
Making Lockless
Synchronization Fast:

Performance Implications of
Memory Reclamation

Tom Hart, University of Toronto
Paul E. McKenney, IBM Beaverton

Angela Demke Brown, University of Toronto

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

● Motivation
● Memory Reclamation Schemes
● Results
● Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

My Laptop Has Two Cores

● Multiprocessing becoming mainstream.
● Synchronization must be fast.
● Locks create problems:

– Overhead

– Serialization Bottleneck

– Deadlock

– Priority Inversion

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Lockless Synchronization

● Using a shared object without locking.
– Non-blocking synchronization.

– Read-copy update.

✔Can drastically improve performance. ☺
✗ Can lead to read-reclaim races. ☹

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

A

Thread 1

Thread 2

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

A

Thread 1

Thread 2

Thread 1: remove(A);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

A

Thread 1

Thread 2

Thread 2: read(A­>next);

Thread 1: remove(A);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Read-Reclaim Races

A

Thread 1

Thread 2

Thread 2: read(A­>next);

Thread 1: remove(A);

When can Thread 1 When can Thread 1
call free(A) without call free(A) without

interfering with interfering with
Thread 2?Thread 2?

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Contribution

● Much prior work solves read-reclaim races, but...

– How do these solutions perform?
– What factors determine performance?
– Is the performance impact significant?

● Investigate with a microbenchmark:

– Vary factors independently.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

● Motivation
● Memory Reclamation Schemes
● Results
● Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Memory Reclamation Schemes

● Mediate read-reclaim races.
● Many have been proposed:

– Quiescent-State-Based Reclamation [M&S]
● Used with Read-Copy Update (RCU)

– Epoch-Based Reclamation [Fraser]

– Hazard Pointers [Michael]

– Lock-Free Reference Counting [Valois, D. et. al.]

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Memory Reclamation Schemes

● Mediate read-reclaim races.
● Many have been proposed:

– Quiescent-State-Based Reclamation [M&S]
● Used with Read-Copy Update (RCU)

– Epoch-Based Reclamation [Fraser]

– Hazard Pointers [Michael]

– Lock-Free Reference Counting [Valois, D. et. al.]

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Assumption!

● For the purposes of this presentation:
– A thread accesses the elements of a shared data

structure only through a well-defined set of
operations.

● Operations:
– find()

– insert()

– enqueue()

– dequeue()

– etc.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

for (i=0;i<100;i++)

if(list_find(L, i))

break;

/* Do other work.... */
Thread has no
references to
any element in list L.

`

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

for (i=0;i<100;i++)

if(list_find(L, i))

break;

quiescent_state();

/* Do other work.... */
Thread has no
references to
any element in list L.

`

Introduce
application-dependent
quiescent states.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread
passes through a quiescent state.

QS

Thread 1

Thread 2

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread
passes through a quiescent state.

QS

QS

Thread 1

Thread 2

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread
passes through a quiescent state.

QS

QS

QS

Thread 1

Thread 2

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread
passes through a quiescent state.

QS

QS

QS QS

Thread 1

Thread 2

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread
passes through a quiescent state.

QS

QS

QS QS

QSThread 1

Thread 2

Thread 3

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Quiescent-State-Based Reclamation

QS

QS

QS QS

QSThread 1

Thread 2

Thread 3

Execution Time

Any element
removed before
this point.....

... can be safely
reclaimed after
this point.

Grace Period

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Epoch-Based Reclamation

● Similar to quiescent-state-based scheme.
● Instead of quiescent_state(), uses:

– lockless_begin()

– lockless_end()

● Within the body of an operation.
– Application-independent.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Hazard Pointers

A

Thread 1

Thread 2

Thread 2: read(A­>next);

Thread 1: remove(A);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Hazard Pointers

A

Thread 1

Thread 2

Thread 2:
 HP[2] = A;
 if (A has been removed)
 goto RETRY;
 read(A­>next);

Thread 1:
 remove(A);
 free_later(A);
 ...
 if (!find(HP,A))
 free(A);HP[0]

HP[1]

HP[2]

HP[3]

Global Hazard
Pointer Array:

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

● Motivation
● Memory Reclamation Schemes
● Results
● Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Performance Factors

● In our paper, we consider:
– Number of CPUs

– Number of threads

– Choice of data structure

– Workload (read-to-update ratio)

– Length of chains of elements

– Memory constraints

● Look at a few in this presentation.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Performance Factors

● In our paper, we consider:
– Number of CPUs

– Number of threads

– Choice of data structure

– Workload (read-to-update ratio)

– Length of chains of elements

– Memory constraints

● Look at a few in this presentation.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Sequential Consistency

● Parallel schedule of instructions is
equivalent to a legal serial schedule; ie.
– Machine instructions are not reordered.

– Memory references are globally ordered.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Sequential Consistency

● Hardware is not sequentially-consistent.
– CPUs can reorder instructions for performance.

● Must force sequential consistency.
– Use a memory fence.

● Fences affect relative performance:
– Fences are expensive (orders of magnitude).

– Reclamation schemes need different numbers
of fences!

Don't Bet
On It!!!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Data Structures and List Length

● Can affect the number of fences needed.
– Linked lists have long chains of elements.

– Well-designed hash tables have short chains.

...

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Hazard Pointers

for (cur = list­>head; cur != NULL; cur = cur­>next) {
*hazard_ptr = list­>cur;
memory_fence();
/* continue...*/

}

cur

Memory Fence!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Hazard Pointers

for (cur = list­>head; cur != NULL; cur = cur­>next) {
*hazard_ptr = list­>cur;
memory_fence();
/* continue...*/

}

Memory Fence!Memory Fence!

cur

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Hazard Pointers

for (cur = list­>head; cur != NULL; cur = cur­>next) {
*hazard_ptr = list­>cur;
memory_fence();
/* continue...*/

}

Memory Fence!Memory Fence!

cur

Memory Fence!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Hazard Pointers

for (cur = list­>head; cur != NULL; cur = cur­>next) {
*hazard_ptr = list­>cur;
memory_fence();
/* continue...*/

}

Memory Fence!Memory Fence! Memory Fence! Memory Fence!

curO(n) fences needed!! ☹

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Epochs

lockless_begin(); /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end(); /* calls memory_fence() */

cur

Memory Fence!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Epochs

lockless_begin(); /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end(); /* calls memory_fence() */

cur

Memory Fence!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Epochs

lockless_begin(); /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end(); /* calls memory_fence() */

cur

Memory Fence!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Epochs

lockless_begin(); /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end(); /* calls memory_fence() */

cur

Memory Fence! Memory Fence!

O(1) fences needed! ☺

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Example – Quiescent States

for (cur = list­>head; cur != NULL; cur = cur­>next) {
/* continue...*/

}

cur

One fence per several operations. ☺☺☺

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Quiescent Hazard Epoch

Number of Elements

A
v
g
 C

P
U

 T
im

e
 (

n
s)

Traversal Length

O(n) fences add up!!!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Traversal Length - LFRC

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Quiescent Hazard Epoch Ref Cnt

Number of Elements

A
v
g

 C
P
U

 T
im

e
 (

n
s) O(n) atomic increments

are much worse!!!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Traversal Length - LFRC

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Quiescent Hazard Epoch Ref Cnt

Number of Elements

A
v
g
 C

P
U

 T
im

e
 (

n
s) O(n) atomic increments

are much worse!!!So, we should always
use quiescent states

or epochs, right?

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Threads and Memory

● Hazard pointers bound unfreed memory.
– (Provided number of hazard pointers is finite.)

– Everything with no hazard pointer can be freed.

– Other schemes are more memory-hungry.

● What happens when there are many
threads?

– More threads than CPUs ⇒ Preemption.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

0 5 10 15 20 25 30 35
0

15000

30000

45000

60000

75000

90000

105000
Quiescent Hazard Epoch

Number of Threads

A
v
g
 E

xe
cu

ti
o
n
 T

im
e
 (

n
s)

Preemption

Grace periods are
infrequent, so
performance suffers!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

0 5 10 15 20 25 30 35
350

400

450

500

550

600

650

700

750

800

850

900
Quiescent Hazard Epoch

Number of Threads

A
v
g

 E
x
e
cu

ti
o
n
 T

im
e
 (

n
s)

Preemption With Yielding

If we yield on memory allocation
failure, grace periods are more
frequent!

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Outline

● Motivation
● Memory Reclamation Schemes
● Results
● Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Summary of Results

● Schemes have very different overheads.
– Difference between “faster than locking” and

“slower than locking.”

● No scheme is always best.
● Quiescent-state-based reclamation has

the lowest best-case overhead.

– No per-operation fences. ☺
● Hazard pointers are good when there is

preemption and many updates.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Significance

• Understanding performance factors lets us:

✔Choose the right scheme for a program.

✔Design new, faster schemes.

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Future Work

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Future Work

● Macrobenchmark
● Use lockless synchronization with

SPLASH-2
● Quiescent-State-Based Reclamation with

realtime workloads

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

Questions?

● Tom Hart
– http://www.cs.toronto.edu/~tomhart

● Angela Demke Brown
– http://www.cs.toronto.edu/~demke

● Paul McKenney
– http://www.rdrop.com/users/paulmck/RCU

http://www.cs.toronto.edu/~tomhart
http://www.cs.toronto.edu/~demke
http://www.rdrop.com/users/paulmck/RCU

