions to make rwlock pay!!!

» RCU best when designed in from the start

Summary and Conclusions (2)

> Future/Ongoing Work

- Testing RCU on more algorithms and data structures

— Decreasing RCU grace-period overhead
> Make things faster, increase RCU usefulness

- Make RCU safe for realtime use (e.g., 250
mi croseconds scheduling latency)

— Enlist RCU to prevent DoS attacks
— Improve RCU ease of use

Legal Notice

> The views expressed in this paper are the author's only, and should
not be attributed to IBM.

> UNIX isaregistered trademark of The Open Group in the United
States and other countries.

> IBM and AlX areregistered trademarks of International Business
Machines Corporation in the United States and/or other countries

> Linux isaregistered trademark of Linus Torvalds

> Other company, product, and service names may be trademarks or
service marks of others

Use
the right tool
for the job!!!

