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My Laptop Has Two Cores

 Multiprocessing becoming mainstream.
* Synchronization must be fast.
* Locks create problems:

- Overhead
- Serialization Bottleneck . t |
- Deadlock !:Er]'e[)euo |

- Priority Inversion
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Lockless Synchronization

* Using a shared object without locking.

- Non-blocking synchronization.
- Read-copy update.

Can drastically improve performance. ©

X Can lead to read-reclaim races. ®
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Read-Reclaim Races
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Read-Reclaim Races

Thread 1: remove (A) ;
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Read-Reclaim Races

Thread 1: remove (A) ;

Thread 2: read (A->next);
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Read-Reclaim Races

Thread 1: remove (A) ;

|

Thread 2: read (A->next);

When can Thread 1
call free(A) without
interfering with
Thread 2?
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Contribution

* Much prior work solves read-reclaim races, but...

- How do these solutions perform?

- What factors determine performance?

- Is the performance impact significant?
* |[nvestigate with a microbenchmark:

- Vary factors independently.
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Memory Reclamation Schemes

e Mediate read-reclaim races.

* Many have been proposed:

- Quiescent-State-Based Reclamation [M&S]

* Used with Read-Copy Update (RCU)
- Epoch-Based Reclamation [Fraser]

- Hazard Pointers [Michael]
- Lock-Free Reference Counting [Valois, D. et. al.]
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Assumption!

* For the purposes of this presentation:

- A thread accesses the elements of a shared data
structure only through a well-defined set of
operations.

 Operations:
- find()
- insert()
- enqueue()

- dequeue()
- etc.
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Quiescent-State-Based Reclamation

for (1=0;1<100;1i++)
if(list find(L, 1))

break;

Thread has no
/* Do other work.... */ > references to
any element in list L.

s
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Quiescent-State-Based Reclamation

Introduce
for (i=0;1i<100;i++) application-dependent

if(list find(L, i)) quiescent states.

break;

quiescent state(); Thread has no

/* Do other work.... */ > references to
any element in list L.

s
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Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1

Thread 2 QS

Thread 3

Execution Time
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Quiescent-State-Based Reclamation

 Grace period: any interval in which each thread
passes through a quiescent state.

Thread 1 QS

Thread 2 QS QS QS

Thread 3 QS

Execution Time

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation




Quiescent-State-Based Reclamation

Any element

removed before - can be safely

reclaimed after

this point..... this point.
\1 Grace Period /

I- Il B B B B B BB B =B =B B =B B BN B -I
U 0
i i

Thread 1 0 QS

Thread 2 (iS QS QS :

Thread 3 : QS :
| U >
i i

Execution Time
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Epoch-Based Reclamation

e Similar to quiescent-state-based scheme.

* Instead of quiescent state(), USEeS:
- lockless begin()

- lockless end()

* Within the body of an operation.

- Application-independent.
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Hazard Pointers

Thread 1: remove (A) ;

Thread 2: read (A->next);
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Hazard Pointers

Thread 1:
remove (A) ;
free later(A);

if ('flnd(HP A))

Global Hazard
Pointer Array:

HP[2] = A;

if (A has been removed)
goto RETRY;

read (A->next);

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation




Outline

Motivation

Memory Reclamation Schemes
Results

Conclusions

Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation



Performance Factors

* |n our paper, we consider:
- Number of CPUs
- Number of threads
- Choice of data structure
- Workload (read-to-update ratio)
- Length of chains of elements
- Memory constraints

 Look at a few in this presentation.
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Sequential Consistency

* Parallel schedule of instructions is
equivalent to a legal serial schedule; ie.

- Machine instructions are not reordered.
- Memory references are globally ordered.
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Seguentiat-Consisteney fon't Bet
On It!!!

* Hardware is not sequentially-consistent.
- CPUs can reorder instructions for performance.
 Must force sequential consistency.
- Use a memory fence.
* Fences affect relative performance:

- Fences are expensive (orders of magnitude).

- Reclamation schemes need different numbers
of fences!
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Data Structures and List Length

e Can affect the number of fences needed.

- Linked lists have long chains of elements.

e

- Well-desighed hash tables have short chains.

L
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Example — Hazard Pointers

‘ 4
Memory Fe !
“
A

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/
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Example — Hazard Pointers

> 4

s
Memory Fe
“

/o
tMemory Fe !
“
A

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/
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Example — Hazard Pointers

P> 4

>

d d s
Memory Fe tMemory Fe ! Memory Fe !
“ “ “

cur

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/
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Example — Hazard Pointers

Memory Fe IMemory Fe I Memory Fe ! Memory FencCé€!
L“ “ “ “ "T

O(n) fences needed!! cur

>

for (cur = list->head; cur != NULL; cur = cur->next) {
*hazard ptr = list->cur;
memory fence();
/* continue...*/
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.. Example - Epochs

Memory Fe@

o u

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */
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.. Example - Epochs
"F

>

Memory Fenté!

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */
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.. Example - Epochs

Memory Fe@

>

S =B

cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */
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.. Example — Epochs ‘.

Memory Felté" Memory Fence!

5N S S

O(1) fences needed! © cur

lockless begin(); /* calls memory fence() */
for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}

lockless end(); /* calls memory fence() */
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Example - Quiescent States

.

One fence per several operations. OO

>
Y

for (cur = list->head; cur != NULL; cur = cur->next) {
/* continue...*/

}
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Avg CPU Time (ns)

Traversal Length

¢ Quiescent v Hazard A Epoch

3500 O(n) fences add up!!!

O I I I I I I I I I I !
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Avg CPU Time (ns)

Traversal Length - LFRC

¢ Quiescent v Hazard A Epoch » Ref Cnt
20000 -
18000 -
16000 O(n) atomic increments
14000- are much worse!!!

—

—
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Traversal Length - LFRC

¢ Quiescent v Hazard A Epoch » Ref Cnt

20000
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C |
v . So, we should always
= 10000 use quiescent_states
5 8000 or epochs, right?
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Threads and Memory

* Hazard pointers bound unfreed memory.

- (Provided number of hazard pointers is finite.)
- Everything with no hazard pointer can be freed.
- Other schemes are more memory-hungry.

* What happens when there are many
threads?

- More threads than CPUs = Preemption.
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Avg Execution Time (ns)

Preemption
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Avg Execution Time (ns)

Preemption With Yielding
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Summary of Results

* Schemes have very different overheads.

- Difference between “faster than locking” and
“slower than locking.”

* No scheme is always best.

e Quiescent-state-based reclamation has
the lowest best-case overhead.

- No per-operation fences. ©

* Hazard pointers are good when there is
& preemption and many updates.

.
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Significance

* Understanding performance factors lets us:

Choose the right scheme for a program.
Design new, faster schemes.
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Future Work

e Macrobenchmark

 Use lockless synchronization with
SPLASH-2

e Quiescent-State-Based Reclamation with
realtime workloads
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Questions?

e Tom Hart

- http://www.cs.toronto.edu/~tomhart
* Angela Demke Brown

- http://www.cs.toronto.edu/~demke
 Paul McKenney

- http://www.rdrop.com/users/paulmck/RCU
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