
Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5
Kernel

Andrea Arcangeli
SuSE Labs

Mingming Cao, Paul E. McKenney, and Dipankar Sarma
IBM Corporation

Abstract

Read-copy update (RCU) allows lock-free read-only ac-
cess to data structures that are concurrently modified
on SMP systems. Despite the concurrent modifications,
read-only access requires neither locks nor atomic in-
structions, and can often be written as if the data were
unchanging, in a “CS 101” style. RCU is typically ap-
plied to read-mostly linked structures that the read-side
code traverses unidirectionally.

Previous work has shown no clear best RCU imple-
mentation for all measures of performance. This pa-
per combines ideas from several RCU implementations
in an attempt to create an overall best algorithm, and
presents a RCU-based implementation of the System V
IPC primitives, improving performance by more than an
order of magnitude, while increasing code size by less
than 5% (151 lines). This implementation has been ac-
cepted into the Linux 2.5 kernel.

1 Introduction
The past two years have seen much discussion of RCU,
along with the design and coding of a number of imple-
mentations and uses of RCU, one of which is now part
of the Linux 2.5 kernel [Sarma02].

Comparisons with other concurrent update mecha-
nisms [McK01b, Linder02a] have shown that RCU can
greatly simplify and improve performance of code ac-
cessing read-mostly linked-list data structures. This pa-
per adds a performance evaluation of RCU applied to
the Linux System-V IPC primitives. RCU can also im-
prove performance of code modifying linked-list struc-
tures when there is a high system-wide aggregate update
rate across all such structures [McK98a].

Comparison of multiple RCU implementations
[McK02a] showed, as noted in the abstract, that there is
no overall best algorithm. The rcu-poll algorithm had
the shortest latency, while the rcu-ltimer algorithm had
the lowest overhead. This paper presents a parallelized

The views expressed in this paper are the authors’
only, and should not be attributed to SuSE or IBM.

variant of rcu-poll in an attempt to gain the best of both
worlds.

Section 2 provides background on RCU, Section 3 re-
views attempts to produce a single best RCU implemen-
tation, Section 4 describes an RCU-based implementa-
tion Linux’s System V IPC primitives, and Section 5 de-
scribes future plans.

2 Background

This section gives a brief overview of RCU; more details
are available elsewhere [McK98a, McK01b, McK02a].
Section 2.1 presents a visual example of RCU-based list
manipulation, Section 2.2 contains a glossary of RCU-
related terms, Section 2.3 presents concepts, Section 2.4
presents the RCU API, and Section 2.5 illustrates an
analogy between RCU and reader-writer locking.

2.1 Example

A B C(1)

A C(3)

A B C(2)

Figure 1: Lock Protecting Deletion and Search

On SMP systems, any searching of or deletion from a
linked list must be protected by a lock. When element
B is deleted from the list shown in Figure 1, searching
code is guaranteed to see this list in either the initial state
(1) or the final state (3). In state (2), when element B is
being deleted, the reader-writer lock guarantees that no
readers (indicated by the triangles) will be accessing the
list.

However, many lists are searched much more often
than they are modified. For example, an IP routing table
would normally change at most once per few minutes,

A(3) C

!!!!

A(1) CB

A(2) CB

Figure 2: Race Between Deletion and Search

but might be searched many thousands of times per sec-
ond. This could result in well over a million accesses per
update, making lock-acquisition overhead burdensome
to searches.

Unfortunately, omitting locking when searching
means that the update no longer appears to be atomic.
Instead, the update takes the multiple steps shown in Fig-
ure 2. A search might be referencing element B just as it
was freed up, resulting in crashes, or worse, as indicated
by the reader referencing nothingness in step (3).

A B C

A(4) C

A B C(3)

A B C(2)

(1)

Figure 3: RCU Protecting Deletion and Search

One solution to this problem is to delay freeing up el-
ement B until all searches have given up their references
to it, as shown in Figure 3. RCU indirectly determines
when all references have been given up. To see how this
works, recall that there are normally restrictions on what
operations may be performed while holding a lock. For
example, in the Linux kernel, it is forbidden to do a con-
text switch while holding any spinlock. RCU mandates
these same restrictions: even though the RCU-protected
search need not acquire any locks, it is forbidden from
performing any operation that would be forbidden if it

were in fact holding a lock.
Therefore, any CPU that is seen performing a context

switch after the linked-list deletion shown in step (2)
of Figure 3 cannot possibly hold a reference to ele-
ment B. As soon as all CPUs have performed a context
switch, there can no longer be any readers, as shown in
step (3). Element B may then be safely freed, as shown
in step (4).

A simple, though inefficient, RCU-based deletion al-
gorithm could perform the following steps in a non-
preemptive Linux kernel (preemptive kernels can be
handled as well [McK02a]):

1. Unlink element B from the list, but do not free it.
The state of the list will be that shown in step (2) of
Figure 3.

2. Run on each CPU in turn. At this point, each CPU
has performed one context switch after element B
has been unlinked. Thus, there cannot be any more
references to element B.

3. Free up element B.

Much more efficient implementations have been de-
scribed elsewhere [McK98a, McK02a]. The following
sections present the concepts underlying RCU.

2.2 Glossary
The following definitions help illuminate the concepts
underlying RCU.

Live Variable: A variable that might be accessed be-
fore it is next modified, so that its current value
has some possibility of influencing future execution
state.

Dead Variable: A variable that will be modified before
it is next accessed, so that its current value cannot
possibly have any influence over future execution
state.

Critical Section: A region of code that is protected
from outside interference by some locking mech-
anism, such as spinlocks or RCU.

Read-Side Critical Section: A region of code that is
protected from other CPUs’ modifications, but
which allows multiple CPUs to read simultane-
ously.

Temporary Variable: A variable that is only live inside
a critical section. One example is an auto variable
used as a pointer while traversing a linked list.

Permanent Variable: A variable that is live outside of
critical sections. One example would be the header
for a linked list. Although it is possible for the same
variable to be temporary sometimes and permanent
at other times, this practice can lead to confusion,
so is not generally recommended. Relying on the
register-allocation capabilities of modern optimiz-
ing compilers is usually a far better strategy.

Quiescent State: A point in the code where all of
the current CPU’s temporary variables that were
previously in use in a critical section are dead.
In a non-preemptive Linux kernel, a context
switch is a quiescent state for CPUs. In a pre-
emptive Linux kernel, rcu read lock() and
rcu read unlock() suppress preemption for
short read-side critical sections, so that context
switch is still a quiescent state with respect to these
read-side critical sections. Although there are im-
plementations of RCU that do not require preemp-
tion to be suppressed [Gamsa99, McK02a], they
can be prone to excessively long grace periods.

Grace Period: Time interval during which all CPUs
pass through at least one quiescent state. The key
property of a grace period is that the values that
were contained in any temporary variable in use in
a critical section at the beginning of the grace pe-
riod cannot possibly have any direct effect after the
end of the grace period. This property will be ex-
amined more closely in the next section. Note that
any time interval containing a grace period is itself
a grace period.

2.3 Concepts
Without special action in the deletion code, the search
code would be prone to races with those deletions, de-
scribed in Section 2.1. To handle such race conditions,
the update side performs the update in two phases as
follows: (1) remove permanent-variable pointers to the
item being deleted, and (2) after a grace period has
elapsed, free up the item’s memory.

The grace period is not a fixed time duration, but
is instead inferred by checking for per-CPU quiescent
states, such as context switches in non-preemptive en-
vironments. Since kernel threads are prohibited from
holding locks across a context switch, they also prohib-
ited from holding pointers to data structures protected by
those locks across context switches–after all, the entire
data structure could well be deleted by some other CPU
at any time this CPU does not hold the lock.

A trivial implementation of RCU in a non-preemptive
kernel could simply declare the grace period over once
it observed each CPU undergoing a context switch.
Once the grace period completes, no CPU references the
deleted item, and no CPU can gain such a reference. It
is therefore safe to free up the deleted item.

With this approach, searches already in progress when
the first phase executes might (or might not) see the item
being deleted. However, searches that start after the first
phase completes are guaranteed to never reference this
item. Efficient mechanisms for determining the dura-
tion of the grace period are key to RCU, and are de-
scribed fully elsewhere [McK02a]. These mechanisms

void synchronize_kernel(void);
void call_rcu(struct rcu_head *head,

void (*func)(void *arg),
void *arg);

struct rcu_head {
struct list_head list;
void (*func)(void *obj);
void *arg;

};
void rcu_read_lock(void);
void rcu_read_unlock(void);

Figure 4: RCU API

track “naturally occurring” quiescent states, which re-
moves the need for adding expensive context switches.
In addition, these mechanisms take advantage of the fact
that a single grace period can satisfy multiple concurrent
updates, amortizing the cost of detecting a grace period
over the updates.

2.4 RCU API
Figure 4 shows the external API for RCU. The syn-
chronize kernel() function blocks for a full grace
period. This is a simple, easy-to-use function, but im-
poses expensive context-switch overhead on its caller. It
also cannot be called with locks held or from softirq and
irq (interrupt) contexts.

Another approach, taken by call rcu(), is to
schedule a callback function func to be called with ar-
gument arg after the end of a full grace period. Since
call rcu() never sleeps, it may be called with locks
held. It may also be called from the softirq and irq
contexts. The call rcu() function uses its struct
rcu head argument to remember the specified callback
function (in the func field) and argument (in the arg
field) for the duration of the grace period. At the end of
the grace period, the RCU subsystem invokes the func-
tion pointed to by the func field, passing it the contents
of the arg field. An rcu head is often placed within a
structure being protected by RCU, eliminating the need
to separately allocate it.

The primitives rcu read lock() and
rcu read unlock() demark a read-side RCU
critical section, but generate no code in non-preemptive
kernels. In preemptive kernels, they disable preemption
within the critical section, which is required because
both synchronize kernel() and call rcu()
declare the grace period to be over once each CPU has
completed a context switch. Suppressing preemption
during the read-side RCU critical section prevents
the crashes that could result from such prematurely
ending grace periods. There is a patch that implements
a proposed call rcu preempt() [McK02a] that
tolerates preemption in read-side critical sections (based
on the K42 implementation [Gamsa99]), but at this
writing, there are no RCU uses envisioned in Linux

list_add_rcu(struct list_head *new,
struct list_head *head);

list_add_rcu_tail(struct list_head *new,
struct list_head *head);

list_del_rcu(struct list_head *entry);
list_for_each_rcu(struct list_head *pos,

struct list_head *head);
list_for_each_safe_rcu(struct list_head *pos,

struct list_head *n,
struct list_head *head);

Figure 5: RCU List API

1 struct el {
2 struct list_head list;
3 long key;
4 long data;
5 struct rcu_head my_rcu_head;
6 };

Figure 6: List Element Data Structure

that could tolerate the extremely long grace periods that
might result from preemption on a busy system.

Modern microprocessors, particularly the
DEC/Compaq/HP Alpha, feature very weak mem-
ory consistency models. These models require use
of special “memory barrier” instructions. However,
since proper use of these instructions is often difficult
to understand and even more difficult to build good
test suites for, there is an extension to the Linux
list-manipulation API for use with RCU, as shown in
Figure 5. Each primitive in this extension is equivalent
to its non-RCU counterpart, but with the addition of
whatever memory-barrier instructions are required on
the machine in question [Spraul01].

RCU may be applied to data structures other than lists,
but in such cases, memory-barrier instructions must be
used explicitly. An example of such a situation is shown
in Section 4.5.

2.5 Reader-Writer-Locking/RCU Analogy

Although RCU has been used in a great many inter-
esting and surprising ways, one of the most straight-
forward is as a replacement for reader-writer locking.
In this section, we present this analogy, protecting the
simple doubly-linked-list data structure shown in Fig-
ure 6 with reader-writer locks and then with RCU,
comparing the results. This structure has a struct
list head that is manipulated by the standard Linux
list-manipulation primitives, a search key, and a single
integer for data. The RCU primitive call rcu() re-
quires some space in the data element, which is supplied
by the my rcu head field.

The reader-writer-lock/RCU analogy substitutes
primitives as shown in Table 1. The asterisked
primitives are no-ops in non-preemptible kernels; in
preemptible kernels, they suppress preemption, which

is an extremely cheap operation on the local task
structure. Note that since neither rcu read lock()
nor rcu read unlock block irq or softirq contexts,
it is necessary to add primitives for this purpose
where needed. For example, read lock irqsave
must become rcu read lock() followed by
local irq save().

Reader-Writer Lock Read-Copy Update
rwlock t spinlock t
read lock() rcu read lock() ∗

read unlock() rcu read unlock() ∗

write lock() spin lock()
write unlock() spin unlock()
list add() list add rcu()
list add tail() list add tail rcu()
list del() list del rcu()
list for each() list for each rcu()
∗ no-op unless CONFIG PREEMPT, in which case

preemption is suppressed

Table 1: Reader-Writer-Lock/RCU Substitutions

Deletion from the list is illustrated by the up-
per section of Table 2. The write lock() and
write unlock() are replaced by spin lock()
and spin unlock(), respectively, the list del()
is replaced by list del rcu(), and my free()
is replaced by call rcu(). The call rcu()
will, after a grace period elapses, pass p to function
my free(), using the struct rcu head in the
my rcu head field to keep track of the deferred func-
tion call and argument.

Insertion into the list is illustrated by the second
section of Table 2. Again, the write lock() and
write unlock() are replaced by the simple spin-
lock primitives spin lock() and spin unlock(),
respectively. The list add tail() is replaced by
list add tail rcu(). The rest of the code remains
the same.

Searching the list is illustrated by the third section of
Table 2. Locking is handled by the caller, so the two
variants differ only in that the list for each() is
replaced by list for each rcu().

Searching the list for read-only access is illustrated
by the last section of Table 2. The only differ-
ence is that the read lock() and read unlock()
primitives are replaced by rcu read lock() and
rcu read unlock(), respectively. Again, the bulk
of the code remains the same for both cases.

Although this analogy can be quite compelling and
useful, there are some caveats:

1. Read-side critical sections may see “stale data,”
that has been removed from the list but not yet

Reader-Writer Lock Read-Copy Update

1 void delete(long mykey)
2 {
3 struct el *p;
4 write_lock(&list_lock);
5 p = search(mykey);
6 if (p != NULL) {
7 list_del(p);
8 }
9 write_unlock(&list_lock);

10 my_free(p);
11 }

1 void delete(long mykey)
2 {
3 struct el *p;
4 spin_lock(&list_lock);
5 p = search(mykey);
6 if (p != NULL) {
7 list_del_rcu(p);
8 }
9 spin_unlock(&list_lock);

10 call_rcu(&p->rcuhead,
11 (void (*)(void *))my_free, p);
12 }

1 void insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 p->key = key;
6 p->data = data;
7 write_lock(&list_lock);
8 list_add_tail(&(p->list), &head);
9 write_unlock(&list_lock);

10 }

1 void insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 p->key = key;
6 p->data = data;
7 spin_lock(&list_lock);
8 list_add_tail_rcu(&(p->list), &head);
9 spin_unlock(&list_lock);

10 }

1 struct el *search(long mykey)
2 {
3 struct el *p;
4 list_for_each(p, &head) {
5 if (p->key == mykey) {
6 return (p);
7 }
8 }
9 return (NULL);

10 }

1 struct el *search(long mykey)
2 {
3 struct el *p;
4 list_for_each_rcu(p, &head) {
5 if (p->key == mykey) {
6 return (p);
7 }
8 }
9 return (NULL);

10 }

1 /* Read-only search */
2 struct el *p;
3 read_lock(&list_lock);
4 p = search(mykey);
5 if (p == NULL) {
6 /* handle error condition */
7 } else {
8 /* access *p w/out modifying */
9 }

10 read_unlock(&list_lock);

1 /* Read-only search */
2 struct el *p;
3 rcu_read_lock(); /* nop unless CONFIG_PREEMPT */
4 p = search(mykey);
5 if (p == NULL) {
6 /* handle error condition */
7 } else {
8 /* access *p w/out modifying */
9 }

10 rcu_read_unlock(); /* nop unless CONFIG_PREEMPT */

Table 2: Reader-Writer-Lock and Read-Copy-Update Analogy

freed. There are some situations (e.g., routing ta-
bles for best-effort protocols) where this is not a
problem. In other situations, such stale data may
be detected and rejected [Pugh90], as illustrated in
Section 4.

2. Read-side critical sections may run concurrently
with write-side critical sections.

3. The grace period will delay freeing of memory,
which means that both the memory and the cache
footprint of the code will be somewhat larger when
using RCU than when using reader-writer locking.

4. When changing to RCU, write-side reader-writer
locking code that modifies list elements in place
must often be restructured to prevent read-side
RCU code from seeing the data in an inconsistent
state. In many cases, this restructuring will be quite
straightforward, for example, creating a new list el-
ement with the desired state, then replacing the old
element with the new.

Where it applies, this analogy can deliver full paral-
lelism with almost no increase in complexity. For ex-
ample, Section 4 shows how applying this analogy to
System V IPC yields order-of-magnitude speedups with
a very small increase in code size and complexity.

RCU has also been used as a lazy barrier synchro-
nization mechanism, as a mode-change control mecha-
nism, as well as for more sophisticated list maintenance.
Retrofitting existing code with RCU as shown above can
produce significant performance gains, but of course the
best results are obtained by designing RCU into the al-
gorithms and code from the start.

Other methods have been proposed for eliminating
locking [Herlihy93], and, when combined with more re-
cent refinements [Michael02a, Michael02b], these meth-
ods are practical in some circumstances. However, they
still require expensive atomic operations on shared stor-
age, resulting in pipeline stalls, cache thrashing, and
memory contention, even for read-only accesses.

3 RCU Implementation

The performance of RCU is critically dependent on an
efficient implementation of the call rcu() primitive.
The more efficient the implementation, the greater the
number of situations that RCU may profitably be applied
to.

However, grace-period latency is also an important
measure of performance – while CPU overhead negates
the performance benefits of RCU, excessively long
grace-period latencies can result in all available memory
queued up waiting for a grace period to end. However,
the conditions that cause excessively long grace-period
latencies have other bad effects, even in absence of RCU,
such as grossly degraded response times.

A detailed description of these algorithms has been
presented elsewhere [McK02a], but a brief description
of each follows. The rcu poll algorithm uses IPIs to
force each CPU to quickly enter a quiescent state, which
results in grace periods of much less than a millisec-
ond on idle systems. However, the resulting increased
scheduler overhead can outweigh the performance ben-
efits of RCU. The rcu ltimer algorithm instruments the
scheduler tick() function that is called with HZ
frequency on each CPU, resulting in extremely low over-
head, but with grace periods in excess of 100 millisec-
onds. The rcu sched algorithm uses a token-passing
scheme that holds the promise of extremely low over-
heads (which are currently masked by the cache thrash-
ing of a global counter), but can have grace periods
of almost one minute in duration. It is likely that
the rcu sched() algorithm can be reworked to eliminate
these disadvantages, which may result in it being the best
overall algorithm. However, the rcu ltimer is the best
match for current RCU uses in the Linux kernel, so this
algorithm is implemented in the 2.5 Linux kernel.

The best grace-period latencies were obtained using
rcu-poll, which invokes resched task() on each
CPU to force context switches, resulting in latencies
more than an order of magnitude shorter than those of
rcu-ltimer and rcu-sched, as shown in Figure 7. This
benchmark was run on an 8-CPU 700MHz Intel Xeon
system with 1MB L2 caches and 6GB of memory using
the dcache-rcu patch [LSE].

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

ca
ll_

rc
u(

)
la

te
nc

y
(s

ec
)

Number of dbench clients

rcu-ltimer

rcu-poll

rcu-sched

Figure 7: call rcu() Latency Under dbench Load
(logscale)

However, rcu-poll’s single global callback list results
in cache thrashing and high overhead, and it obtains
the short grace-period latencies by frequently invoking

the scheduler, the combination of which at times over-
whelms the performance benefits of RCU. The cache
thrashing is caused by: (1) enqueuing onto this single
list from multiple CPUs and (2) callbacks running on a
CPU other than the one that registered them. This latter
effect causes data structures processed by the callback to
be pulled from the registering CPU to the CPU running
the callback.

A modified rcu-poll algorithm was constructed having
per-CPU lists of callbacks. This eliminates both sources
of cache thrashing: each CPU manipulates only its own
list and callbacks always run on the CPU that registered
them. The frequent scheduler invocation remains, as this
is required to obtain the excellent call rcu() laten-
cies.

Table 3 compares the performance of rcu-ltimer (in
Linux 2.5 kernel), rcu-sched, and the parallelized ver-
sion of rcu-poll. These results show that rcu-ltimer
completes each iteration slightly (but statistically signif-
icantly) more quickly than does rcu-poll, and with 8.6%
less CPU utilization. They also show rcu-sched com-
pletes each iteration as fast as does rcu-ltimer, but
with 5.7% more CPU utilization. This benchmark was
run on a 4-CPU PIII Intel Xeon with 1MB L2 cache and
1GB of memory. Profile results show that rcu-poll is
incurring significant overhead in the scheduler and in
its force cpu reschedule() function, indicating
that although its cache-thrashing behavior has been ad-
dressed, rcu-poll is buying its excellent grace-period la-
tency with significantly increased overhead. The rcu-
sched implementation is unchanged; future work in-
cludes optimizing it to eliminate cache thrashing and
atomic instructions in order to reduce its overhead.

CPU Utilization ms/Iteration
Avg Std Avg Std

rcu-ltimer (2.5) 77.52% 0.05% 22.47 0.01
rcu-poll 84.20% 0.13% 22.95 0.03
rcu-sched 81.95% 0.20% 22.46 0.02

Table 3: dcachebench Comparison

Therefore, unless grace-period latency is of
paramount concern, the rcu-ltimer implementation
of RCU should be used. Should latency become a criti-
cal issue in the future, we will investigate modifications
to improve the latency of rcu-ltimer.

An optimized rcu-sched might beat rcu-ltimer’s over-
head. If this is the case, reduction of grace-period la-
tency would become a considerably more urgent matter.

4 RCU Implementation of System V IPC
This section describes how the reader-writer-lock/RCU
analogy described in Section 2.5 was used to break up

the global locks used by Linux’s System V IPC prim-
itives. These locks guard the following: (1) mapping
from IPC identifiers to correspondingkern ipc perm
structures, (2) expanding the mapping arrays, and (3)
individual IPC operations. A straightforward modifica-
tion would replace these global locks with reader-writer
locks, allowing mapping operations to be performed in
parallel.

However, we took the additional step of following the
analogy, replacing the global locks with RCU [Cao02]
to guard the mapping arrays and per-kern ipc perm
locks to guard the IPC operations, which resulted in sig-
nificant system-level speedups on database benchmarks.
This modification also serves to illustrate use of explicit
memory barriers and use of a deleted flag to prevent
access to stale data.

The remainder of this section focuses on the changes
to the System V semaphores; analogous changes were
made to message queues and shared memory.

4.1 Semaphore Data Structures
The semaphore data structures are shown in Figure 8.
The global ipc ids structure tracks the state of all
semaphores currently in use. Among other things, it
contains a global lock ary and a pointer entries
that points to an array of pointers of ipc id struc-
tures. Each such entry is either NULL or points
to a sem array structure, which represents a set
of semaphores that has been created by a single
semget() system call. The array of ipc id struc-
tures is dynamically expanded as required; see the dis-
cussion of the grow ary() function in Section 4.5.
The sem array structure is allocated by a semget()
system call and deleted by a semctl(IPC RMID) sys-
tem call. The individual semaphores in a set are each
represented by a sem structure.

Each semop() system call presents the semid
for the semaphore, which must be looked up in this
data structure to locate the corresponding sem array.
Thus, each and every semaphore operation requires that
this data structure be traversed.

The ipc ids field ary is a spinlock t that pro-
tects the entire data structure. This simple locking de-
sign prevents System-V semaphore operations from pro-
ceeding in parallel. In addition, the cacheline containing
the ary spinlock is thrashed among all CPUs.

Use of RCU permits fully parallel operation of
different semaphores and fully parallel translation of
a semaphore ID into the corresponding sem array
pointer. However, a few changes to the data structure
are required, as shown in Figure 9. To begin with,
the ipc id array and the sem array are each pre-
fixed with an ipc rcu kmalloc structure which con-
tains the rcu head structure that RCU’s call rcu()

ary

entries

ipc_ids

ipc_id

ipc_id

ipc_id

Array of ipc_id

sem

sem

kern_ipc_perm

sem

Figure 8: Semaphore Structures with Global Locking

function needs to track these structures during a grace
period. In addition, since there is no longer a global ary
lock, each individual sem array must have its own in-
dividual lock to protect operations on the correspond-
ing set of semaphores.

The final change is motivated by fact that the trans-
lation from semaphore ID to kern ipc perm cannot
tolerate the stale data that could result when an ID trans-
lation races with an semctl(IPC RMID) removing
that same ID. The possibility of stale data is avoided
through use of a deleted flag in the kern ipc perm
structure, guarded by that structure’s lock field. This
deleted flag is set just after removing the corre-
sponding sem array but before starting the grace pe-
riod. The entire removal operation is performed hold-
ing the lock field in the kern ipc perm structure.
Any attempt to lock a semaphore structure that has the
deleted flag set then behaves as if the structure is
nonexistent, as will be shown in the following sections.

entries

ipc_ids

sem

sem

sem

kern_ipc_perm

deleted

lockipc_id

ipc_id

ipc_id

ipc_rcu_kmalloc ipc_rcu_kmalloc

Figure 9: Semaphore Structures with RCU

4.2 Semaphore Removal

The deletion process is performed by ipc rmid, as
shown in Figure 10. This function is called with the

1 struct kern_ipc_perm*
2 ipc_rmid(struct ipc_ids* ids, int id)
3 {
4 struct kern_ipc_perm* p;
5 int lid = id % SEQ_MULTIPLIER;
6 if(lid >= ids->size)
7 BUG();
8
9 p = ids->entries[lid].p;

10 ids->entries[lid].p = NULL;
11 if(p==NULL)
12 BUG();
13 ids->in_use--;
14
15 if (lid == ids->max_id) {
16 do {
17 lid--;
18 if(lid == -1)
19 break;
20 } while (ids->entries[lid].p == NULL);
21 ids->max_id = lid;
22 }
23 p->deleted = 1;
24 return p;
25 }

Figure 10: Semaphore Deletion

lock held, and returns with it held. Lines 4-9 obtain
a pointer to the sem array structure. Line 10 NULLs
the pointer to sem array, removing any path from a
permanent variable to this structure. Lines 11-12 per-
form a debug check, which could be triggered by lock-
ing design bugs, among other things. Lines 13-22 ad-
just the count of semaphores in response to the removal
of this one, and then, if this semaphore had the largest
ID, scans down the array of ipc ids to find the new
largest ID. Line 23 sets the deleted flag, so that the
next acquisition of the lock will fail (see Section 4.3
below), and Line 24 returns a pointer to the newly re-
moved semaphore. The semaphore’s memory is freed up
by a call to ipc rcu free() by freeary(), which
is ipc rmid()’s caller and which also performs other
cleanup actions, including waking up any processes that
were sleeping on the newly removed semaphore.

The deleted flag, once set, makes the correspond-
ing semaphore set appear to be freed up even though it is
still in memory awaiting expiration of its grace period,
as will be shown in the next section.

4.3 Semaphore Lock Acquisition
As noted earlier, each semop() system call presents
the semid for the semaphore, which must be looked up
to locate the corresponding sem array. In addition,
the semaphore state must be locked. The semop()
system call invokes the ipc lock() kernel function
to do this lookup and locking, and later invokes the
ipc unlock() kernel function to do the correspond-
ing unlocking. Since the ipc lock() kernel function
was responsible for the lock contention that motivated
use of RCU, we focus on ipc lock() and the func-
tions that it interacts with.

1 struct kern_ipc_perm*
2 ipc_lock(struct ipc_ids* ids, int id)
3 {
4 struct kern_ipc_perm* out;
5 int lid = id % SEQ_MULTIPLIER;
6 struct ipc_id* entries;
7
8 rcu_read_lock();
9 if(lid >= ids->size) {

10 rcu_read_unlock();
11 return NULL;
12 }
13 /* barrier syncs with grow_ary() */
14 smp_rmb();
15 entries = ids->entries;
16 read_barrier_depends();
17 out = entries[lid].p;
18 if(out == NULL) {
19 rcu_read_unlock();
20 return NULL;
21 }
22 spin_lock(&out->lock);
23 /* in case ipc_rmid() just freed ID */
24 if (out->deleted) {
25 spin_unlock(&out->lock);
26 rcu_read_unlock();
27 return NULL;
28 }
29 return out;
30 }

Figure 11: Detecting Semaphore Deletion

Since the read-code is lock-free, nothing will prevent
ipc lock() from racing with ipc rmid(), thus
possibly gaining a reference to the structure after it is
marked deleted. Figure 11 shows how ipc lock()
handles this race. Note that the ids argument is a
pointer to the sole permanent variable, while the out
pointer declared in Line 4 is a temporary variable. Line
5 computes the “hash” used to access the array of
ipc ids. Line 8 marks the beginning of the RCU read-
side critical section. In preemptive kernels, this will dis-
able preemption; in non-preemptive kernels, it does ab-
solutely nothing other than serve as a documentation aid.
Lines 9-12 check for the specified ID being out of range,
returningNULL for failure if so. Line 14 allows for inter-
actions with the grow ary() function on multiproces-
sors with weak memory consistency models as described
in Section 2.4. Note that since the semaphore implemen-
tation does not use linked lists, these memory-barrier
primitives must be invoked explicitly – the RCU variants
of the Linux list-manipulation primitives cannot be used.
Lines 15-17 obtain a stable pointer to the semaphore
structure. The read barrier depends() allows
for interactions with the grow ary() function on mul-
tiprocessors with extremely weak memory consistency
models, such as the Alpha. Lines 18-21 attempt to get a
reference to the semaphore structure, returning NULL if
there is no such structure (perhaps due to the specified ID
no longer being valid). Line 22 acquires the semaphore
structure’s lock. Lines 24-28 check the deleted flag
to determine if the semaphore is being removed, and,

1 void ipc_rcu_free(void* ptr, int size)
2 {
3 struct ipc_rcu_kmalloc *free;
4 free = ptr - sizeof(*free);
5 call_rcu(&free->rcu,
6 (void (*)(void *))kfree,
7 free);
8 }

Figure 12: Freeing a Semaphore

if such a race occurred, returns NULL to signal failure.
Note that because ipc lock() does not block, the
normal RCU grace period keeps the semaphore struc-
ture around for long enough that there is no danger of
this structure being freed up before ipc lock() can
check the deleted flag. Finally, Line 29 returns a
pointer to the semaphore structure, having successfully
translated the specified ID. Note that this function re-
turns with the semaphore’s lock held inside a RCU
read-side critical section. The ipc unlock() func-
tion therefore releases the semaphore’s lock and then
ends the RCU read-side critical section by executing a
rcu read unlock().

4.4 Semaphore Deferred Deletion
Since ipc lock() can gain a reference to a semaphore
as it is being removed, a grace period must elapse be-
tween the removal and the actual freeing of the cor-
responding data structures, as illustrated by Figure 12,
which shows a simplified version of ipc rcu free()
function. The actual function is more complex due to
the fact that blocks of memory larger than a page must
be freed with vfree() rather than kfree(). Line 4
computes a pointer to the beginning of the structure (see
Figure 9), which is an ipc rcu kmalloc(), which
in turn is just a wrapper around an rcu head struc-
ture (see Figure 4). This wrapping allows more com-
mon code between the kmalloc() and vmalloc()
cases. Lines 5-7 then pass to call rcu() pointers to
the rcu head structure, to the kfree() function, and
to the semaphore structure. The call rcu() function
uses the rcu head structure to queue up the semaphore
structure during the grace period. The actual invocation
of the kfree() function on the semaphore structure is
deferred until after the end of a subsequent grace period.

4.5 Semaphore Array Expansion
If a large number of semaphores are created, the ker-
nel will need to expand the ipc id array. Use of
RCU dictates that this expansion occur in parallel with
ongoing searching by ipc lock(). The function
grow ary(), shown in Figure 13, implements this ex-
pansion.

Lines 8-11 do limit checking. Lines 13-21 allocate
the new array, copy the old array to the first part of the

1 static int grow_ary(struct ipc_ids* ids,
2 int newsize)
3 {
4 struct ipc_id* new;
5 struct ipc_id* old;
6 int i;
7
8 if(newsize > IPCMNI)
9 newsize = IPCMNI;

10 if(newsize <= ids->size)
11 return newsize;
12
13 new = ipc_rcu_alloc(sizeof(struct ipc_id) *
14 newsize);
15 if(new == NULL)
16 return ids->size;
17 memcpy(new, ids->entries,
18 sizeof(struct ipc_id)*ids->size);
19 for(i=ids->size;i<newsize;i++) {
20 new[i].p = NULL;
21 }
22 old = ids->entries;
23 i = ids->size;
24
25 smp_wmb();
26 ids->entries = new;
27 smp_wmb();
28 ids->size = newsize;
29
30 ipc_rcu_free(old, sizeof(struct ipc_id)*i);
31 return ids->size;
32 }

Figure 13: Expanding the Array of Pointers to
Semaphores

new array, and initialize the remainder of the new ar-
ray. Lines 22 and 23 retain the size of the old array and
a pointer to it. Line 25 is a memory barrier that pre-
vents the CPU and the compiler from reordering the ar-
ray initialization with the assignment of the pointer. Any
such reordering could cause other CPUs to see uninitial-
ized segments of the array, possibly crashing (or worse!).
Line 26 switches the pointer over to the new array, but
any accesses at this point will recognize only the old en-
tries as valid, since the size is still the old size. Line 27 is
a memory barrier that prevents the CPU and the compiler
from reordering the assignment of the size to precede
the pointer assignment. If such a reordering were to oc-
cur while a user was attempting to access an erroneously
largersemid, the kernel would run off the end of the old
array, again, possibly crashing. Line 28 updates the size,
so that new semaphores with larger semids may now
be accommodated. Line 30 invokes ipc rcu free(),
which frees the old structure after a full grace period has
elapsed. Note that ipc rcu free() returns immedi-
ately, having used call rcu() to queue the old array
for a later kfree(). Finally, Line 31 returns the new
size of the array.

Note that no deleted flag is needed here, since the
old version of the array is kept valid throughout the grace
period. Any semaphore in existence at the start of the
racing access that is still in existence when the racing
access completes will still be correctly referenced by the

old array. Note that the racing access must by definition
complete before the grace period ends – otherwise, it is
not a grace period.

This tolerance of stale data is typical of ID-to-address
mappings, and of routing tables as well.

4.6 Semaphore Operation

This section presents a graphical demonstration of how
grow ary(), ipc rmid(), and ipc lock operate.
The figures in this section are abbreviated forms of Fig-
ure 8 and Figure 9. Figure 14 shows a system with three
semaphores allocated out of a maximum of eight that
could be accommodated.

The results of a concurrent grow ary(),
ipc rmid() and creation of a new semaphore
are shown in Figure 15, but with the additional ipc id
array elements omitted from the figure. At this point,
a concurrent ipc lock() would see semaphore 4 as
being deleted (note the ”D” in the diagram), and would
have no way of reaching the newly created semaphore
2. The lack of visibility to semaphore 2 is legal, since
this semaphore was created after ipc lock() started
execution. A subsequent ipc lock() would see
semaphores 0, 2, and 6, but would not newly deleted
semaphore 4.

Finally, Figure 16 shows the state of the system after
a grace period. The old ipc id array has been freed,
as has semaphore 4. Because the grace period has com-
pleted, there can no longer be any references either to
the old array or to the now-deleted semaphore 4.

sem0 sem4 sem6

ipc_ids

2 3 4 5 6 710 7

Figure 14: Semaphore Initial State

4.7 Semaphore Performance

Use of RCU improves the performance of System V
semaphores as measured by both system-level bench-
marks and focused microbenchmarks.

The Open Source Development Lab (OSDL) used a
DBT1 benchmark to evaluate system-level performance,
comparing Andrew Morton’s Linux 2.5.42-mm2 both
with and without ipc-rcu. These tests were run on an
Intel(R) dual-CPU 900MHz PIII with 256MB of mem-

sem0 sem4

D

sem6

ipc_ids

sem2

2 3 4 5 6 710 7

2 3 4 5 6 710 7

Figure 15: Semaphore Structures After Array Replace-
ment

sem0 sem6sem2

2 3 4 5 6 710 7

ipc_ids

Figure 16: Semaphore Structures After Grace Period

ory.
The raw transaction rate for each of the five runs with

each kernel are shown in Figure 17. The erratic results
for the stock kernel are not unusual for workloads with
lock contention. The reason for this is that if the lock
contention is not too extreme, relatively deterministic
workloads can “get lucky” such that multiple CPUs hap-
pen to be less likely to be contending for the same lock at
the same time. As shown in Table 4, the difference is sta-
tistically significant: not only is ipc-rcu’s average three
standard deviations above that of the stock kernel, but
ipc-rcu’s smallest value of 90.4 TPS exceeds the stock
kernel’s median of 87.6 TPS.

Bill Hartner [Hartner02] constructed a System V

Kernel Average Standard
Deviation

2.5.42-mm2 85.0 7.5
2.5.42-mm2+ipc-rcu 89.8 1.0

Table 4: DBT1 Database Benchmark Results (TPS)

70

75

80

85

90

2.5.42-mm2 2.5.42-mm2-ipc-rcu

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

Figure 17: DBT1 Database Benchmark Raw Results

Kernel Run 1 Run 2 Avg
2.5.42-mm2 515.1 515.4 515.3
2.5.42-mm2+ipc-rcu 46.7 46.7 46.7

Table 5: semopbench Microbenchmark Results (sec-
onds)

semaphore microbenchmark named semopbench and
ran it on an Intel 8-CPU 700 MHz PIII system. The
results in Table 5 clearly show the order-of-magnitude
reduction in runtime obtained by applying the reader-
writer-locking/RCU analogy with RCU to System V IPC
mechanisms.

4.8 Semaphore Complexity
The RCU changes to the System V IPC implementa-
tions inflicted less than 5% expansion of code size, as
shown in Table 6. This change increased the overall
code size by only 151 lines. The RCU implememtation
itself (which is also used by both module unloading and
the IP route cache) adds only an additional 408 lines of
code. This order-of-magnitude performance benefit is
well worth the modest increase in complexity.

Of course, the system-level performance increase is
a much smaller 5.3%. On the other hand, the 151-line
increase in code size is an insignificant fraction of the
11.7 million lines of code in the full kernel, and even
this does not include the size of the database and other
software involved in the benchmark.

5 Conclusions and Future Plans
Since the modified version of rcu-poll was unable to
match the performance of rcu-ltimer, and since there are

Total Lines
Ins/Del/Delta New Old % Delta

msg.c 23 26 -3 885 888 -0.34%
sem.c 29 30 -1 1289 1290 -0.08%
shm.c 102 69 33 785 752 4.39%
util.c 178 13 165 581 416 39.66%
util.h 10 53 -43 64 107 -40.19%
Total 342 191 151 3604 3453 4.37%

Table 6: Semaphore Change in Lines of Code

currently no known uses of RCU that require low grace-
period latency, rcu-ltimer is used in the Linux 2.5 kernel.
If needed, we will investigate use of rcu-poll’s grace-
period-latency mechanisms in rcu-ltimer after a fixed de-
lay. A modified version of rcu-sched may attain even
lower overheads than those of rcu-ltimer.

We will continue investigating how RCU may be used
in the Linux kernel, including using it to provide NMI
handler support and applying it to the tasklist lock
to eliminate some starvation scenarios that have been ob-
served in the Linux 2.5 kernel. Experience gained from
use of RCU in DYNIX/ptx(R), K42 [Gamsa99], and
Linux indicate that it will continue to be quite helpful
in obtaining dramatic performance improvements with
little increase in complexity.

6 Acknowledgments
We owe thanks to Bill Hartner and Cliff White for run-
ning many benchmarks, to Rusty Russell, Anton Blan-
chard, Paul Mackerras, and the rest of the IBM OzLabs
group for many valuable discussions, to Andrew Mor-
ton, Hugh Dickens, Davide Libenzi, and Rusty Rus-
sell again for their careful review of much code, and
to Matt Dobson, the anonymous referees, and shepherd
Ray Bryant for their substantial help in rendering this
paper human-readable. We are indebted to Dan Frye,
Hans Tannenberg, Chris Maher, Randy Kalmeta, Vijay
Sukthankar, and Hugh Blemings for their support of this
effort.

References
[Cao02] M. Cao [PATCH] Latest IPC lock patch-

2.5.44, Linux Kernel Mailing List, October 2002.
http://marc.theaimsgroup.com/?l=
linux-kernel\&m=103610704923787\
&w=2.

[Gamsa99] B. Gamsa, O. Kreiger, J. Appavoo, and M.
Stumm. Tornado: maximizing locality and con-
currency in a shared memory multiprocessor op-
erating system, Proceedings of the 3rd Symposium
on Operating System Design and Implementation,
New Orleans, LA, February, 1999.

[Hartner02] B. Hartner. semopbench 1.0.0, IBM Devel-
operWorks, October 2002. http://www.ibm.
com/developerworks/opensource/
linuxperf/semopbench/semopbench.c.

[Herlihy93] M. Herlihy. Implementing Highly Concur-
rent Data Objects, ACM Transactions on Program-
ming Languages and Systems, vol. 15 #5, Novem-
ber 1993, pages 745-770.

[Linder02a] H. Linder, D. Sarma, and Maneesh Soni.
Scalability of the Directory Entry Cache, Ottawa
Linux Symposium, June 2002.

[LSE] D. Sarma et al. Linux Scaling Effort (LSE),
SourceForge Project, April 2002. http://
prdownloads.sourceforge.net/lse/.

[McK98a] P. E. McKenney and J. D. Slingwine.
Read-copy update: using execution his-
tory to solve concurrency problems, Parallel
and Distributed Computing and Systems,
October 1998. (revised version available
at http://www.rdrop.com/users/
paulmck/rclockpdcsproof.pdf).

[McK01b] P. E. McKenney, J. Appavoo, A. Kleen, O.
Krieger, R. Russell, D. Sarma, M. Soni. Read-Copy
Update, Ottawa Linux Symposium, July 2001.
(revised version available at http://www.
rdrop.com/users/paulmck/rclock/
rclock_OLS.2001.05.01c.pdf).

[McK02a] P. E. McKenney, D. Sarma, A. Arcan-
geli, A. Kleen, O. Krieger, and R. Russell.
Read-Copy Update, Ottawa Linux Symposium,
July 2002. (revised version available at http:
//www.rdrop.com/users/paulmck/
rclock/rcu.2002.07.08.pdf).

[Michael02a] M. M. Michael. Safe Memory Reclama-
tion for Dynamic Lock-Free Objects Using Atomic
Reads and Writes, In Proceedings of the 21st An-
nual ACM Symposium on Principles of Distributed
Computing, pages 21-30, July 2002.

[Michael02b] M. M. Michael. High Performance Dy-
namic Lock-Free Hash Tables and List-Based Sets,
In Proceedings of the 14th Annual ACM Sym-
posium on Parallel Algorithms and Architecture,
pages 73,82, August 2002.

[Pugh90] W. Pugh. Concurrent Maintenance of Skip
Lists, Department of Computer Science, University
of Maryland, CS-TR-2222.1, June 1990.

[Sarma02] D. Sarma [PATCH] Read-Copy Update
2.5.42, Linux-Kernel Mailing List, October 2002.
http://marc.theaimsgroup.com/?l=
linux-kernel\&m=103461974415359\
&w=2.

[Spraul01] M. Spraul Re: RFC: patch to allow lock-
free traversal of lists with insertion, Linux-Kernel
Mailing List, October 2001. http://marc.
theaimsgroup.com/?l=linux-kernel\
&m=100264675012867\&w=2.

