Making Lockless
Synchronization Fast:
Performance Implications of
Memory Reclamation

Tom Hart, University of Toronto
Paul E. McKenney, IBM Beaverton
Angela Demke Brown, University of Toronto

Outline

Motivation
Memory Reclamation Schemes
Results

Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

My Laptop Has Two Cores

 Multiprocessing becoming mainstream.
* Synchronization must be fast.
* Locks create problems:

- Overhead
- Serialization Bottleneck . t |
- Deadlock !:Er]'e[)euo |

- Priority Inversion

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Lockless Synchronization

* Using a shared object without locking.

- Non-blocking synchronization.
- Read-copy update.

Can drastically improve performance. ©

X Can lead to read-reclaim races. ®

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

Thread 1: remove (A) ;

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

Thread 1: remove (A) ;

Thread 2: read (A->next);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

Thread 1: remove (A) ;

|

Thread 2: read (A->next);

When can Thread 1
call free(A) without
interfering with
Thread 2?

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Contribution

* Much prior work solves read-reclaim races, but...

- How do these solutions perform?

- What factors determine performance?

- Is the performance impact significant?
* |[nvestigate with a microbenchmark:

- Vary factors independently.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

Motivation
Memory Reclamation Schemes
Results

Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Memory Reclamation Schemes

e Mediate read-reclaim races.

* Many have been proposed:

- Quiescent-State-Based Reclamation [M&S]

* Used with Read-Copy Update (RCU)
- Epoch-Based Reclamation [Fraser]

- Hazard Pointers [Michael]
- Lock-Free Reference Counting [Valois, D. et. al.]

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Memory Reclamation Schemes

e Mediate read-reclaim races.

* Many have been proposed:

- Quiescent-State-Based Reclamation [M&S]

* Used with Read-Copy Update (RCU)
- Epoch-Based Reclamation [Fraser]

- Hazard Pointers [Michael]

- Lock-Free Reference Counting [Valois, D. et. al.]

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Assumption!

* For the purposes of this presentation:

- A thread accesses the elements of a shared data
structure only through a well-defined set of
operations.

 Operations:
- find()
- insert()
- enqueue()

- dequeue()
- etc.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

for (1=0;1<100;1i++)
if(list find(L, 1))

break;

Thread has no
/* Do other work.... */ > references to
any element in list L.

s

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

Introduce
for (i=0;1i<100;i++) application-dependent

if(list find(L, i)) quiescent states.

break;

quiescent state(); Thread has no

/* Do other work.... */ > references to
any element in list L.

s

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1

Thread 2 QS

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1

Thread 2 QS

Thread 3 QS

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1

Thread 2 QS QS

Thread 3 QS

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1

Thread 2 QS QS QS

Thread 3 QS

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1 QS

Thread 2 QS QS QS

Thread 3 QS

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

Any element

removed before - can be safely

reclaimed after

this point..... this point.
\1 Grace Period /

I- Il B B B B B BB B =B =B B =B B BN B -I
U 0
i i

Thread 1 0 QS

Thread 2 (iS QS QS :

Thread 3 : QS :
| U >
i i

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Epoch-Based Reclamation

e Similar to quiescent-state-based scheme.

* Instead of quiescent state(), USEeS:
- lockless begin()

- lockless end()

* Within the body of an operation.

- Application-independent.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Hazard Pointers

Thread 1: remove (A) ;

Thread 2: read (A->next);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Hazard Pointers

Thread 1:
remove (A) ;
free later(A);

if ('flnd(HP A))

Global Hazard
Pointer Array:

HP[2] = A;

if (A has been removed)
goto RETRY;

read (A->next);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

Motivation

Memory Reclamation Schemes
Results

Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Performance Factors

* |n our paper, we consider:
- Number of CPUs
- Number of threads
- Choice of data structure
- Workload (read-to-update ratio)
- Length of chains of elements
- Memory constraints

 Look at a few in this presentation.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Performance Factors

* |n our paper, we consider:
- Number of CPUs
- Number of threads
- Choice of data structure
- Workload (read-to-update ratio)
- Length of chains of elements
- Memory constraints

 Look at a few in this presentation.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Sequential Consistency

* Parallel schedule of instructions is
equivalent to a legal serial schedule; ie.

- Machine instructions are not reordered.
- Memory references are globally ordered.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Seguentiat-Consisteney fon't Bet
On It!!!

* Hardware is not sequentially-consistent.
- CPUs can reorder instructions for performance.
 Must force sequential consistency.
- Use a memory fence.
* Fences affect relative performance:

- Fences are expensive (orders of magnitude).

- Reclamation schemes need different numbers
of fences!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Data Structures and List Length

e Can affect the number of fences needed.

- Linked lists have long chains of elements.

e

- Well-desighed hash tables have short chains.

L

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

]

Example — Hazard Pointers

‘ 4
Memory Fe !
“
A

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example — Hazard Pointers

> 4

s
Memory Fe
“

/o
tMemory Fe !
“
A

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example — Hazard Pointers

P> 4

>

d d s
Memory Fe tMemory Fe ! Memory Fe !
“ “ “

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example — Hazard Pointers

Memory Fe IMemory Fe I Memory Fe ! Memory FencCé€!
L“ “ “ “ "T

O(n) fences needed!! cur

>

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

.. Example - Epochs

Memory Fe@

o u

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

.. Example - Epochs
"F

>

Memory Fenté!

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

.. Example - Epochs

Memory Fe@

>

S =B

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

.. Example — Epochs ‘.

Memory Felté" Memory Fence!

5N S S

O(1) fences needed! © cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example - Quiescent States

.

One fence per several operations. OO

>
Y

for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Avg CPU Time (ns)

Traversal Length

¢ Quiescent v Hazard A Epoch

3500 O(n) fences add up!!!

O I I I I I I I I I I !
0 10 20 30 40 50 60 70 80 90 100

Number of Elements

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Avg CPU Time (ns)

Traversal Length - LFRC

¢ Quiescent v Hazard A Epoch » Ref Cnt
20000 -
18000 -
16000 O(n) atomic increments
14000- are much worse!!!

—

—

0 10 20 30 40 50 60 70 80 90 100
Number of Elements

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Traversal Length - LFRC

¢ Quiescent v Hazard A Epoch » Ref Cnt

20000

18000~
- 16000 O
C |
v . So, we should always
= 10000 use quiescent_states
5 8000 or epochs, right?
2 6000
< 4000 y & | .

2000 —

; R f

0 10 20 30 40 50 60 70 80 90 100
Number of Elements

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Threads and Memory

* Hazard pointers bound unfreed memory.

- (Provided number of hazard pointers is finite.)
- Everything with no hazard pointer can be freed.
- Other schemes are more memory-hungry.

* What happens when there are many
threads?

- More threads than CPUs = Preemption.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Avg Execution Time (ns)

Preemption

105000 .
¢ Quiescent v Hazard A Epoch
200007 Grace periods are .
infrequent, so
750007 performance suffers!
60000
A
45000 |
30000
15000 p
O,
0 5 10 15 20 25 30

Number of Threads

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

35

Avg Execution Time (ns)

Preemption With Yielding

900

¢ Quiescent v Hazard A Epoch
850

A
800 "
750- f - “
700- / *
650 - v
A
600
550 If we yield on memory allocation
c00. failure, grace periods are more
frequent!
450
400-
350 | | | | | | |
0 5 10 15 20 25 30

Number of Threads

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

35

Outline

Motivation

Memory Reclamation Schemes
Results

Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Summary of Results

* Schemes have very different overheads.

- Difference between “faster than locking” and
“slower than locking.”

* No scheme is always best.

e Quiescent-state-based reclamation has
the lowest best-case overhead.

- No per-operation fences. ©

* Hazard pointers are good when there is
& preemption and many updates.

.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Significance

* Understanding performance factors lets us:

Choose the right scheme for a program.
Design new, faster schemes.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

b i 2 it

o

Py

Future Work

e Macrobenchmark

 Use lockless synchronization with
SPLASH-2

e Quiescent-State-Based Reclamation with
realtime workloads

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Questions?

e Tom Hart

- http://www.cs.toronto.edu/~tomhart
* Angela Demke Brown

- http://www.cs.toronto.edu/~demke
 Paul McKenney

- http://www.rdrop.com/users/paulmck/RCU

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

http://www.cs.toronto.edu/~tomhart
http://www.cs.toronto.edu/~demke
http://www.rdrop.com/users/paulmck/RCU

