
2010 linux.conf.au Wellington, NZ

January 21, 2010 © 2006-2010 IBM Corporation

Simplicity Through Optimization

It Doesn't Always Work This Way, But It Is Sure Nice When It Does!!!

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

2

Overview

A Puzzle From 1984
How Optimization Goes Bad And Why
RCU 1993-2008: Example Optimization Gone Bad
RCU 2009-2010: Simplicity Through Optimization
Next Steps
Lessons Learned

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

3

A Puzzle From 1984

That would be the year, not the book!!!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

4

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory

 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage in “sh”

 We got a larger disk, migrated FSes from old disk

 Worked great for awhile, then started getting corrupted
source files

 Application deadlines loomed, so just created a .BAD
directory, and moved all corrupted files there

 After awhile, the problem went away

 What was happening???

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

5

How Optimization Goes Bad And Why

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

6

Optimization Going Bad

 Powerful optimization strategy
• Take advantage of special cases!!!

 Single special case simple, but specialized

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

7

Optimization Going Bad

 Powerful optimization strategy
• Take advantage of special cases!!!

 Single special case simple, but specialized
• OK sometimes, but when you must handle general problem:

Special-Case Selection and Dispatch

S
pe

ci
al

 C
as

e
#1

S
pe

ci
al

 C
as

e
#2

S
pe

ci
al

 C
as

e
#3

S
pe

ci
al

 C
as

e
#4

S
pe

ci
al

 C
as

e
#5

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

8

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory
 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage
 We got a larger disk, migrated FSes from old disk
 Worked great then started getting corrupted file data
 Application deadlines loomed, so just created a .BAD

directory, and moved all corrupted files there
 Problem went away
 What was happening???

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

9

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory
 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage
 We got a larger disk, migrated FSes from old disk
 Worked great, then started getting corrupted file data
 Application deadlines loomed, so just created a .BAD

directory, and moved all corrupted files there
 Problem went away
 What was happening???

• Relocating the swap partition required kernel source change

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

10

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory
 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage
 We got a larger disk, migrated FSes from old disk
 Worked great, then started getting corrupted file data
 Application deadlines loomed, so just created a .BAD

directory, and moved all corrupted files there
 Problem went away
 What was happening???

• Relocating the swap partition required kernel source change
• In three different places in the kernel source

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

11

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory
 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage
 We got a larger disk, migrated FSes from old disk
 Worked great, then started getting corrupted file data
 Application deadlines loomed, so just created a .BAD

directory, and moved all corrupted files there
 Problem went away
 What was happening???

• Relocating the swap partition required kernel source change
• In three different places in the kernel source
• We had found only one of them

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

12

A Puzzle From 1984: BSD 2.8 on PDP-11/23

 64Kbyte address space, 256K-1M physical memory
 Three seconds to fork()/exec() minimal program

• Which helps explain all the “case ... esac” usage
 We got a larger disk, migrated FSes from old disk
 Worked great, then started getting corrupted file data
 Application deadlines loomed, so just created a .BAD

directory, and moved all corrupted files there
 Problem went away
 What was happening???

• Relocating the swap partition required kernel source change
• In three different places in the kernel source
• We had found only one of them
• Why does this matter???

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

13

A Puzzle From 1984: Lessons For 2010

 Coordinated kernel-source dependency unacceptable
 Kernels are now expected to adapt to their

surroundings as they change
 Kernels are now expected to adapt to configuration and

administration changes dynamically, without rebuild
• And without reboot

 In contrast with 1984, there is now a huge amount of
read-mostly data in the kernel tracking such info
• Almost never changes, but might change at any time

 In 2010, optimizations for read-mostly data are much
more important than in 1984

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

14

A Puzzle From 1984: Lessons For 2010

 Coordinated kernel-source dependency unacceptable
 Kernels are now expected to adapt to their

surroundings as they change
 Kernels are now expected to adapt to configuration and

administration changes dynamically, without rebuild
• And without reboot

 In contrast with 1984, there is now a huge amount of
read-mostly data in the kernel tracking such info
• Almost never changes, but might change at any time

 In 2010, optimizations for read-mostly data are much
more important than in 1984

• And what is my favorite read-mostly optimization???

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

15

RCU 1993-2008: Example Optimization Gone Bad

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

16

But First, What Is RCU?

 “RCU read-side critical section” & “quiescent state”:

 “Grace period”: period of time during which all CPUs
(or threads) pass through at least one quiescent state
• Any time period including a grace period is a grace period
• Distinct grace periods may overlap partially or completely
• All RCU read-side critical sections present at the start of a

grace period must complete before the end of that grace period

/* Quiescent state */
rcu_read_lock();
 /* RCU read-side critical section */
 rcu_read_lock();
 /* RCU read-side critical section */
 rcu_read_unlock();
 /* RCU read-side critical section */
rcu_read_unlock();
/* Quiescent state */

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

17

Pictorial Version

Change Visible
to All Readers

Change Grace Period

RCU Read-Side Critical Section

RCU Read-Side Critical Section

RCU Read-Side Critical Section

Forbidden!

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

RCU read-side
critical sections

concurrent
w/updates

RCU RS CS

RCU RS CS RCU RS CSRCU RS CS

Quiescent State

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

18

Pictorial Version

Update Visible
to All Readers

RCU RS CS

Update Grace Period

RCU RS CS

RCU Read-Side Critical Section

RCU Read-Side Critical Section

RCU Read-Side Critical Section

RCU RS CSRCU RS CS

rcu_read_lock()

rcu_read_unlock()

RCU read-side
critical sections

concurrent
w/updates

synchronize_rcu()

A grace period is not permitted to end until all pre-existing readers have completed.

Quiescent State

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

19

Conventional RW Locking: Exclusion in Time

r
e
a
d
_
l
o
c
k
(
)

r
e
a
d
_
u
n
l
o
c
k
(
)

R
ea

de
rs

w
r
i
t
e
_
l
o
c
k
(
)

w
r
i
t
e
_
u
n
l
o
c
k
(
)

O
ne

 W
rit

er

r
e
a
d
_
l
o
c
k
(
)

r
e
a
d
_
u
n
l
o
c
k
(
)

R
ea

de
rs

w
r
i
t
e
_
l
o
c
k
(
)

w
r
i
t
e
_
u
n
l
o
c
k
(
)

O
ne

 W
rit

er

r
e
a
d
_
l
o
c
k
(
)

r
e
a
d
_
u
n
l
o
c
k
(
)

R
ea

de
rs

Time

Problems: poor performance and bad scalability, non-real-time latencies

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

20

Illustration of Poor RW Locking Performance

Thread 0

Thread 1

Write-
Acquire

Lock

Manipulate
Data

Release
Lock

Wait For Lock
Read-

Acquire
Lock

Access
Data

Release
Lock

Thread 2 Wait For Lock
Read-

Acquire
Lock

Access
Data

Release
Lock

Why can't thread 1 & 2
lock at same time?

Courtesy of the atomic nature of matter and the finite speed of light.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

21

RCU: Exclusion in Time and Space

A

B

C

A

B

C

1 Version1 Version

Time

2 Versions2 Versions

A

B

C

A

B

C

B

2 Versions2 Versions

A

B

C

A

B

C

B'

2 Versions2 Versions

A

B

C

A

B

C

B'

2 Versions2 Versions

A

B

C

A

B

C

B'

A

B

C

A

B'

C

1 Version1 Version

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

22

RCU Usage Within the Linux Kernel (2.6.32)

In case there was any doubt, the Linux community can handle RCU.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

23

RCU Usage Within the Linux Kernel vs. Locking

I do not expect RCU to ever overtake locking because RCU is specialized.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

24

RCU Usage Within the Linux Kernel vs. Locking

Same data on semi-log plot.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

25

RCU 1993-2008: Example Optimization Gone Bad

 Focus on the complexity of RCU's read side

 Before Linux, the ultimate in simplicity:
#define rcu_read_lock()
#define rcu_read_unlock()

 This implementation has a number of advantages...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

26

RCU 1993-2008: Example Optimization Gone Bad

 Focus on the complexity of RCU's read side

 Before Linux, the ultimate in simplicity:
#define rcu_read_lock()
#define rcu_read_unlock()

 This implementation has a number of advantages:

• Good performance, scalability, real-time latency

• Immunity to deadlock and livelock

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

27

RCU 1993-2008: Example Optimization Gone Bad

 Focus on the complexity of RCU's read side

 Before Linux, the ultimate in simplicity:
#define rcu_read_lock()
#define rcu_read_unlock()

 This implementation has a number of advantages:

• Good performance, scalability, real-time latency

• Immunity to deadlock and livelock

• In short, “free is a very good price”

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

28

RCU 1993-2008: Example Optimization Gone Bad

 Focus on the complexity of RCU's read side

 Before Linux, the ultimate in simplicity:
#define rcu_read_lock()
#define rcu_read_unlock()

 This implementation has a number of advantages:

• Good performance, scalability, real-time latency

• Immunity to deadlock and livelock

• In short, “free is a very good price”

 But if the readers are doing absolutely nothing, how the
heck does the writer know when they are done?

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

29

How Can RCU Readers Do Nothing???

 If the readers are doing absolutely nothing, how the
heck does the writer know when they are done?

• The do-nothing readers work only if !CONFIG_PREEMPT
► Or at user level if your application is appropriately structured

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

30

How Can RCU Readers Do Nothing???

 If the readers are doing absolutely nothing, how the
heck does the writer know when they are done?

• The do-nothing readers work only if !CONFIG_PREEMPT
► Or at user level if your application is appropriately structured

• In kernel, cannot block or preempt while holding a spinlock
► Try it. If the guy holding the spinlock stops running, then all CPUs can be

tied up spinning on the lock. The spinlock cannot be released until the guy
holding it runs, and the guy holding it cannot run until at least one CPU
becomes available, which won't happen until he releases the lock.

► Self deadlock and “scheduling while atomic” console messages

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

31

How Can RCU Readers Do Nothing???

 If the readers are doing absolutely nothing, how the
heck does the writer know when they are done?

• The do-nothing readers work only if !CONFIG_PREEMPT
► Or at user level if your application is appropriately structured

• In kernel, cannot block or preempt while holding a spinlock
► Try it. If the guy holding the spinlock stops running, then all CPUs can be

tied up spinning on the lock. The spinlock cannot be released until the guy
holding it runs, and the guy holding it cannot run until at least one CPU
becomes available, which won't happen until he releases the lock.

► Self deadlock and “scheduling while atomic” console messages

• So, declare it illegal to block or be preempted while in an RCU
read-side critical section!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

32

Accommodating Lazy RCU Readers

synchronize_rcu()synchronize_rcu()

CPU 0CPU 0

CPU 1CPU 1

CPU 2CPU 2

co
nt

ex
t

sw
itc

h

co
nt

ex
t

sw
itc

h

RCU re
ad

-s
ide

RCU re
ad

-s
ide

 cr

itic
al

se
cti

on

cr
itic

al
se

cti
on

““Grace Period”Grace Period”
list_del_rcu()list_del_rcu() kfree()kfree()

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

33

Where to Find out More About RCU

 Linux Device Drivers, J. Corbet, A. Rubini, G. Kroah-Hartman
 Linux Weekly News: lwn.net (Google for “rcu whatever site:lwn.net”)
 Linux Kernel source (http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.tar.bz2)

• “Documentation/RCU” directory
 http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
 http://lwn.net/Articles/263130/ (What is RCU's Usage?)
 http://lwn.net/Articles/264090/ (What is RCU's API?)
 http://www.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdf

• linux.conf.au paper comparing RCU vs. locking performance
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

• RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

• System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

• Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

• History of RCU in Linux (Linux changed RCU more than vice versa)
 http://lttng.org/?q=node/18

• Mathieu Desnoyers's user-level RCU repository
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

34

RCU 1993-2008: Example Optimization Gone Bad

 Focus on the complexity of RCU's read side

 Before Linux, the ultimate in simplicity:
#define rcu_read_lock()
#define rcu_read_unlock()

 Linux 2.6.0 had CONFIG_PREEMPT, still simple:
#define rcu_read_lock() preempt_disable()
#define rcu_read_unlock() preempt_enable()

 And then there was the -rt patchset...

• Which needs to preempt RCU readers

• Which...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

35

Context Switches Might Not Be Quiescent State

synchronize_rcu()synchronize_rcu()

CPU 0CPU 0

CPU 1CPU 1

CPU 2CPU 2

co
nt

ex
t

sw
itc

h

co
nt

ex
t

sw
itc

h

RCU re
ad

-s
ide

RCU re
ad

-s
ide

 cr

itic
al

se
cti

on

cr
itic

al
se

cti
on

““Grace Period”Grace Period”
list_del_rcu()list_del_rcu() kfree()kfree()

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

36

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 11
CPU 1CPU 1 11 22
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

Task A

Task B

Task C

Task D

Each task references the counter that it atomically increments in
rcu_read_lock(), allowing rcu_read_unlock() to atomically decrement it.

Each task keeps a counter of rcu_read_lock() nesting, so that only
outermost rcu_read_lock() and rcu_read_unlock() access per-CPU counters.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

37

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 00
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Initial state.

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

38

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Task A rcu_read_lock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

39

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

Task D rcu_read_lock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

40

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 11 00
CPU 2CPU 2 00 00
CPU 3CPU 3 11 00

Task C synchronize_rcu() entry: Counters “flip”, or reverse roles.

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

41

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 11
CPU 1CPU 1 11 00
CPU 2CPU 2 00 00
CPU 3CPU 3 11 00

Task B rcu_read_lock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

42

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 11
CPU 1CPU 1 11 00
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Task D rcu_read_unlock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

43

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 11
CPU 1CPU 1 00 00
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Task A rcu_read_unlock(), Task C synchronize_rcu() returns.

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

44

Counter-Based Real-Time RCU

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 00
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Task B rcu_read_unlock().

But what must rcu_read_lock() and rcu_read_unlock() do to make this work?

(For more info: http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf)

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

45

RCU 1993-2008: Example Optimization Gone Bad

 -rt patchset needed preemptible RCU readers:

 1 void rcu_read_lock(void)
 2 {
 3 int flipctr;
 4 unsigned long oldirq;
 5
 6 local_irq_save(oldirq);
 7 if (current->rcu_read_lock_nesting++ == 0) {
 8 flipctr = rcu_ctrlblk.completed & 0x1;
 9 smp_read_barrier_depends();
 10 current->rcu_flipctr1 = &(__get_cpu_var(rcu_flipctr)[flipctr]);
 11 atomic_inc(current->rcu_flipctr1);
 12 smp_mb__after_atomic_inc(); /* might optimize out... */
 13 if (unlikely(flipctr != (rcu_ctrlblk.completed & 0x1))) {
 14 current->rcu_flipctr2 =
 15 &(__get_cpu_var(rcu_flipctr)[!flipctr]);
 16 atomic_inc(current->rcu_flipctr2);
 17 smp_mb__after_atomic_inc(); /* might optimize out... */
 18 }
 19 }
 20 local_irq_restore(oldirq);
 21 }

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

46

RCU 1993-2008: Example Optimization Gone Bad

 And -rt patchset also needs rcu_read_unlock():

 1 void
 2 rcu_read_unlock(void)
 3 {
 4 unsigned long oldirq;
 5
 6 local_irq_save(oldirq);
 7 if (--current->rcu_read_lock_nesting == 0) {
 8 smp_mb__before_atomic_dec();
 9 atomic_dec(current->rcu_flipctr1);
 10 current->rcu_flipctr1 = NULL;
 11 if (unlikely(current->rcu_flipctr2 != NULL)) {
 12 atomic_dec(current->rcu_flipctr2);
 13 current->rcu_flipctr2 = NULL;
 14 }
 15 }
 16 local_irq_restore(oldirq);
 17 }

Atomic operations, memory barriers, common-case branches: yecch!!!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

47

Real-Time RCU Without Memory Barriers

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 11
CPU 1CPU 1 11 22
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

Task A

Task B

Task C

Task D

Each task references the column of the counter that it incremented in
rcu_read_lock(), allowing rcu_read_unlock() to decrement the corresponding
counter corresponding to whatever CPU it ends up on.

Again, each task keeps a nesting counter.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

48

Real-Time RCU Without Memory Barriers

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 00
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Initial state.

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

49

Real-Time RCU Without Memory Barriers

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

Task A rcu_read_lock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

50

Real-Time RCU Without Memory Barriers

Previous CountPrevious Count Current CountCurrent Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

Task D rcu_read_lock().

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

51

Real-Time RCU Without Memory Barriers

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

Task C synchronize_rcu() entry: Counters “flip”, or reverse roles.

Task A

Task B

Task C

Task D

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

52

Real-Time RCU Without Memory Barriers

Task A is preempted, then resumes on CPU 2.

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

53

Real-Time RCU Without Memory Barriers

Task B rcu_read_lock().

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 11 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 11

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

54

Real-Time RCU Without Memory Barriers

Task D rcu_read_unlock().

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 11 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

55

Real-Time RCU Without Memory Barriers

Recall that Task A is now running on CPU 2.

So, what happens when Task A does rcu_read_unlock()?

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 11 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 00
CPU 3CPU 3 00 00

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

56

Real-Time RCU Without Memory Barriers

Task A rcu_read_unlock(), Task C synchronize_rcu() returns.

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 11 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 -1-1
CPU 3CPU 3 00 00

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

57

Real-Time RCU Without Memory Barriers

Task B rcu_read_unlock().

(For more info: http://lwn.net/Articles/253651/)

Task A

Task B

Task C

Task D

Current CountCurrent CountPrevious CountPrevious Count
CPU 0CPU 0 00 00
CPU 1CPU 1 00 11
CPU 2CPU 2 00 -1-1
CPU 3CPU 3 00 00

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

58

RCU 1993-2008: Example Optimization Gone Bad

 2.6.25 preemptible rcu_read_lock():

 1 void __rcu_read_lock(void)
 2 {
 3 int idx;
 4 struct task_struct *t = current;
 5 int nesting;
 6
 7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
 8 if (nesting != 0) {
 9 t->rcu_read_lock_nesting = nesting + 1;
 10 } else {
 11 unsigned long flags;
 12 local_irq_save(flags);
 13 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
 14 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
 15 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
 16 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
 17 local_irq_restore(flags);
 18 }
 19 }

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

59

RCU 1993-2008: Example Optimization Gone Bad

 2.6.25 preemptible rcu_read_unlock():
 1 void __rcu_read_unlock(void)
 2 {
 3 int idx;
 4 struct task_struct *t = current;
 5 int nesting;
 6
 7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
 8 if (nesting > 1) {
 9 t->rcu_read_lock_nesting = nesting - 1;
 10 } else {
 11 unsigned long flags;
 12
 13 local_irq_save(flags);
 14 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
 15 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
 16 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
 17 local_irq_restore(flags);
 18 }
 19 }

Faster, but still lots of compiler constraints, array accesses, and bulk code.
Also difficult to tell which tasks are holding things up.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

60

So, What Do We Want, Anyway???

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

61

We Don't Want Atomic Instructions

Even though they are cheaper than they used to be.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

62

We Don't Want Memory Barriers

Even though they are also cheaper than they used to be.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

63

We Don't Want Cache Misses

Which haven't really gotten that much cheaper...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

64

We Don't Want Branch Misprediction

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

65

We Want Full Core CPU Performance

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

66

Don't Want Five Independent RCU Implementations

Kconfig

C
LA

S
S

IC
_R

C
U

(s
pe

ed
,

!s
ca

la
bl

e,
 !

R
T

,
bi

g
m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

P
R

E
E

M
P

T
_R

C
U

(!
sp

ee
d,

 !
sc

al
ab

le
,

R
T

, b
ig

 m
em

or
y,

~
bl

oc
ki

ng
 r

ea
de

rs
)

T
R

E
E

_R
C

U
(s

pe
ed

, s
ca

la
bl

e,
!R

T
,

hu
ge

 m
em

or
y,

!b
lo

ck
in

g
re

ad
er

s)

T
IN

Y
_R

C
U

 (
pa

tc
h)

(s
pe

ed
,

!S
M

P
,

!R
T

, s
m

al
l m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

S
R

C
U

 (
al

w
ay

s
pr

es
en

t)
(~

sp
ee

d,
 !

sc
al

ab
le

,
R

T
, b

ig
 m

em
or

y,
bl

oc
ki

ng
 r

ea
de

rs
)

Only one of the four RCU implementations

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

67

And Especially...

We Don't Want University Students Learning RCU From
“The Design of Preemptible RCU”

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

68

RCU 2009-2010: Simplicity Through Optimization

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

69

RCU 2009-2010: Simplicity Through Optimization

 Inspiration: user-level RCU implementations
• Inherently preemptible
• But still simple, because RCU operates on individual threads
• However, this is not practical for kernel preemptible RCU, due

to the potentially huge number of tasks
• Kernel preemptible RCU therefore does complex per-CPU

accounting: modular arithmetic to find grace period end

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

70

RCU 2009-2010: Simplicity Through Optimization

 Inspiration: user-level RCU implementations
• Inherently preemptible
• But still simple, because RCU operates on individual threads
• However, this is not practical for kernel preemptible RCU, due

to the potentially huge number of tasks
• Kernel preemptible RCU therefore does complex per-CPU

accounting: modular arithmetic to find grace period end

 Key idea:
• Track running tasks
• When task blocks, context switch is costly anyway

► So do CPU-level accounting during context-switch events!!!

• Allows tracking hold-out CPUs, thus integration with
hierarchical RCU!!!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

71

RCU 2009-2010: Simplicity Through Optimization

 Inspiration: user-level RCU implementations
• Inherently preemptible
• But still simple, because RCU operates on individual threads
• However, this is not practical for kernel preemptible RCU, due

to the potentially huge number of tasks
• Kernel preemptible RCU therefore does complex per-CPU

accounting: modular arithmetic to find grace period end

 Key idea:
• Track running tasks
• When task blocks, context switch is costly anyway

► So do CPU-level accounting during context-switch events!!!

• Allows tracking hold-out CPUs, thus integration with
hierarchical RCU!!!

• And all due to a horrible performance-measurement mistake

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

72

Task D (2)

Node 1
List

Node 0
List

Real-Time RCU The Easy Way

Task A (1)

Task C (0)

Each task maintains a nesting counter.

Only counters of currently running tasks are sampled, and on that CPU.

When a task blocks within an RCU read-side critical section, it is enqueued.

CPU 0

CPU 1

CPU 2

CPU 3

Task B (0)

Previous Current

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

73

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Initial state.

Task D (0)

Node 1
List

Node 0
List

Task A (0)

Task C (0)

Task B (0)

Previous Current

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

74

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task A rcu_read_lock() on CPU 1.

So now waiting on CPU 1 to get done.

Task D (0)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (0)

Previous Current

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

75

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task D rcu_read_lock() on CPU 3.

So now waiting on CPU 1 and CPU 3 to get done.

Task D (1)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (0)

Previous Current

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

76

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task C synchronize_rcu() entry: Node lists “flip”, or reverse roles.

Need only wait on CPUs 1 and 3 (detected via scheduling clock interrupt).

Task D (1)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (0)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

77

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task A is preempted, and resumes on CPU 2.

So now we are waiting on CPU 3 and on Task A.

Task D (1)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (0)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

78

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task B rcu_read_lock() on CPU 0.

But it started after the grace period began, so no need to wait on it. Yet.

Task D (1)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (1)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

79

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task D rcu_read_unlock(), still on CPU 3.

Now waiting on Task A.

Task D (0)

Node 1
List

Node 0
List

Task A (1)

Task C (0)

Task B (1)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

80

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task A rcu_read_unlock(), still on CPU 2.

Everything we were waiting on is done, so Task C synchronize_rcu() returns.

Task D (0)

Node 1
List

Node 0
List

Task A (0)

Task C (0)

Task B (1)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

81

CPU 0

CPU 1

CPU 2

CPU 3

Real-Time RCU The Easy Way

Task B rcu_read_unlock().

(For more info on hierarchical RCU: http://lwn.net/Articles/305782/ and TBD)

Task D (0)

Node 1
List

Node 0
List

Task A (0)

Task C (0)

Task B (0)

Current Previous

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

82

RCU 2009-2010: Simplicity Through Optimization

 2.6.32 simplifies things in the common case:
 1 void __rcu_read_lock(void)
 2 {
 3 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
 4 barrier();
 5 }
 6
 7 void __rcu_read_unlock(void)
 8 {
 9 struct task_struct *t = current;
 10
 11 barrier();
 12 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
 13 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
 14 rcu_read_unlock_special(t);
 15 }

And provides 2-3x speedup for both read side and grace periods in common case.
Please note that both rcu_read_lock() and rcu_read_unlock() fit on one slide.

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

83

RCU 2009-2010: Simplicity Through Optimization

 2.6.32 simplifies things in the common case:
 1 void __rcu_read_lock(void)
 2 {
 3 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
 4 barrier();
 5 }
 6
 7 void __rcu_read_unlock(void)
 8 {
 9 struct task_struct *t = current;
 10
 11 barrier();
 12 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
 13 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
 14 rcu_read_unlock_special(t);
 15 }

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

84

Overall Effect

 Read-side performance improves by 2-3x over old
preemptible RCU

 Grace-period latency improves by 2-3x over old
preemptible RCU

 This implementation allowed the CLASSIC_RCU and
PREEMPT_RCU implementations to be dropped,
reducing kernel source by more than 2,000 LOC

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

85

Overall Effect

 Read-side performance improves by 2-3x over old
preemptible RCU

 Grace-period latency improves by 2-3x over old
preemptible RCU

 This implementation allowed the CLASSIC_RCU and
PREEMPT_RCU implementations to be dropped,
reducing kernel source by more than 2,000 LOC

• But what is historical LOC trend?

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

86

RCU Code-Size Trend: 2002-2010

But we should not count rcutorture tests...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

87

RCU Code-Size Trend: 2002-2010

And we should not count RCU tracing...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

88

RCU Code-Size Trend: 2002-2010

And we should not count higher-level list primitives...

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

89

RCU Code-Size Trend: 2002-2010

But there is still a large increase in base RCU code size!!!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

90

RCU Code-Size Trend: 2002-2010

Preemptible RCU

Hierarchical RCU

rcutorture,
rcu_barrier()

SRCU

RCU
list split

Tiny,
expedited

RCU

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

91

But RCU's Code Size Increased By Factor of Six!!!

 But we added:
• rcu_barrier() to allow call_rcu() in kernel modules
• SRCU to allow sleeping RCU readers
• CPU hotplug interactions with RCU
• Preemptible RCU for real-time use
• “sparse” annotations for RCU read-side primitives
• lockdep tracking of RCU read-side primitives
• Dyntick interface so RCU lets sleeping CPUs snooze
• Hierarchical RCU for systems with 1,000 CPUs (maybe more)
• Expedited RCU grace periods
• Hierarchical preemptible RCU for large real-time systems
• Tiny RCU for UP systems with memory constraints

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

92

But RCU's Code Size Increased By Factor of Six!!!

 But we added:
• rcu_barrier() to allow call_rcu() in kernel modules
• SRCU to allow sleeping RCU readers
• CPU hotplug interactions with RCU
• Preemptible RCU for real-time use
• “sparse” annotations for RCU read-side primitives
• lockdep tracking of RCU read-side primitives
• Dyntick interface so RCU lets sleeping CPUs snooze
• Hierarchical RCU for systems with 1,000 CPUs (maybe more)
• Expedited RCU grace periods
• Hierarchical preemptible RCU for large real-time systems
• Tiny RCU for UP systems with memory constraints

 So this is a case of “legitimate bloat”

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

93

But RCU's Code Size Increased By Factor of Six!!!

 But we added:
• rcu_barrier() to allow call_rcu() in kernel modules
• SRCU to allow sleeping RCU readers
• CPU hotplug interactions with RCU
• Preemptible RCU for real-time use
• “sparse” annotations for RCU read-side primitives
• lockdep tracking of RCU read-side primitives
• Dyntick interface so RCU lets sleeping CPUs snooze
• Hierarchical RCU for systems with 1,000 CPUs (maybe more)
• Expedited RCU grace periods
• Hierarchical preemptible RCU for large real-time systems
• Tiny RCU for UP systems with memory constraints

 So this is a case of “legitimate bloat”
• That is my story and I am sticking to it!!! :-)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

94

RCU Before Simplification

Kconfig

C
LA

S
S

IC
_R

C
U

(s
pe

ed
,

!s
ca

la
bl

e,
 !

R
T

,
bi

g
m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

P
R

E
E

M
P

T
_R

C
U

(!
sp

ee
d,

 !
sc

al
ab

le
,

R
T

, b
ig

 m
em

or
y,

~
bl

oc
ki

ng
 r

ea
de

rs
)

T
R

E
E

_R
C

U
(s

pe
ed

,
sc

al
ab

le
,

!R
T

,
hu

ge
 m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

T
IN

Y
_R

C
U

 (
pa

tc
h)

(s
pe

ed
, !

S
M

P
,

!R
T

,
sm

al
l m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

S
R

C
U

 (
al

w
ay

s
pr

es
en

t)
(~

sp
ee

d,
 !s

ca
la

bl
e,

R
T

, b
ig

 m
em

or
y,

bl
oc

ki
ng

 r
ea

de
rs

)

Only one of the four RCU implementations

(Not to scale)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

95

RCU After Simplification

Kconfig

T
R

E
E

_P
R

E
E

M
P

T
_R

C
U

(~
sp

ee
d,

 ~
sc

al
ab

le
,

R
T

, b
ig

 m
em

or
y,

~
bl

oc
ki

ng
 r

ea
de

rs
)

T
R

E
E

_R
C

U
(s

pe
ed

,
sc

al
ab

le
,

!R
T

,
hu

ge
 m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

T
IN

Y
_R

C
U

(s
pe

ed
, !

S
M

P
,

!R
T

,
sm

al
l m

em
or

y,
!b

lo
ck

in
g

re
ad

er
s)

S
R

C
U

 (
al

w
ay

s
pr

es
en

t)
(~

sp
ee

d,
 !s

ca
la

bl
e,

R
T

, b
ig

 m
em

or
y,

bl
oc

ki
ng

 r
ea

de
rs

)

Only one of the three RCU implementations

(Not to scale)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

96

RCU After Simplification: The Rest of the Story

Kconfig

T
R

E
E

_P
R

E
E

M
P

T
_R

C
U

T
R

E
E

_R
C

U

T
IN

Y
_R

C
U

S
R

C
U

 (
al

w
ay

s
pr

es
en

t)

Only one of the three RCU implementations

C
om

m
on

 C
od

e

(Not to scale)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

97

Next Steps

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

98

Large Next Steps

 Finish lockdep-enabled rcu_dereference()

 RCU priority boosting
• And corresponding rcutorture updates

 kfree_rcu()

 TINY_PREEMPT_RCU

 Merge SRCU into TREE_RCU

 Make RCU independent of the scheduling-clock tick

 Make expedited primitives scale better

 Full inspection and documentation of TREE_RCU

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

99

Smaller Next Steps

 Get rid of list_for_each_continue_rcu() in favor of
list_for_each_entry_continue_rcu()

 Add a notifier to panic_notifier_list to prevent stall warnings after panics
 Stop overflowing signed integers
 Clean up #ifdefs in kernel/rcutree.c
 Make RCU CPU stall detection unconditional
 Reduce TREE_RCU's need to send IPIs
 More abstractions under which to bury memory barriers
 Make TINY_RCU tinier (in object code, probably more source...)
 Make TREE_PREEMPT_RCU read-side primitives faster
 Remove !SMP special-case code from TREE_RCU
 Make call_rcu() be deterministic for real-time threads for TREE_RCU
 Deal with CPUs who are in dyntick-idle mode for a full wrap of ->gpnum
 Statistics of number of RCU read-side critical sections vs. number of

requests for a grace period

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

100

Effect of Next Steps

 Yes, each of these next steps will probably make the
Linux kernel's RCU larger and more complex

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

101

Effect of Next Steps

 Yes, each of these next steps will probably make the
Linux kernel's RCU larger and more complex

 In other words, back to the usual experience

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

102

Effect of Next Steps

 Yes, each of these next steps will probably make the
Linux kernel's RCU larger and more complex

 In other words, back to the usual experience

 But simplicity through optimization was fun while it
lasted!!!

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

103

Lessons Learned

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

104

Lessons Learned (or Relearned)

 If you are doing something for the first time ever, your
first implementation will probably not be optimal

 Good ways to come up with better implementations:

• Explain your code
► If your code confuses someone, perhaps you should change it
► When doing something new, confusion can be the most productive possible

frame of mind

• Document your code

• Review other people's code

• Help people to use your code

• Code similar functionality in a different environment

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

105

Lessons Learned (or Relearned)

 If you are doing something for the first time ever, your
first implementation will probably not be optimal

 Good ways to come up with better implementations:

• Explain your code
► If your code confuses someone, perhaps you should change it
► When doing something new, confusion can be the most productive possible

frame of mind

• Document your code

• Review other people's code

• Help people to use your code

• Code similar functionality in a different environment

 Took three times to get real-time RCU right

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

106

Lessons Learned (or Relearned)

 Parallelism need not be counter-intuitive

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

107

Lessons Learned (or Relearned)

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

108

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the
United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

 This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0719851.

 Joint work with Mathieu Desnoyers, Maged Michael, Joshua Triplett, and
Jonathan Walpole

© 2006-2010 IBM CorporationIBM Linux Technology Center

2010 linux.conf.au Wellington, NZ

109

Questions

