
RCU Semantics: A First Attempt
Paul E. McKenney

IBM Linux Technology Center
15400 SW Koll Parkway

Beaverton, OR 97006
Paul.McKenney@us.ibm.com

http://www.rdrop.com/users/paulmck

Jonathan Walpole
Computer Science Department

Portland State University
walpole@cs.pdx.edu

Draft of 2005/01/30 16:00

Abstract
There is not yet a formal statement of RCU (read-copy update) semantics. While this lack has thus
far not been an impediment to adoption and use of RCU, it is quite possible that formal semantics
would point the way towards tools that automatically validate uses of RCU or that permit RCU
algorithms to be automatically generated by a parallel compiler. This paper is a first attempt to
supply a formal definition of RCU. Or at least a semi-formal definition: although RCU does not
yet wear a tux (though it does run in Linux), at least it might yet wear some clothes.

1 Introduction
RCU has has been applied to at least five operating systems, three of which have seen extensive
production use (VM/XA, DYNIX/ptx, and Linux) [3, 9, 13], and the other two being prominent
research operating systems (K42 and Tornado) [1]. RCU was independently invented at least six
times [7, 3, 6, 12, 9, 1], and, though there has been some academic work on RCU, the bulk of the
work has been by practitioner for practitioners.

Although RCU has made great strides, the lack of academic focus has left RCU bereft of
the sound theoretical basis required for analysis and tooling. In addition, use of RCU has been
undisciplined. This lack of discipline has left a legacy of innovative applications of RCU, which
has the benefit of having explored a large expanse of the RCU landscape, but this variety also
makes theoretical analysis more complex.

To make the analysis more tractable and useful, this paper therefore imposes some assump-
tions. These assumptions are chosen carefully so that most uses of RCU are covered by the resut-
ing analysis, and so that this analysis can be readily extended.

2 Concepts
RCU is used by “threads” operating on “data elements”. A thread might be a CPU, process,
task, coroutine, interrupt handler, or any other abstraction that represents a locus of control and
corresponding local state.

Data elements correspond to C structs, form a set
�

of elements, each of which can be modeled
as a tuple with “fields”, “pointers”, and “locks”. Fields can be any sort of value, such as integer,
floating point, or string, while pointers are references to other data elements. A subset � of these
data element are global, they may be referenced by any thread at any time. Non-global data
elements must be referenced indirectly, starting with a pointer of a data element that is a member
of � . The sequence of data elements that was traversed to reach a given data element is called a
“reference path”.

Draft: 2005/01/30 16:00 Page: 1



Locks serialize updates to corresponding fields. The mapping from a given lock to the fields
that it guards is peculiar to the algorithm referencing these fields; this mapping can be thought of
as a key part of the locking design for these fields.

Threads are not permitted to reference data elements in an undisciplined manner, instead,
threads can only reference data elements while in a “critical section”. Critical sections are delim-
ited by lock acquisitions or by the boundaries of RCU read-side critical sections. In the Linux ker-
nel, the spin lock() and spin unlock() acquire and release locks, while rcu read lock()
and rcu read unlock() demark the beginning and end of RCU read-side critical sections.

3 Definitions
The value of a data element can vary with time, and is denoted by the function �������
	��
�
� for field 	
of element � at time � . By convention, �������������
� represents a reference to one of element � ’s locks,
and, similarly, �������������
� represents a reference to one of element � ’s pointers. Note that pointers
can either reference a given data element � , or can be “NULL”, not referencing any data element.

Each thread enters and exits RCU read-side critical sections, and these critical sections can
be nested. The number of times that a thread � has entered an RCU read-side critical section up
through time � is given by �����������
� , and the number of times that this same thread has exited an
RCU read-side critical section over that same time period is given by �����������
� . Therefore, the
expression: �����������
� �!�"�#�����
�
� (1)

will be non-zero iff thread � is in an RCU read-side critical section at time � .
An RCU read-side critical section may then be defined as a time interval $ �%���
�
&�' such that:

� � ���(�
�
�*)+� � �����
�
�-,��/.�� �10 � 0 � & (2)

Multiple threads may be in RCU read-side critical sections concurrently.
Lock-based critical sections may be used to serialize updates to RCU-protected variables.

These are represented in a manner similar to that for RCU read-side critical sections: the num-
ber of times that a given thread � has acquired and released a given lock � up to time � is given by2 ���������
�
�
� and

2 �3�����
�����
� , respectively. A lock-based critical section is then a time interval $ �4�����
&5'
such that: 2 � �������
�
�
�6) 2 � �������
�
�
�7,��6.3� �80 � 0 � & (3)

Only one thread may hold a given lock at a given time, so that:
2 � ����9:�������
�6) 2 � ����9;�
�����
�=< 2 � �������
�
�
�?> 2 � ���(�������
�7,��A@>B��9 (4)

As noted earlier, any data element �!CD � can be referenced only via a reference path, which
can be represented as a series of E data elements:

�39;�
�;F3���;G:�IHJHKHK���;L (5)

where � 9 D � and �;MJN 9 >O�����PM����Q�
��MR� and ��MKN 9 )A��M . Normally, such a reference path must be
traversed within a critical section $ �
���
�
&
' , in other words, ��� 0 � 9 0 � L 0 �
& . It is normally not
permitted to maintain a reference to any data element �SCD � except when within a corresponding
critical section.

If a reference path is traversed within a lock-based critical section $ � � ��� & ' , we know that:

�������������
�=>T������������� � �U,�� �V0 � 0 � & (6)

Therefore, reference paths are stable within a lock-based critical section.
However, RCU read-side critical sections do not exclude updates. It is quite possible that a

data element � M in a given reference path is no longer reachable at some time �SW-� M , in other

Draft: 2005/01/30 16:00 Page: 2



words, there is no reference path extending from a member of � to � M . However, the use of grace
periods guarantees that, within a given RCU read-side critical section $ � � �
� & ' , if data element � was
reachable at time ��� 0 � 9YX �
& , but was not reachable at some time � 9"X � F�X �
& , then it cannot be
reachable at any time � F1X � 0 �
& .

It is therefore possible that a thread � within an RCU read-side critical section $ �%���
�
&
' might
reference a data element �:M via some reference path � 9 �
� F ��� G �IHJHKHK��� L that is no longer reachable.
This element �;M is said to represent “stale data”. In addition, some other thread �1Z might concur-
rently find that element �39 instead references some other element �3F#Z . This discrepancy between
element �;F and �;F3Z is said to represent “inconsistent data”. Many useful algorithms tolerate both
stale and inconsistent data, while many other algorithms may be transformed to tolerate stale and
inconsistent data [8].

4 Simplifying Assumptions
In the most common use of RCU, elements are either added to or removed from a linked list. The
non-pointer fields within each such element are not modified while that element is on the list, and
are in fact left unchanged for a full grace period after removal of that element from the list. This
means that during an RCU read-side critical section $ � � �
� & ' , for any field 	 of any RCU-protected
element � : �[�����
	����
�=>\�]�����
	��
� � �^,��6.3� �10 � 0 � & (7)

This assumption may be relaxed, but such relaxation is outside the scope of this paper.

5 Grace Period
Equation 7 requires that the fields of an RCU-protected data element remain constant as long as
they might be referenced by a thread executing an ongoing RCU read-side critical section. One
way to achieve this would be to preserve any element rendered inaccessible, but limited memory
renders this approach impractical. Therefore, this requirement imposes the need for a grace period,
either in the style of RCU or of hazard pointers [10, 11, 4, 5], that determines when a given data
element may safely be recycled. The following sections derive expressions for each of these
possibilities.

5.1 RCU Grace Period
Once a given data element has been rendered inaccessible, it may be recycled as soon as all RCU
read-side critical sections have completed. If the data element was removed at time �4� , it may be
recycled at time ��_ , which is implicitly defined by the following:

,��Y`a�
b�.#� � ���(�
�
bc�/>T� � �������
bd�feg� ��0 �
b 0 �5_ (8)

This equation constrains each thread � to exit all RCU read-side grace periods before time � _ . The
per-thread time � b corresponds to the RCU concept of “quiescent state”, which is a state in which
a given thread can be guaranteed not to be accessing any RCU-protected data structure.

5.2 Hazard-Pointer Grace Period
Hazard pointers are used to record all data structures to which a given thread holds reference.
When a given data element has been rendered inaccessible, as soon as that data element is no
longer referenced by any hazard pointers, it may be recycled. Assigning a given data element to a
hazard pointer explicitly acquires a reference to that data element, and later overwriting that same
hazard pointer releases the reference.

In contrast to RCU, in which read-side critical sections are specific to threads, the hazard-
pointer equivalent is specific to the combination of a thread and a data element. The count of
the number of times that a thread � has assigned a hazard pointer to reference a data element

Draft: 2005/01/30 16:00 Page: 3



� up through time � is given by h � ���(�����
�
� and the number of times that such a value has been
overwritten is given by h � �����
���
�
� . When

h � �����
���
�
�?>Th � �����
�����
� (9)

The thread � is not referencing element � , and can therefore tolerate its being recycled.
By analogy with Equation 8, a data element � that has been rendered inaccessible at time � �

may safely be recycled at time � _ , which is implicitly defined by:

,i�Y`��
b(.#h � ���(�����
�
b%�/>Th � ���(�����
�
bc� e � ��0 �
b 0 �5_ (10)

5.3 Multiple RCU Grace Periods
The Linux 2.6 kernel has two instances of RCU, each with its own set of quiescent states. One of
these RCU instances is designed for use in process-level algorithms, and the other for algorithms
that run with interrupts disabled.

One can generalize this to a set of RCU instances jP� 9 ��� F �dHKHKH � L�k , where each such instance�"M has an associated set of quiescent states lPM and a set of data elements m�M that are protected by
that instance of RCU.

Once a given data element protected by instance n of RCU has been rendered inaccessible, it
may be recycled as soon as all of the n th instance’s RCU read-side critical sections have completed.
If the data element was removed at time � � , it may be recycled at time ��_ , which is implicitly
defined by the following:

,i�Y`�� b .#�YM�o �����(�
� b �/>T�YM�o �#�����
� b �fep��� 0 � b 0 � _ (11)

Here �YM�o �a�����
�
� counts the number of RCU read-side critical-section entries by thread � up to time� for RCU instance n , and � M�o � ���(�
�
� similarly counts the number of RCU read-side critical section
exits. Again, the per-thread times ��b corresponds to the per-thread quiescent states, but for instancen of RCU.

6 Modeling of RCU Operations
Common use of RCU makes use of the following operations:

1. Insertions of a fully initialized element into a linked list.
2. Deletion by first removing an element from a linked list, then disposing of it following a

grace period.
3. Updating a linked list by making a copy of a existing element, then atomically replacing the

original with the updated version.

The following sections describe how each of these operations is modeled.

6.1 Insertion
In the case of insertion, a new element � (which must not be referenced by any thread) is allocated,
each field 	 and pointer � is initialized, a memory barrier is executed on architectures not featuring
sequential consistency, and then the element is inserted into the list. This process is illustrated by
Figure 1.

While element � is being initialized, its fields 	 are subject to change, but, during this time,
the element remains inaccessible, so that no thread in an RCU read-side critical section is able to
observe these changes. Once the element is inserted into the list, it becomes accessible to such
threads, but by this time its fields are constant, as required.

Draft: 2005/01/30 16:00 Page: 4



CA

B

CA

B

(2)

(3)

(0) CA

CA

B

(1)

Figure 1: Atomic Insertion Into a Linked List

6.2 Deletion
In the case of deletion, an element � is first removed from its list at time � � , rendering it inaccessible
to all future RCU read-side critical sections $ � � ��� & 'q�
� � )7� � . Then Equation 8 may be used to
determine a time �5_ after which element � may be safely recycled (which can result in all its fields
being modified). After time ��_ , all RCU read-side critical sections that started on or before time � �
are guaranteed to have ended. This process is illustrated by Figure 2.

(0) CA B

BA(1) C (3) A C

(2) A B C

Figure 2: Atomic Deletion From a Linked List

Note that any thread that maintains a reference to element � after time �
� will be processing
stale data.

6.3 Update
This section first considers the special case where only a single thread is permitted to do updates,
extends this result to cover lock-mediated updates, then finally examines update mediated by a
simple form of non-blocking synchronization (NBS). More elaborate forms of NBS are outside of
the scope of this paper.

6.3.1 Update From Single Thread
In the case of update, a new element � L is allocated and initialized by copy from the old version ��r .
The new version is then updated as desired, then inserted into the list in place of the old version.
This insertion is accomplished by updating any pointer � that references ��r to instead reference� L . In other words, if this replacement occurs at time ��� :

,i�d,��s.��[�������Q�
� � �ut4�=>T� r <v������������� � �=>T�;L (12)

where t is the smallest unit of time, roughly corresponding to the clock period of physical computer
systems. Once this replacement has been accomplished, the old element ��r may be recycled at a
later time � _ when all RCU read-side critical sections starting before time �
� have completed, again
determined using Equation 8.

Note that at time �
� there are two versions of the same data element, namely �#r and � L . If
thread �wr entered its RCU read-side critical section just before ��� and another thread � L did so just
after ��� , then it is quite possible that ��r will be referencing �:r concurrently with � L referencing � L .
This provides an example of inconsistent references to multiple versions of a given data element.

6.3.2 Locking-Mediated Update
Locking-mediated updates make use of a lock � that is a member of some distinguished data
element � . There is an associated locking design that may be represented by a set xQy containing
fields, pointers, and locks associated with any number of data elements, not necessarily including

Draft: 2005/01/30 16:00 Page: 5



(0) CA B

(1) CA B

B’

CA B(2)

BA(3) C

B’

BA(4) C

B’

CA B’(5)

Figure 3: Atomic Update of an Element of Linked List

element � . By convention, a thread � is permitted to modify the members of x y at time � only if �
holds lock � at time � , in other words, iff:

2 � �������
�
�
�6) 2 � ���(�������
� (13)

By Equation 4, at time � , only threat � may hold the lock, and therefore no other thread will be
concurrently modifying the members of xwy .

Since only a single thread is permitted to update the data structure at a time, the remainder of
the analysis proceeds as outlined in Section 6.3.1.

6.3.3 NBS-Mediated Update
A wide variety of NBS update algorithms have been proposed, so it is beyond the scope of this
paper to analyze all of them. For simplicity, this section will focus on a simple case where a linked
data structure is updated via full replacement, the so-called “small-object” approach.. Furthermore,
this section will assume that readers and updaters make use of either RCU or hazard pointers in
order to avoid the ABA problem [14], in which an element that has been freed and subsequently
reused is erroneously used as if it had retained its old identity. Both RCU and hazard pointers
avoid the ABA problem by guaranteeing that no structure will be reused until all threads have
dropped any references that they might have to it. It also permits any external pointer � to the data
structure to be used as a version number for that data structure [2].

Updates to a given data structure referenced by an external pointer � use the following proce-
dure:

1. Copy the value of � to a local variable z 9 .
2. Allocate data elements.
3. Copy the data structure referenced by � to the newly allocated data elements, with the copy

referenced by a local variable z�F .
4. Update the newly created copy.
5. Atomically compare � to z�9 and set � ’s value to z#F if equal (indicating successful update).
6. If the comparison in the previous step failed (was not equal), free up the data elements

referenced by z3F and retry.

Given a set x|{ of threads that are concurrently attempting to update the data structure, only
one of them can succeed in step 5. The remainder will need to retry the update.

This means that only one thread at a time may update the data structure, so the remainder of
the analysis proceeds as described in Section 6.3.1.

This analysis may be extended to cover a wider variety of NBS algorithms, if desired.

7 Conclusions
This paper has provided an abstraction that captures the semantics of a common use of RCU.
This semantic analytically demonstrates the well-known presence of stale and inconsistent data
in RCU-based algorithms, and also demonstrates the mathematical necessity of quiescent states,

Draft: 2005/01/30 16:00 Page: 6



which were heretofore believed to be a artifact of RCU implementations. In addition, a deep
analogy between RCU and hazard pointers was uncovered.

More work is needed to extend this model of RCU semantics to cover more specialized uses
of RCU.

8 Acknowledgments
This document would not be complete if it did not recognize the debt owed to Robert Bauer and
Bart Massey, who managed to convince one of the authors (Paul) that some good might in fact
come from deriving the formal semantics of RCU.

References
[1] GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M. Tornado: Maximizing locality

and concurrency in a shared memory multiprocessor operating system. In Proceedings of
the 3rd Symposium on Operating System Design and Implementation (New Orleans, LA,
February 1999), pp. 87–100.

[2] GREENWALD, M., AND CHERITON, D. R. The synergy between non-blocking synchroniza-
tion and operating system structure. In Proceedings of the Second Symposium on Operating
Systems Design and Implementation (Seattle, WA, October 1996), USENIX Association,
pp. 123–136.

[3] HENNESSY, J. P., OSISEK, D. L., AND SEIGH II, J. W. Passive serialization in a multitask-
ing environment. Tech. Rep. US Patent 4,809,168 (lapsed), US Patent and Trademark Office,
Washington, DC, February 1989.

[4] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. The repeat offender problem: A mech-
anism for supporting dynamic-sized, lock-free data structures. In Proceedings of 16th Inter-
national Symposium on Distributed Computing (October 2002), pp. 339–353.

[5] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III, W. N. Software transac-
tional memory for dynamic-sized data structures. In Twenty-Second Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC) (July 2003), pp. 92–
101.

[6] JACOBSON, V. Avoid read-side locking via delayed free. Verbal discussion, September 1993.

[7] KUNG, H. T., AND LEHMAN, Q. Concurrent maintenance of binary search trees. ACM
Transactions on Database Systems 5, 3 (September 1980), 354–382.

[8] MCKENNEY, P. E. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update
Techniques in Operating System Kernels. PhD thesis, OGI School of Science and Engineer-
ing at Oregon Health and Sciences University, 2004. Available: http://www.rdrop.
com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf [Viewed
October 15, 2004].

[9] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update: Using execution history
to solve concurrency problems. In Parallel and Distributed Computing and Systems (Las
Vegas, NV, October 1998), pp. 509–518.

[10] MICHAEL, M. M. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architecture
(August 2002), pp. 73–82.

[11] MICHAEL, M. M. Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes. In Proceedings of the 21st Annual ACM Symposium on Principles of Dis-
tributed Computing (August 2002), pp. 21–30.

Draft: 2005/01/30 16:00 Page: 7



[12] PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., INOUYE, J., KETHANA,
L., WALPOLE, J., AND ZHANG, K. Optimistic incremental specialization: Streamlining
a commercial operating system. In 15th ACM Symposium on Operating Systems Principles
(SOSP’95) (Copper Mountain, CO, December 1995), pp. 314–321.

[13] TORVALDS, L. Linux 2.5.43. Available: http://marc.theaimsgroup.com/?l=
linux-kernel&m=103474006226829&w=2 [Viewed June 23, 2004], October 2002.

[14] TREIBER, R. K. Systems programming: Coping with parallelism. RJ 5118, April 1986.

Draft: 2005/01/30 16:00 Page: 8


