
© 2009 IBM Corporation

Introduction to RCU Concepts 

Liberal application of procrastination for accommodation of the 
laws of physics – for more than two decades!

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

22 October 2013



© 2009 IBM Corporation2

Mutual Exclusion

What mechanisms can enforce mutual exclusion?



© 2009 IBM Corporation3

Example Application



© 2009 IBM Corporation4

Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example from CACM article)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)



© 2009 IBM Corporation5

Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu



© 2009 IBM Corporation6

Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?



© 2009 IBM Corporation7

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX (64 CPUs)
 1024 hash buckets



© 2009 IBM Corporation8

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX,  1024 hash buckets

Why the dropoff???



© 2009 IBM Corporation9

Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX 

Still a dropoff...



© 2009 IBM Corporation10

NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24



© 2009 IBM Corporation11

Bucket-Locked Hash Performance: 1 CPU/Socket

2GHz Intel Xeon Westmere-EX: This is not the sort of 
scalability Schrödinger requires!!! 



© 2009 IBM Corporation12

Performance of Synchronization Mechanisms



© 2009 IBM Corporation13

Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike



© 2009 IBM Corporation14

Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike



© 2009 IBM Corporation15

How Can Software Live With This Hardware???



© 2009 IBM Corporation16

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.



© 2009 IBM Corporation17

Design Principle: Avoid Bottlenecks

Many instances of something good!  Full partitioning even better!!!Many instances of something good!  Full partitioning even better!!!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!



© 2009 IBM Corporation18

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket atomic operation costs ~260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical 

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which 
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!



© 2009 IBM Corporation19

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket atomic operation costs ~260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical 

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which 
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!
–But the low overhead hash-table insertion/deletion operations do not 

provide much scope for long critical sections...



© 2009 IBM Corporation20

Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader

Plus lots of time waiting for the lock's cache line...



© 2009 IBM Corporation21

Design Principle: Avoiding Mutual Exclusion

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader

No Dead Time!No Dead Time!

Reader Reader

Reader

Reader

ReaderReader



© 2009 IBM Corporation22

But How Can This Possibly Be Implemented???



© 2009 IBM Corporation23

But How Can This Possibly Be Implemented???



© 2009 IBM Corporation24

But How Can This Possibly Be Implemented???

Hazard Pointers and RCU!!!



© 2009 IBM Corporation25

RCU: Keep It Basic: Guarantee Only Existence

Pointer to RCU-protected object guaranteed to exist 
throughout RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and 
rcu_read_unlock() primitives are very light weight

However, updaters must take care...



© 2009 IBM Corporation26

RCU: How Updaters Guarantee Existence

Updaters must wait for an RCU grace period to elapse between 
making something inaccessible to readers and freeing it

spin_lock(&updater_lock);
q = cptr;
rcu_assign_pointer(cptr, new_p);
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete their 
RCU read-side critical sections

Next slides give diagram representation



© 2009 IBM Corporation27

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
a

llo
c(

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p 
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!
rc

u_
as

si
g n

_p
oi

nt
er

()



© 2009 IBM Corporation28

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???

fr
ee

()



© 2009 IBM Corporation29

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks



© 2009 IBM Corporation30

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period begins after synchronize_rcu() call and ends after all CPUs 
execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t  

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat



© 2009 IBM Corporation31

Performance



© 2009 IBM Corporation32

Theoretical Performance

71.2 cycles

1
cycle

Uncontended

73 CPUs to
break even with
a single CPU!

144 CPUs to
break even with
a single CPU!!!

71.2 cycles

1
cycle

71.2 cycles

Contended,
No Spinning

1
cycle

RCU (wait-free)

Full performance,
linear scaling,
real-time response

Lo
ck

in
g  

(b
lo

ck
in

g)



© 2009 IBM Corporation33

Measured Performance



© 2009 IBM Corporation34

Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!! 



© 2009 IBM Corporation35

Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality quite well, hazard pointers not bad, bucket locking horribly



© 2009 IBM Corporation36

Schrödinger's Zoo: Reads and Updates



© 2009 IBM Corporation37

RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!



© 2009 IBM Corporation38

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway!  Plus, no lock you can hold will prevent an animal's death...



© 2009 IBM Corporation39

RCU Applicability to the Linux Kernel



© 2009 IBM Corporation40

Summary



© 2009 IBM Corporation41

Summary

Synchronization overhead is a big issue for parallel programs

Straightforward design techniques can avoid this overhead
–Partition the problem: “Many instances of something good!”
–Avoid expensive operations
–Avoid mutual exclusion

RCU is part of the solution, as is hazard pointers
–Excellent for read-mostly data where staleness and inconsistency OK
–Good for read-mostly data where consistency is required
–Can be OK for read-write data where consistency is required
–Might not be best for update-mostly consistency-required data

• Provide existence guarantees that are useful for scalable updates
–Used heavily in the Linux kernel

Much more information on RCU is available...



© 2009 IBM Corporation42

Graphical Summary



© 2009 IBM Corporation43

To Probe Further:
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination”
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and 

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)



© 2009 IBM Corporation44

Legal Statement

 This work represents the view of the author and does not necessarily represent 
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International 
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks 
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant 

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged 

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.



© 2009 IBM Corporation45

Questions?


	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

