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My Laptop Has Two Cores

● Multiprocessing becoming mainstream.
● Synchronization must be fast.
● Locks create problems:

– Overhead

– Serialization Bottleneck

– Deadlock

– Priority Inversion
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Lockless Synchronization

● Using a shared object without locking.
– Non-blocking synchronization.

– Read-copy update.

✔Can drastically improve performance. ☺
✗ Can lead to read-reclaim races. ☹
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Read-Reclaim Races

A

Thread 1

Thread 2

Thread 2: read(A­>next);

Thread 1: remove(A);

When can Thread 1 When can Thread 1 
call free(A) without call free(A) without 

interfering with interfering with 
Thread 2?Thread 2?
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Contribution

● Much prior work solves read-reclaim races, but...

– How do these solutions perform?
– What factors determine performance?
– Is the performance impact significant?

● Investigate with a microbenchmark:

– Vary factors independently.
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Memory Reclamation Schemes

● Mediate read-reclaim races.
● Many have been proposed:

– Quiescent-State-Based Reclamation [M&S]
● Used with Read-Copy Update (RCU)

– Epoch-Based Reclamation [Fraser]

– Hazard Pointers [Michael]

– Lock-Free Reference Counting [Valois, D. et. al.]
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Assumption!

● For the purposes of this presentation:
– A thread accesses the elements of a shared data 

structure only through a well-defined set of 
operations.

● Operations:
– find()

– insert()

– enqueue()

– dequeue()

– etc.
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Quiescent-State-Based Reclamation

for (i=0;i<100;i++)

if(list_find(L, i))

break;

 

/* Do other work.... */
Thread has no 
references to 
any element in list L.

`
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Quiescent-State-Based Reclamation

for (i=0;i<100;i++)

if(list_find(L, i))

break;

quiescent_state();

/* Do other work.... */
Thread has no 
references to 
any element in list L.

`

Introduce 
application-dependent
quiescent states.
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Quiescent-State-Based Reclamation

● Grace period: any interval in which each thread 
passes through a quiescent state.
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Quiescent-State-Based Reclamation

QS

QS

QS QS

QSThread 1

Thread 2

Thread 3

Execution Time

Any element  
removed before 
this point.....

... can be safely 
reclaimed after 
this point.

Grace Period
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Epoch-Based Reclamation

● Similar to quiescent-state-based scheme.
● Instead of quiescent_state(), uses:

– lockless_begin()

– lockless_end()

● Within the body of an operation.
– Application-independent.
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Hazard Pointers
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Thread 1
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Hazard Pointers

A

Thread 1

Thread 2

Thread 2: 
    HP[2] = A;
  if (A has been removed)
    goto RETRY;
  read(A­>next);

Thread 1: 
    remove(A);
  free_later(A);
  ...
  if (!find(HP,A))
    free(A);HP[0]

HP[1]

HP[2]

HP[3]

Global Hazard
Pointer Array:
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Performance Factors

● In our paper, we consider:
– Number of CPUs

– Number of threads

– Choice of data structure

– Workload (read-to-update ratio)

– Length of chains of elements

– Memory constraints

● Look at a few in this presentation.
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Sequential Consistency

● Parallel schedule of instructions is 
equivalent to a legal serial schedule; ie.
– Machine instructions are not reordered.

– Memory references are globally ordered.
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Sequential Consistency

● Hardware is not sequentially-consistent.
– CPUs can reorder instructions for performance.

● Must force sequential consistency. 
– Use a memory fence.

● Fences affect relative performance:
– Fences are expensive (orders of magnitude).

– Reclamation schemes need different numbers 
of fences!

Don't Bet
On It!!!
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Data Structures and List Length

● Can affect the number of fences needed.
– Linked lists have long chains of elements.

 

 

 

– Well-designed hash tables have short chains.

...
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Example – Hazard Pointers

for (cur = list­>head; cur != NULL; cur = cur­>next) {
*hazard_ptr = list­>cur;
memory_fence();
/* continue...*/

}

cur

Memory Fence!
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Example – Hazard Pointers
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/* continue...*/
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curO(n) fences needed!! ☹
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Example – Epochs

lockless_begin();   /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end();     /* calls memory_fence() */

cur

Memory Fence!
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Example – Epochs

lockless_begin();   /* calls memory_fence() */
for (cur = list­>head; cur != NULL; cur = cur­>next) {

/* continue...*/
}
lockless_end();     /* calls memory_fence() */

cur

Memory Fence! Memory Fence!

O(1) fences needed! ☺
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Example – Quiescent States

for (cur = list­>head; cur != NULL; cur = cur­>next) {
/* continue...*/

}

cur

One fence per several operations. ☺☺☺
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Traversal Length - LFRC
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Traversal Length - LFRC
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are much worse!!!So, we should always 
use quiescent states 

or epochs, right?
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Threads and Memory

● Hazard pointers bound unfreed memory.
– (Provided number of hazard pointers is finite.)

– Everything with no hazard pointer can be freed.

– Other schemes are more memory-hungry.

● What happens when there are many 
threads?

– More threads than CPUs  ⇒ Preemption.



Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

0 5 10 15 20 25 30 35
0

15000

30000

45000

60000

75000

90000

105000
Quiescent Hazard Epoch

Number of Threads

A
v
g
 E

xe
cu

ti
o
n
 T

im
e
 (

n
s)

Preemption

Grace periods are 
infrequent, so 
performance suffers!



Making Lockless Synchronization Fast: Performance Implications of Memory Reclamation

0 5 10 15 20 25 30 35
350

400

450

500

550

600

650

700

750

800

850

900
Quiescent Hazard Epoch

Number of Threads

A
v
g

 E
x
e
cu

ti
o
n
 T

im
e
 (

n
s)

Preemption With Yielding

If we yield on memory allocation 
failure, grace periods are more
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Summary of Results

● Schemes have very different overheads.
– Difference between “faster than locking” and 

“slower than locking.”

● No scheme is always best.
● Quiescent-state-based reclamation has 

the lowest best-case overhead.

– No per-operation fences. ☺
● Hazard pointers are good when there is 

preemption and many updates.
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Significance

• Understanding performance factors lets us:

✔Choose the right scheme for a program.

✔Design new, faster schemes.
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Future Work
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Future Work

● Macrobenchmark
● Use lockless synchronization with 

SPLASH-2
● Quiescent-State-Based Reclamation with 

realtime workloads
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Questions?

● Tom Hart
– http://www.cs.toronto.edu/~tomhart

● Angela Demke Brown
– http://www.cs.toronto.edu/~demke

● Paul McKenney
– http://www.rdrop.com/users/paulmck/RCU

http://www.cs.toronto.edu/~tomhart
http://www.cs.toronto.edu/~demke
http://www.rdrop.com/users/paulmck/RCU

