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Why Isn't Moore's Law Helping My
Code?

> Moore's Law provided uneven benefits,

— Instruction execution overhead much improved
— Pipeline-flush overhead has not improved much
- Memory latencies have not improved much

— Contention overhead not helped

> Moore's Law speeds up instructions

> But SMP SW does pipeline flushes, memory
accesses, and suffers contention



Operation Costs: How Bad??7?
4-CPU 700MHz 1386 P-II1

Operation Nanoseconds
Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Atomic Increment 58.2
Cmpxchg Atomic Increment 107.3
Atomic Incr. Cache Transfer 113.2
Main Memory 162.4
CPU-Local Lock 163.7
Cmpxchg Blind Cache Transfer 170.4
Cmpxchg Cache Transfer and Invalidate 360.9
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But Wait!!!

How bad isthis, really???

Don't speculate, run a benchmark!



Hash-Table Mini-Benchmark

Dense array of buckets
Doubly-linked hash chains
One element per hash chain

-~

-~

-~

— You do tune your hash tables, don't you???
Mix of operations:

— Search
- Delete followed by reinsertion: maintain loading

-~

— Random run lengths selected for specified mix



Hash-Table Mini-Benchmark

> Locking Designs Tested:

— Global spinlock & rwlock

— Per-bucket spinlock & rwlock
— brlock

- RCU

- “ldeal”: take single-CPU results without locking, and
multiply by the number of CPUs

» Can be achieved in some cases using per-CPU data
> No whining, no excuses!!!



Global Locking

35 I I
"ideal" ———
global” «—————
30 "globalrw" -------

Hash Table Searches per Microsecond

H DIl e



What 1s With rwlock???
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“Scalable” Locking
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How Can We Fix This???

> What do we want?

- Good locking for read-mostly data structures!!!

- Want to avoid expensive operations for readers

> No memory latency (cache thrashing)
- No pipeline flushing (memory barriers)
> NO contention

— Can accept some additional overhead for writers

> But must stay within the realm of reason



We Can Do Linked-List Insertion...

> Initialize then insert

— Readerswill either see it or not
— But list will always be properly formatted

> Need memory barriers on weakly ordered
machines (pretty much all of them)

» Taken care of for you by rcu() list macros:

—- Uselist_add rcu() to insert into the list
—- Uselist_for _each entry rcu() to scan thelist



But Sooner Or Later...

Something will need to be removed
from the list



Just hop the pointer over
the element to be deleted!!!



L ock-Free Removal Animation (1)



L ock-Free Removal Animation (2)
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L ock-Free Removal Animation (3)
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But Sooner Or Later...

It will be necessary to free up € ements removed
from thelist...

Unlessit is OK to wantonly leak memory!!!

But readers might be referencing the removed
element for quite some time...



When Are Readers Done?

» Read-side rwlock critical section:
— Preemption disabled
— No blocking
— No return to user-mode execution
— No page faults or exceptions
— No holding references from one CS to another!

> If aCPU does a context switch, it Is donel

— All prior read-side critical sections complete
— With no lockina onerations! !



Grace Periods

CPUO
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CPU1



Implemented In 2.6 kernel

Itiscaled “RCU”

(Short for “Read-Copy Update”)



RCU Performance Testing

> Four-CPU 700MHz P-l11 System

» Four-CPU 1.4GHz IPF System (running x86
code)

> Four-CPU 1.4GHz Opteron System
> Elght-CPU 1.45GHz Power4+ System

— Only four CPUs were used in these benchmarks



Test Scenarios

> Read-only test

— For data structures that are amost never modified
» Routing tables, HW/SW configuration, policies

> Mixed workload

— Vary fraction of accesses that are updates
— See how things change as read-intensity varies
— Expect breakeven point for RCU and locking



Overview of Results. Read-only

» Global spinlock/rwlock scale negatively

» Per-bucket schemes scale, but poorly

—~ 10-20% of 1deal at 4 CPUs

— Lessthan half of ideal on single CPU
> But why would you run CONFIG_SMP on one CPU?

. brlock scales better

— But still less than 40% of ideal
— And brlock 1s known to have trouble on writes...



X86 Read-Only Results
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|PF Read-Only Results

Searches/Updates per Unit Time
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Opteron Read-Only Results
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PPC Read-Only Results
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Overview of Results; Mixed
Workload

CPU Type | Crossover

X86 0.2-0.5
IPF/x86 0.1-04
Opteron 0.2-0.5

PPC 0.3-0.5




X86 Results for Mixed Workload
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| PF Results for Mixed Workload

Update Fraction (lambda=10)
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Opteron Results for Mixed Workload
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PPC Results for Mixed Workload
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Summary and Conclusions (1)

> RCU Isgreat for read-mostly data structures

— But not so great for update-mostly situations

— RCU optimal when less then 10% of accesses are
updates

» RCU updates cannot exclude readers

— Good for deadlock avoidance and scalability

— Adds complexity in some cases
> But need 1,000s of instructions to make rwlock pay!!!

» RCU best when designed in from the start



Summary and Conclusions (2)

> Future/Ongoing Work

- Testing RCU on more algorithms and data structures

— Decreasing RCU grace-period overhead
> Make things faster, increase RCU usefulness

- Make RCU safe for realtime use (e.g., 250
mi croseconds scheduling latency)

— Enlist RCU to prevent DoS attacks
— Improve RCU ease of use



Legal Notice

> The views expressed in this paper are the author's only, and should
not be attributed to IBM.

> UNIX isaregistered trademark of The Open Group in the United
States and other countries.

> IBM and AlX areregistered trademarks of International Business
Machines Corporation in the United States and/or other countries

> Linux isaregistered trademark of Linus Torvalds

> Other company, product, and service names may be trademarks or
service marks of others



Use
the right tool
for the job!!!



