
1

Abstraction, Reality Checks,
and RCU

Paul E. McKenney
IBM Beaverton

University of Toronto Cider Seminar
July 26, 2005

Copyright © 2005 IBM Corporation

2

Overview

● Moore's Law and SMP Software
● Non-Blocking Synchronization (NBS)
● Read-Copy Update (RCU)
● Summary

3

Moore's Law and SMP
Software

4

Instruction Speed Increased

5

Synchronization Speed Decreased

6

Critical-Section Efficiency

Lock Acquisition (T
a
)

Critical Section (T
c
)

Lock Release (T
r
)

Efficiency =
T

c

T
c
+T

a
+T

r

Assuming negligible contention and no caching effects in critical section!
Reality Check #1: this is not your father's CPU!!!

7

Instruction/Pipeline Costs on a
8-CPU 1.45GHz PPC

Operation Nanoseconds
Instruction 0.24
Clock Cycle 0.69
Atomic Increment 42.09
Cmpxchg Blind Cache Transfer 56.80
Cmpxchg Cache Transfer and Invalidate 59.10
SMP Memory Barrier (eieio) 75.53
Full Memory Barrier (sync) 92.16
CPU-Local Lock 243.10

8

Visual Demonstration of Latency

SMP MB (eieio):75.53 ns, 314.7 insts
Full MB (sync): 92.16 ns, 384.5 insts

Each nanosecond represents
up to about four instructions

9

What is Going On? (1/3)
● Taller memory hierarchies

– Memory speeds have not kept up with CPU speeds
● 1984: no caches needed, since instructions slower than

memory accesses
● 2005: 3-4 level cache hierarchies, since instructions orders

of magnitude faster than memory accesses
● Synchronization requires consistent view of data across CPUs, in

other words, CPU-to-CPU communication
– Unlike normal instructions, synchronization operations tend

not to hit in top-level cache
– Hence, they are orders of magnitude slower than normal

instructions because of memory latency

10

What is Going On? (2/3)
● Longer pipelines

– 1984: Many clocks per instruction
– 2005: Many instructions per clock – 20-stage pipelines

● Modern super-scalar CPUs execute instructions out of
order in order to keep their pipelines full
– But musn't reorder a critical section before its lock!!!

● Therefore, synchronization operations must stall the
pipeline, decreasing performance

11

What is Going On? (3/3)
● 1984: The main issue was lock contention
● 2005: Even if lock contention is eliminated, critical-

section efficiency must be addressed!!!
– Even if the lock is always free when acquired,

performance is seriously degraded
– Some hardware guys tell me that this will all soon be

better...
● But I will believe it when I see it!!!

12

What is Going On?

CPU CPU

Memory

CPU CPU

Memory

L1 Cache L1 Cache

L2 Cache L2 Cache

1984 2005

13

Forces Acting on SMP Efficiency

SMP Efficiency

Hardware
Threading

Multicore
Dies

Memory-System
Performance

System
Size

Historic
Trends

CPU Clock
Frequency

14

Locking Performance

15

Performance Comparison:
What Benchmark to Use?

● Focus on operating-system kernels
– Many read-mostly hash tables

● Hash-table mini-benchmark
– Dense array of buckets
– Doubly-linked hash chains
– One element per hash chain

● You do tune your hash tables, don't you???

16

How to Evaluate Performance?

● Mix of operations:
– Search
– Delete followed by reinsertion: maintain loading
– Random run lengths for specified mix

● (See thesis)
● Start with pure search workload (read only)
● Run on 8-CPU 1.45GHz PPC system

17

Locking Performance

Reality Check #2:
Extra CPUs not buying much! Note: workload fits in cache.

18

Do Not Use rwlock_t for Short Read-
Side Critical Sections

CPU 0

CPU 1

R
ea

d
-A

cq
u

ir
e

Read-Side
Critical Section

M
e

m
o

ry
 B

a
rr

ie
r

R
ea

d
-A

cq
u

ir
e

M
em

o
ry

 B
a

rr
ie

r

R
ea

d
-A

cq
u

ir
e

M
em

o
ry

 B
a

rr
ie

r

R
ea

d
-A

cq
u

ir
e

M
em

o
ry

 B
a

rr
ie

r

Read-Side
Critical Section

Reality Check #3: Parallel reader access isn't.

19

Non-Blocking
Synchronization (NBS)

20

What About Non-Blocking
Synchronization?

● What is non-blocking synchronization (NBS)?
– Roll back to resolve conflicting changes instead of

spinning or blocking
– Use atomic instructions to hide complex updates

behind a single commit point
● Readers and writers use atomic instructions such as

compare-and-swap or LL/SC
● Simple “NBS” algorithms in heavy use

– Atomic-instruction-based algorithms

21

Why Not NBS All The Time?

Reality check #4: the 1980s ended a long time ago...

Operation Nanoseconds
Instruction 0.24
Clock Cycle 0.69
Atomic Increment 42.09
Cmpxchg Blind Cache Transfer 56.80
Cmpxchg Cache Transfer and Invalidate 59.10
SMP Memory Barrier (eieio) 75.53
Full Memory Barrier (sync) 92.16

22

When to Use NBS?

● Simple NBS algorithm is available
– Split counters (strictly speaking, only by 1)

● More on this later...
– Simple queue/stack management
– Especially if NBS constraints may be relaxed!

● Workload is update-heavy, but simple
– NBS's use of atomic instructions and memory barriers

not causing gratuitous performance pain
– Complexity of “Macho NBS” avoided

23

NBS Constraints

● Progress guarantees in face of task failure
– Everyone makes progress: wait free
– Someone makes progress: lock free
– Someone makes progress in absence of contention:

obstruction free
– Some progress, but...

● Linearizability
– Everyone agrees on all intermediate states

● Reality check #5:
– Both constraints are usually irrelevant!!!

24

How Can Progress Guarantees
Possibly Be Irrelevant???

● Failure due to software bug
– What fraction of software bugs are fail-stop?

● “Failure” due to preemption/interrupt
– Scheduler-conscious synchronization

● Available in all commercial Unix-like systems
● Including Linux, AIX, Solaris, HP-UX, DYNIX/ptx, ...

● “Failure” due to page fault
– It is 2005. Over-provision memory. Get over it.
– If the page is really nonresident, everyone faults!

● Production FT systems use locking

25

● By design
– Linearizability implies dependencies
– Dependencies are expensive in today's systems
– Why add gratuitous dependencies???

● Performance optimization avoids dependencies
● By nature

– How can you tell which of two unrelated events
occurred first?

– Why would an application care???

How Can Linearizability Possibly Be
Irrelevant???

26

Linearizability Example

● Linearizable Add:
atomic_add(&ctr, v);

● :Linearizable Value
return (ctr);

● Laissez-Faire Add:
__get_cpu_var(ctr)++;
● Laissez-Faire Value:
for_each_cpu(cpu) {

sum += per_cpu(ctr,cpu);
}
return (sum);

27

5

1

7

5

Friendly Advice: Tolerate Dissent

135

1 6

7

8

12

1

7

5
7

7

1

1
5

0

28

NBS Summary

● Use it where it makes sense
– Simple update-heavy data structures
– Use locking for complex update-heavy data

structures: scheduler-conscious synchronization
● Relax NBS forward-progress & linearizability

constraints when it makes sense
– Most of the time...

● Why do hard things the hard way???

29

Read-Copy Update (RCU)

30

What is Synchronization?

● Mechanism plus coding convention
– Locking: must hold lock to reference or update
– NBS: must use carefully crafted sequences of atomic

operations to do references and updates
– RCU coding convention:

● Must define “quiescent states” (QS)
– e.g., context switch in non-CONFIG_PREEMPT kernels

● QSes must not appear in read-side critical sections
● CPU in QSes are guaranteed to have completed all

preceding read-side critical sections
– RCU mechanism: “lazy barrier” that computes “grace

period” given QSes.

31

RCU Fundamental Primitives

● rcu_read_lock() & rcu_read_unlock()
– Demark RCU read-side critical section.
– Zero overhead in non-preemptive environment.

● synchronize_rcu()
– Wait until all pre-existing RCU read-side critical

sections complete.
– Subsequently started RCU read-side critical sections

not waited for.
– See next slide...

● call_rcu(): callback form of synchronize_rcu()
– AKA “continuation” or “asynchronous” form.

32

RCU Operation

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
t i

o
n

CPU 2

CPU 3

sy
n

ch
ro

n
iz

e_
k

e
r n

el
()

33

How Can RCU Updates Be Fast?

● Piggyback notification of reader completion on
context switch (and similar events)

● Kernels are usually constructed as event-driven
systems, with short-duration run-to-completion
event handlers
– Greatly simplifies deferring destruction because

readers are short-lived
– Permits tight bound on memory overhead

● Limited number of versions waiting to be collected

34

RCU's Deferred Destruction

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

e c
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
t i

o
n

ca
ll

_ r
cu

()

C
o

n
te

x t
Sw

it
ch

C
o

n
te

x t
Sw

it
c h

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
t i

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
t i

o
n

May hold reference Can't hold reference to old
version, but RCU can't tell

Can't hold reference
to old version

Can't hold reference
to old version

C
o

n
te

x t
Sw

it
c h

C
o

n
t e

xt
Sw

it
ch

35

Grace Periods

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

e c
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
t i

o
n

D
el

et
e

E
le

m
en

t

C
o

n
te

x t
Sw

it
ch

C
o

n
te

x t
Sw

it
c h

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
t i

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

c a
l S

ec
t i

o
n

C
o

n
te

x t
Sw

it
c h

Grace Period

Grace Period

C
o

n
te

x t
Sw

it
ch

Grace Period

36

What is RCU? (1)

● Reader-writer synchronization mechanism
– Best for read-mostly data structures

● Writers create new versions atomically
– Normally create new and delete old elements

● Readers can access old versions independently of
subsequent writers
– Old versions garbage-collected by “poor man's” GC,

deferring destruction
– Readers must signal “GC” when done

37

What is RCU? (2)

● Readers incur little or no overhead
● Writers incur substantial overhead

– Writers must synchronize with each other
– Writers must defer destructive actions until readers

are done
– The “poor man's” GC also incurs some overhead

38

PPC Read-Only Results

39

PPC Mixed Workload

40

PPC Read-Mostly Mixed Workload

41

But We Cut HPBR a Break

● We assumed that the hazard pointers can be
statically allocated

● Invalid assumption in production software, as
many important data structures require
unbounded numbers of hazard pointers:
– tree traversal, graph traversal, nested data structures,

recursive traversal of data structures
● Reality Check #6:

– Hazard pointers must be dynamically allocated
– Which will increase HPBR overhead

42

So Who Cares About 99.9%
Reads???

● Networking routing table
– 1,000 packets per second (moderate webserver)
– Internet routing protocols limited to one update per

few minutes (avoid route thrashing)
– 99.999% reads!

● Hardware configuration tracking
– Used on every I/O, almost never changes!
– Essentially 100% reads

● Security policies, netfilter setup, dcache, ...
● Reality Check #7:

– Read-mostly scenarios extremely important!!!

43

RCU Sem Micro-Benchmark

Kernel Run 1 Run 2 Avg
2.5.42-mm2 515.1 515.4 515.3
2.5.42-mm2+ipc-rcu 46.7 46.7 46.7

Numbers are test duration, smaller is better.
8-CPU 700MHz Intel PIII System

44

RCU Sem DBT1 Performance

Kernel Average
2.5.42-mm2 85.0 7.5
2.5.42-mm2+ipc-rcu 89.8 1.0

Standard
Deviation

Numbers are transaction rate, larger is better.
2-CPU 900MHz PIII

45

When to Use RCU

● Read-mostly data structures
● Algorithms that can tolerate concurrent accesses

and updates
– There are ways to transform algorithms into a form

that can tolerate concurrent accesses and updates

46

Summary and
Conclusions

47

What to Use Where (Short Form)

● Read-mostly situations: RCU
● Update-heavy situations:

– Simple data structures and algorithms: NBS
● Most likely in conjunction with hazard pointers

– Complex data structures and algorithms: locking
● Most likely in conjunction with some form of scheduler-

conscious synchronization
● And for the final reality check...

48

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Copyright © 2004 Melissa McKenney

49

Legal Statement
● This work represents the view of the author, and does not

necessarily represent the view of IBM.
● IBM, NUMA-Q, and Sequent are registered trademarks of

International Business Machines in the United States, other
countries, or both.

● Pentium is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

● Linux is a registered trademark of The Open Group in the United
States and other countries.

● Other company, product, and service names may be trademarks or
service marks of others.

50

BACKUP

