Introducing Technology Into Linux

Or: Introducing your technology Into Linux will require introducing a
lot of Linux into your technology!!!

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

Overview

= Where to find out more about RCU
= RCU usage within the Linux kemel
* How Linux changed RCU

= Lessons learned

 |2008Linux Developer Symposium - China ~~ EEEs,
Where to Find out More About RCU

| 2008 Linux Developer Symposium - China

Where to Find out More About RCU

= RCU can be thought of as a replacement for reader-
writer locking with extreme read-side performance,
scalability, and determinism

" For more information on RCU, please see:

* Linux Weekly News “What is RCU Really?” Series

» What is RCU, Fundamentally?
— http://lwn.net/Articles/262464/

» What is RCU? Part 2: Usage
— http://lwn.net/Articles/263130/

» RCU part 3: the RCU API (includes annotated bibliography)
— http://lwn.net/Articles/264090/

« Paul McKenney's RCU page

» http://www.rdrop.com/users/paulmck/RCU/

@

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

@

| 2008 Linux Developer Symposium - China

Why RCU's Performance Matters

4-CPU 1.8GHz AMD Opteron 844 system

RCUReaders___
Iock period -E
Best-case CAS

Best-case lock
Single cache miss 139.5
CAS cache miss 306.0

Heavily optimized reader- \

writer lock might get here
for readers (but too bad
about those poor writers...)

Typical synchronization
mechanisms do this a lot

RCU readers use low-cost instructions, other approaches use expensive instructions.

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

© |2008 Linux Developer Symposium - China . EEEE
RCU Usage Within the Linux Kernel

| 2008 Linux Developer Symposium - China

RCU Usage Within the Linux Kernel (2.6.24)

1804
160G

1404

1200

1HEE

@

In case there was any doubt, the Linux community can handle RCU.

| IBM Linux Technology Center

© 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China E_::'::E?_

@

RCU Usage Within the Linux Kernel vs. Locking

50000
45000

40000

i
=
-
[}
1
—

10000

RI

SUEBE

5]

IBM Linux Technology Center © 2006, 2007 IBM Corporation

LY
)]

| 2008 Linux Developer Symposium - China

RCU Usage Within the Linux Kernel vs. Locking

1BaE

—
o
<L
i
=
o

s 1o

Rl

1

'-..I.-" e EI r—

IBM Linux Technology Center © 2006, 2007 IBM Corporation

RCU Usage Within the Linux Kernel vs. Locking

RCU is a reasonably successful niche
technology within the Linux kernel

How did RCU get there?

It got there by being changed dramatically by Linux!!!

© |2008 Linux Developer Symposium - China . EEEE
How Linux Changed RCU

"uu"
KM
"| ll
4.::"l
i)
@

| 2008 Linux Developer Symposium - China

Pre-Linux Experience With RCU

= Enterprise systems: big parallel database servers
* Tens of CPUs, tens of GB of memory (big by mid-90s standards)
" Protected networking environment
- firewalls, clients, restricted usage modes
* No realtime response required
« Unless you count TPC/A requirement that 90% of transactions
complete in two sections
= Very small number of kernel developers (a few tens)

= Significant changes required to adapt to Linux
* As we will see as we fly through the following slides

 Additional details and references provided in case you wish to
review the slides later

* Intent is to give you an overall flavor of the magnitude of change

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Linux RCU API| Based on Pre-Linux Experience

lock
rcu read lock() < -

rcu_read unlock () a1l General purpose

rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()
kmem deferred free()

Deallocation

Pointer dereferencing,
including list traversal

List update

IBM Linux Technology Center

"uu"
KM
"| ll
Ji“'
il
()]

| 2008 Linux Developer Symposium - China

Linux Kernel Developers Value Simplicity

= Painful though it may be at times, this is a good thing
* In many cases, complexity is a symptom of lack of
understanding

- If you know only one way to do something, the odds are against
it being the best way!

- Kudos to Andi Kleen, Rusty Russell, Andrea Arcangeli, and
many others for generating alternative implementations

* And to Dipankar Sarma for doing the implementation and
incorporating the plethora of excellent ideas from the Linux

community

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Simplified Linux RCU API

synchroni ze_kernel ()

General purpose
call rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Pointer dereferencing, Deallocation

including list traversal

List update

IBM Linux Technology Center

© 2006, 007 |2 Corpraion |

| 2008 Linux Developer Symposium - China

Memory Barriers are Unloved

= With good reason
" They are hard to understand and easy to get wrong

= Many maintainers had a blanket policy:
» “Reject any patch containing a memory barrier”

 This has since been softened to require meaningful comments
on memory barriers

" It is far better to bury any needed memory barriers into a
well-designed API

» Kudos to Manfred Spraul for suggesting the RCU list API!

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Linux Kernel Memory Barriers Unloved, Take 1

synchronize kernel ()

General purpose
call rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kf
list add rcu() .

list add tail rcu()
list del rcu()

kmem cache free()

list for each entry rcu()

Pointer dereferencing, Deallocation

including list traversal

List update

IBM Linux Technology Center l © Z‘BM Corpo-

| 2008 Linux Developer Symposium - China
Linux Kernel Does Real-Time Systems, Take 1

* The CONFIG_PREEMPT function enters the kernel

= The kernel becomes preemptable, invalidating key RCU
assumption

= Easy fix requires bringing rcu_read_lock() and
rcu_read_unlock() back into the Linux kernel

* Where they have been invaluable documentation aids

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Linux Kernel Does Real-Time Systems, Take 1

synchronize kernel ()

rcu read lock() < G |
rcu read unlock() eneral purpose

call rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kf
list_add rcu() .

list_add tail rcu()
list del rcu()

list for each entry rcu() kmem cache_free()

Pointer dereferencing, Deallocation

including list traversal

2.543 List update

| IBM Linux Technology Center l © Z‘BM Corpo-

"uu"
KM
"| ll
Ji“'
il
()]

| 2008 Linux Developer Symposium - China

Linux Kernel Runs on Small-Memory Systems

* Linux does circular doubly linked lists
« Consumes two pointers per hash bucket

* Problematic given large hash tables on small-memory
machines

= Solution: hlist, a linear doubly-linked list

« Consumes only one pointer per hash bucket
» But adds another group of RCU list APIs
* Implemented by Andi Kleen

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Linux Kernel Runs on Small-Memory Systems

rcu read lock()

-

rcu_read unlock()

list for each_entry rcu()

hlist for each entry rcu()

Pointer dereferencing,
including list traversal

2.5.64

| IBM Linux Technology Center

synchronize kernel ()

General purpose
call rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kf
list_add rcu() .

list_add tail rcu()
list del rcu()

kmem cache free()

: Deallocation
hlist del rcu()
hlist add after rcu()

hlist_add before_rcu

hlist_add:head_rcu (0)

List update

~ |2008Linux Developer Symposium - China EEE&.
Linux Kernel Runs Heavy Networking Workloads

= Steve Hemminger converts networking code from brlock
to RCU, introducing synchronize_net() to ease the
transition

* And synchronize net() continues to be a reasonably useful
documentation aid

| 2008 Linux Developer Symposium - China

Linux Kernel Runs Heavy Networking Workloads

rcu read lock()

-

rcu_read unlock()

list for each_entry rcu()
hlist for each entry rcu()

Pointer dereferencing,
including list traversal

2.5.69

| IBM Linux Technology Center

synchronize kernel ()

synchronize net()

call rcu()

list_add rcu()
list_add tail rcu()
list_del_ rcu()

hlist del rcu()

hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()

List update

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

| 2008 Linux Developer Symposium - China

Linux Kernel Must Survive Networking DoS Attacks

= Extremely heavy networking loads from denial-of-
service attacks prevent RCU from doing its work

* Indefinitely postpones grace periods

= New bh variant of RCU avoids this problem
* Implemented by Dipankar Sarma with Robert Olsson

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

Linux Kernel Must Survive Networking DoS Attacks

synchronize kernel ()

rcu read lock()

- g synchronize net() General purpose

rcu_read unlock() call rcu()

Bottom-half context

rcu read lock bh()
rcu read lock bh < call rcu bh .
(networking)

rcu read unl ozk_bh (0)

Hard IRQs, NMls, ...

When readers must sleep

kf
list_add rcu() .

list_add tail rcu()
list_del_ rcu()

list for each entry rcu() kmem cache_free()

hlist for each entry rcu()

Pointer dereferencing, hlist del reu() Deallocation

including list traversal hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()

2.6.9 List update

| IBM Linux Technology Center

| 2008 Linux Developer Symposium - China

Linux Kernel Memory Barriers Unloved, Take 2

= Burying memory barriers in list primitives does not help
when applying RCU to non-list data structures

= People start applying RCU to trees and the like

* Therefore, created primitives to handle this case

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

N f
e '_

Linux Kernel Memory Barriers Unloved, Take 2

rcu read lock()

synchronize kernel ()

rcu_read unlock() -

rcu _read lock bh()

g synchronize net()
call rcu()

e

rcu read unlock bh()

call rcu bh()

rcu dereference ()

list for each_entry rcu()
hlist for each entry rcu()

Pointer dereferencing,
including list traversal

2.6.10

| IBM Linux Technology Center

rcu assign pointer ()

list_add rcu()
list_add tail rcu()
list_del_ rcu()

hlist del rcu()

hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()

List update

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

| 2008 Linux Developer Symposium - China

Linux's RCU Finally Implements Its Name

= “RCU” stands for “read-copy update”
- Readers access the data structure with copy-based updates

= As Murphy would have it, this turned out to be an
unusual use case

= But the Linux kernel eventually needed it
 Kaigai Kohei implements it for SELinux AVC work

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

N
e

Linux's RCU Finally Implements Its Name

synchronize kernel ()

rcu read lock() <

rcu_read unlock()

rcu _read lock bh()

e

g synchronize net()

rcu read unlock bh()

rcu_dereference ()

list for each_entry rcu()
hlist for each entry rcu()

Pointer dereferencing,
including list traversal

2.6.11

| IBM Linux Technology Center

call rcu()

call rcu bh()

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()

list replace rcu()
hlist del rcu()

hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()

hlist replace rcu()

List update

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

| 2008 Linux Developer Symposium - China

Linux Kernel Does Real-Time Systems, Take 2

= People use RCU for its side effects

* For example, waiting for interrupts and NMIs handlers to
complete

= This makes it hard to implement an aggressive realtime
implementation of RCU

« S0 we create an alternative API specifically for waiting for
interrupt handlers and NMiIs

« See http://lwn.net/Articles/134484/ for details

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China

=

Linux Kernel Does Real-Time Systems, Take 2

rcu read lock()

-

rcu_read unlock()

rcu _read lock bh() <

L

rcu read unlock bh()

preempt disable () <
preempt enable() ...

>

rcu_dereference ()

list for each_entry rcu()
hlist for each entry rcu()

Pointer dereferencing,
including list traversal

2.6.12

| IBM Linux Technology Center

synchronize rcu()

synchronize net()
call rcu()

General purpose

Bottom-half context

call rcu bh())
(networking)

synchronize sched() Hard IRQs, NMs, ...

When readers must sleep

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()
list_replace_rcu()
hlist del rcu()
hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()
hlist replace rcu()

kfree ()

kmem cache free()

Deallocation

List update

© 2006, 007 |2 Corpraion |

| 2008 Linux Developer Symposium - China

Linux Kernel Uses RCU in Unloadable Modules

= A given module's RCU callbacks can execute after a
module is unloaded

+ So that the affected callbacks cannot find their object code
« See http://lwn.net/Articles/217484/ for details

* Added Dipankar Sarma's rcu_barrier() primitive to allow
a module to wait for all of its RCU callbacks to complete

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China [l '
Linux Kernel Uses RCU in Unloadable Modules

synchronize rcu()

- synchronize net() General purpose
call rcu()

rcu barrier()

rcu read lock()
rcu_read unlock()

rcu_read_lock_bh () Bottom-half context
rcu read unlock bh() ~ e (networking)

preempt disable ()
preempt enable() ...

- g4 synchronize sched() Hard IRQs. NMls

When readers must sleep

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()

. . list replace rcu() :
Pointer dereferencing, hlisE dzl rca () Deallocation

including list traversal hlist add after rcu()
hlist:add:befor;_rcu
hlist _add head rcu()
hlist replace rcu()

rcu_dereference () kfree ()

list for each entry rcu() kmem cache_free()

hlist for each entry rcu()

2.6.15 List update

| IBM Linux Technology Center

© 2006, 007 |2 Corpraion |

| 2008 Linux Developer Symposium - China

Linux Kernel's RCU Readers Need to Sleep

* For more than a decade, “l need my RCU readers to be
able to sleep” meant that the speaker didn't really
understand RCU

= Until 2006, when | found someone who really did need
RCU readers to sleep

= Hence SRCU...
« See http://lwn.net/Articles/202847/ for more details

IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Linux Developer Symposium - China Ilm
Linux Kernel's RCU Readers Need to Sleep

synchronize rcu()

- synchronize net() General purpose
call rcu()
rcu barrier()

rcu read lock()
rcu_read unlock()

e e o) Bottom-half context
rcu _read unlock bh () 4 call rcu bh()

(networking)

preempt disable ()
preempt enable() ...

- g4 synchronize sched() Hard IRQs. NMls

srcu read lock() :
srcu read lock - g synchronize srcu()
srcu read unlock() =

When readers must sleep

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()

. . list replace rcu() :
Pointer dereferencing, hlisE dzl rca () Deallocation

including list traversal hlist add after rcu()
hlist:add:befor;_rcu
hlist _add head rcu()
hlist replace rcu()

rcu_dereference () kfree ()

list for each entry rcu() kmem cache_free()

hlist for each entry rcu()

2.6.19 List update

| IBM Linux Technology Center

)
© 2006, 007 |2 Corpraion |

© |2008 Linux Developer Symposium - China . EEEE
Linux Kernel Does Sophisticated List Manipulation

= Reap an entire list while being traversed by RCU readers

= We were going to open-codeit, but Christoph Hellwig
made us create a primitive for this situation

» Corey Minyard does the heavy lifting

| 2008 Linux Developer Symposium - China

rcu read lock()
rcu_read unlock()

rcu _read lock bh()
rcu read unlock bh()

preempt disable ()
preempt enable() ...

srcu_read lock()
srcu_read unlock ()

rcu_dereference ()

list for each_entry rcu()
hlist for each entry rcu()

-

e

-

>

B

>

Pointer dereferencing,
including list traversal

2.6.21

| IBM Linux Technology Center

synchronize rcu()
synchronize net()
call rcu()

rcu barrier()

call rcu bh()

synchronize sched()

synchronize srcu()

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()
list_replace_rcu()
hlist del rcu()
hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()
hlist replace rcu()

list splice init rcu()

List update

hl
ik

Linux Kernel Does Sophisticated List Manipulation

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

)
© 2006, 007 |2 Corpraion |

© |2008 Linux Developer Symposium - China . EEEE
So Where Does That Leave RCU Today?

| 2008 Linux Developer Symposium - China

Linux RCU APl as of 2.6.24

rcu read lock() <

rcu_read unlock()

rcu _read lock bh()

e

rcu read unlock bh()

preempt disable ()

preempt enable() ... b

srcu_read lock()

>

srcu_read unlock () B

rcu_dereference ()

list for each_entry rcu()
hlist for each entry rcu()

Pointer dereferencing,
including list traversal

IBM Linux Technology Center

>

synchronize rcu()
synchronize net()
call rcu()

rcu barrier()

call rcu bh()

synchronize sched()

synchronize srcu()

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()
list_replace_rcu()
hlist del rcu()
hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()
hlist replace rcu()
list_splice_init rcu()

List update

hl
ik

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

)
© 2006, 007 |2 Corpraion |

© |2008 Linux Developer Symposium - China . EEEE
Summary of How Linux Changed RCU

| 2008 Linux Developer Symposium - China

This is Your Technology

rcu read lock()

rcu read unlock() - >

General purpose
call rcu()

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()
kmem deferred free()

Deallocation

Pointer dereferencing,
including list traversal

List update

IBM Linux Technology Center

| 2008 Linux Developer Symposium - China

hl
ik

This is Your Technology on Linux: 6x APl Increase

rcu read lock() <

rcu read unlock()

rcu _read lock bh()

e

rcu read unlock bh()

i 1
preempt disable () <

>

preempt enable() ...

srcu_read lock() <

srcu_read unlock ()

rcu_dereference ()

list for each entry rcu()
hlist for each_entry rcu()

Pointer dereferencing,
including list traversal

IBM Linux Technology Center

L

synchronize rcu()
synchronize net()
call rcu()

rcu barrier()

call rcu bh()

synchronize sched()

synchronize srcu()

rcu_assign pointer()
list_add rcu()
list_add tail rcu()
list_del_ rcu()
list_replace_rcu()
hlist del rcu()
hlist add after rcu()
hlist _add before_rcu
hlist _add head rcu()
hlist replace rcu()
list_splice_init rcu()

List update

General purpose

Bottom-half context
(networking)

Hard IRQs, NMls, ...

When readers must sleep

kfree ()

kmem cache free()

Deallocation

)
© 2006, 007 |2 Corpraion |

Lessons Learned From the RCU Experience

@

| 2008 Linux Developer Symposium - China

Lessons Learned From the RCU Experience

* Linux runs an incredible variety of workloads
- Embedded, realtime, desktop, network, server, supercomputer...
* Linux powers significant networking infrastructure
* Linux is the firewall; it is not protected but rather protects
* Linux runs realtime workloads
» Realtime effects are pervasive
* Very large number of kernel developers (thousands)

* If one person year of work saves 1% of everyone's time:

» Linux: ~10,000 developers gives ~100 person-years per year payback
— Investment pays off in less then four days
— Even if only 500 full-time-developer equivalents, payoff in about 10 weeks

» Proprietary: ~40 developers gives ~0.4 person-years per year payback
— Investment pays off in more than two years

= Technology developed in more-protected environments

will need serious modifications!!!
 Putting technology into Linux is a rewarding learning experience

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

Conclusion

Contributing Technology to Linux is Extremely
Rewarding

But not to be taken too lightly!!!

| 2008 Linux Developer Symposium - China

Legal Statement

* This work represents the view of the author and does
not necessarily represent the view of IBM.

= IBM, IBM (logo), e-business (logo), pSeries, e (logo)
server, and xSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

* Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

IBM Linux Technology Center © 2006, 2007 IBM Corporation

Questions?

