
2009 linux.conf.au Hobart, Tasmania, Australia

January 22, 2009 © 2006-2009 IBM Corporation

Using a Malicious User-Level RCU to
Torture RCU-Based Algorithms

Paul E. McKenney, Ph.D.
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Overview

 Why Concurrency?

 Hardware Issues with Concurrency

 RCU Fundamentals

 RCU Requirements

 Challenges for User-Level RCU

 A Pair of User-Level RCU Implementations

 Future Work and Summary

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Why Concurrency?

 Higher performance (otherwise do sequential!)
 Acceptable productivity (machines now cheap)
 Reasonable generality (amortize development cost)

 Or because it is fun!!!
• (Though your manager/professor/SO/whatever might have a

different opinion on this point...)

 Software reliability goes without saying, aside from this
self-referential bullet point
• If it doesn't have to be reliable: “return 0;” is simple and fast

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Concurrency Problem #1: Poor Performance

 This is a severe problem in cases where performance
was the only reason to exploit concurrency...

 Lots of effort, little (or no) result

 Why???

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: The Marketing Pitch

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Memory References

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Pipeline Flushes

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Atomic Instructions

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Memory Barriers

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Cache Misses

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

And Don't Even Get Me Started on I/O...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: 4-CPU 1.8GHz Opteron 844

Operation Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

Cost (ns)

Larger machines usually incur larger penalties...
(1) Use coarse-grained parallelism: embarrassingly parallel is good!
(2) Make use of low-cost operations: For example, user-level RCU

Need to
be here!

Typical synchronization
mechanisms do this a lot

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU Fundamentally?

 Synchronization mechanism in Linux kernel

• Favors readers: extremely fast and deterministic RCU read-
side primitives (on the order of 1-10ns)
► Use RCU primarily useful in read-mostly situations

• Readers run concurrently with readers and updaters

• Updaters must synchronize with each other somehow
► Locks, atomic operations (but careful!!!), single update task...

 Three components of RCU:

• Publish-subscribe mechanism (for insertion)

• Wait for pre-existing RCU readers (for deletion)
► This is slow – multiple milliseconds

• Maintain multiple versions (for concurrent readers)

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Insertion: Publication & Subscription

A gp

->a=?
->b=?
->c=?

gpgp gp

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

gn
_p

oi
nt

er
()

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

pp p

Key: All readers can access
Only pre-existing readers can access
Inaccessible to readers

Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

 Combines waiting for readers and multiple versions:
• Writer removes element B from the list (list_del_rcu())
• Writer waits for all readers to finish (synchronize_rcu())
• Writer can then free B (kfree())

readers?readers?

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

No more readers
referencing B!

One Version Two Versions One Version One Version

Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()
RCU readers

concurrent with
updates

synchronize_rcu()

Time

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

time

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What Is RCU Fundamentally? (Summary)

 Relationship among RCU Components

Readers

ReclaimerMutator

ReadersReadersReaders

Lock Acquire

List Update
FreeFree

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Subscribe

Publish &
Retract

Wait for
RCU Readers

Maintain Multiple Versions

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage?

 RCU is a:
• reader-writer lock replacement
• restricted reference-counting mechanism
• bulk reference-counting mechanism
• poor-man's garbage collector
• way of providing existence guarantees
• way of providing type-safe memory
• way of waiting for things to finish

 Use RCU in:

• read-mostly situations or

• for deterministic response from read-side primitives and from
asynchronous update-side primitives

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage in the Linux Kernel?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage in the Linux Kernel?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Too Probe More Deeply into RCU...

 http://lwn.net/Articles/262464/http://lwn.net/Articles/262464/

• What is RCU, Fundamentally?

 http://lwn.net/Articles/263130/http://lwn.net/Articles/263130/

• What is RCU's Usage?

 http://lwn.net/Articles/264090/http://lwn.net/Articles/264090/

• What is RCU's API?

 http://www.rdrop.com/users/paulmck/RCU/http://www.rdrop.com/users/paulmck/RCU/

• Paul McKenney's RCU page.

http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Advantages and Disadvantages

 + Low-overhead linearly scaling read-side primitives
 + Deterministic read-side primitives (real time)
 + Deadlock-immune read-side primitives

• (But don't do synchronize_rcu() in read-side critical section!!!)
 + Less need to partition read-mostly data structures
 + Easier handling of new-reference/deletion races

 - High latency/overhead update-side primitives
• (But super-linear scaling due to batching implementations)

 - Freed memory goes cache-cold
• (Hence application to read-mostly data structures)

 - Updates run concurrently with readers
• (Common design patterns handle this issue)

 - Only runs in kernels
• And the Linux-kernel implementation is very forgiving!!!

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Linux-Kernel RCU Implementations Too Forgiving!!!

 Preemptable-RCU experience is a case in point...
 5 May 2008: Alexey Dobriyan: oops from RCU code

• Running 170 parallel kernel builds on a 2-CPU x86 box

• Takes about two full days to fail

• I cannot reproduce, and cannot get .config from Alexey

 7 June 2008: Alexey tries rcutorture, which fails
• I still cannot reproduce, and still cannot get .config from Alexey

 24 June 2008: Nick Piggin: lockless-pagecache oops
• I cannot reproduce, and no .config from Nick, either

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Linux-Kernel RCU Implementations Too Forgiving!!!

 July 10 2008: Nick Piggin finds bug
• Preemptable RCU broken unless CPU_HOTPLUG enabled

► My setup cheerfully and silently ignored disabling CPU_HOTPLUG!!!
► Unless I also disabled several other config parameters

• Result: synchronize_rcu() was completely ignoring rcu_read_lock()!!!
► Thus becoming a pure delay of a few tens of milliseconds

• It nevertheless ran 170 parallel kernel builds for about two days!!!
• Suppose someone forgets rcu_read_lock()? How to test???

 From Nick's email:
• “Annoyed this wasn't a crazy obscure error in the algorithm I could fix :) I

spent all day debugging it and had to make a special test case (rcutorture
didn't seem to trigger it), and a big RCU state logging infrastructure to log
millions of RCU state transitions and events. Oh well.”

 Alexey's response did much to explain lack of .config

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Requirements Summary

 Update-side primitive waits for pre-existing readers
• Contained update latency

 Low (deterministic) read-side overhead
• For debugging, need ability to force very short grace period

 Freely nestable read side primitives
• (Some uses can do not need this)

 Unconditional read-to-update upgrade
 Linear read-side scalability
 Independent of memory allocation
 Update-side scalability
 Some way of stress-testing algorithms using RCU!!!

 Note that an automatic garbage collector qualifies as
an RCU implementation

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU Challenges

 Cannot portably identify CPU

 Cannot portably disable preemption

 No equivalent of in-kernel scheduling-clock interrupt

 Less control of application

• If you are writing a user-level library, the application you will
link with might not even been thought of yet!

• So cannot necessarily rely on timely interaction with all threads

• Which every current RCU implementation requires...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Addressing User-Level RCU Challenges

 Cannot portably identify CPU

• Focus instead on processes and/or threads

 Cannot portably disable preemption

• Avoid need for this by process/thread focus

 No equivalent of in-kernel scheduling-clock interrupt

• Drive grace periods from update-side primitives

• Or provide separate thread(s) for this purpose

 Less control of application

• “Learn to let go...”

• And provide optimized RCU implementations for applications
that can periodically execute RCU code

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Trivial Approach

static void rcu_read_lock(void)
{
 atomic_inc(&rcu_ref_cnt);
 smp_mb();
}

static void rcu_read_unlock(void)
{
 smp_mb();
 atomic_dec(&rcu_ref_cnt);
}

Read-side cost?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Trivial Approach

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 while (atomic_read(&rcu_ref_cnt) != 0) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 smp_mb();
}

Extremely fast grace-period latency in absence of readers, but...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Super-Trivial Approach

static void rcu_read_lock(void)
{
 spin_lock(&rcu_gp_lock);
}

static void rcu_read_unlock(void)
{
 spin_unlock(&rcu_gp_lock);
}

Hey! Who really needs read-side parallelism, anyway?
And deadlock immunity is overrated!!!

void synchronize_rcu(void)
{
 spin_lock(&rcu_gp_lock);
 spin_unlock(&rcu_gp_lock);
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Other Approaches

 Split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock()

incremented
• synchronize_rcu() complements current, then waits until rcu_ref_cnt[!current]

decrements down to zero
• But requires coordinated access to current and rcu_ref_cnt[] element

► Provided in Linux kernel by interrupt disabling and scheduling-clock rrupt
► Neither of which are available to user-level code
► Would require expensive explicit locks at user level!!!

• Memory contention on rcu_ref_cnt[current]

 Use per-thread lock
• rcu_read_lock() acquires its thread's lock
• rcu_read_unlock() releases it
• synchronize_rcu() acquires & immediately releases each lock
• Reduces the deadlock vulnerabilities, also read-side overhead

► Too bad about signal handlers using RCU, though...

http://lwn.net/Articles/253651/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Other Approaches

 Per-thread split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[threadidx][current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock()

incremented
• synchronize_rcu() complements current, then waits until all of the

rcu_ref_cnt[][!current] counters decrement down to zero

 What is wrong with this approach?

http://lwn.net/Articles/253651/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Approach

rcu_gp_ctr

rcu_reader_gprcu_reader_gprcu_reader_gprcu_reader_gp

Even Values

Odd for RS CS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

“Vacation” won't
stall grace

periods

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Code

static void rcu_read_lock(void)
{
 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr + 1;
 smp_mb();
}

static void rcu_read_unlock(void)
{
 smp_mb();
 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr;
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Code

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 spin_lock(&rcu_gp_lock);
 rcu_gp_ctr += 2;
 smp_mb();
 for_each_thread(t) {
 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
 ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 spin_unlock(&rcu_gp_lock);
 smp_mb();
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

How Does This Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Approach

rcu_gp_ctr

rcu_reader_gprcu_reader_gprcu_reader_gprcu_reader_gp

“Fat bottom bit”

0

n

2n

3n

4n

5n

6n

7n

“Vacation” won't
stall grace

periods

0

nestnestnestnest

Must be in one quantity for atomicity.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Code

static void rcu_read_lock(void)
{
 long tmp;

 tmp = __get_thread_var(rcu_reader_gp);
 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
 tmp = rcu_gp_ctr;
 tmp++;
 __get_thread_var(rcu_reader_gp) = tmp;
 smp_mb();
}

static void rcu_read_unlock(void)
{
 long tmp;

 smp_mb();
 __get_thread_var(rcu_reader_gp)--;
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Code

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 spin_lock(&rcu_gp_lock);
 rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
 smp_mb();
 for_each_thread(t) {
 while (rcu_gp_ongoing(t) &&
 ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 spin_unlock(&rcu_gp_lock);
 smp_mb();
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

How Does Nestable Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing Data Structures

2 1 0 7 6 5 4 3

rcu_stress_current

synchronize_rcu();
rcu_stress_array[i]++;

rcu_stress_array[]

Readers

Updaters

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing Data Structures

3 2 1 0 7 6 5 4

rcu_stress_current

rcu_stress_array[]

Readers should see value of 0 and 1 only: otherwise, RCU is broken

Readers

Updaters

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing: Updater Thread

 1 while (goflag == GOFLAG_RUN) {
 2 i = rcu_stress_idx + 1;
 3 if (i >= RCU_STRESS_PIPE_LEN)
 4 i = 0;
 5 p = &rcu_stress_array[i];
 6 p->pipe_count = 0;
 7 rcu_assign_pointer(rcu_stress_current, p);
 8 rcu_stress_idx = i;
 9 for (i = 0; i < RCU_STRESS_PIPE_LEN; i++)
 10 if (i != rcu_stress_idx)
 11 rcu_stress_array[i].pipe_count++;
 12 synchronize_rcu();
 13 n_updates++;
 14 }

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Malice Testing: Reader Threads

 1 rcu_read_lock();
 2 p = rcu_dereference(rcu_stress_current);
 3 for (i = 0; i < 100; i++)
 4 garbage++;
 5 pc = p->pipe_count;
 6 rcu_read_unlock();

 1 rcu_read_lock();
 2 p = rcu_dereference(rcu_stress_current);
 3 for (i = 0; i < 100; i++)
 4 garbage++;
 5 rcu_read_unlock(); /* Malice. */
 6 pc = p->pipe_count; /* BUG!!! */

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Performance and Level of Malice

RCU Variant
Performance Degree of Malice (Probability of Detection)

0 100 1,000 10,000
63 0.20458% 0.28930% 16.62725%

17,123 22.63980% 21.87630% 27.23635% 77.45645%
141 0.41581% 0.95454% 0.44058% 98.25215%
64 0.10677% 0.33591% 21.91355%
26
0

39,177 0.01351% 0.26418% 68.92650% 92.53230%
37,056 0.00023% 0.20246% 23.64110% 91.99550%

114 0.00020% 0.26680% 0.38274% 96.22135%
114 0.00005% 0.25493% 0.38453% 97.22010%
101 0.17684% 0.31986% 43.60365%

(ns, 64 CPUs)
rcu
rcu_lock
rcu_lock_percpu
rcu_nest
rcu_nest_qs
rcu_qs
rcu_rcg
rcu_rcpg
rcu_rcpl
rcu_rcpls
rcu_ts

Mean of three trials of 10-second duration.
1-2 significant decimal digits in results.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Future Work

 Implement full Linux-kernel RCU API

• Currently, just have the bare bones
► rcu_read_lock()
► rcu_read_unlock()
► synchronize_rcu()
► Prototype containing call_rcu()

 Choose a particular implementation for user-level
debugging of RCU algorithms

• But more experience will be needed

 Try it out on a real user-land application

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Conclusions

 User-level RCU implementation possible, even for
library functions

 Extremely low grace-period latency

• Suggests use as a torture-test environment for RCU algorithms

• Subject of an upcoming presentation at linux.conf.au

• Though latency will increase with number of CPUs

 OK read-side overhead

• Less than 30% of the overhead of a single cache miss!

 Full RCU semantics

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

To Probe Deeper

 Other Parallel Algorithms and Tools
• http://www.rdrop.com/users/paulmck/scalability/

 What is RCU?
• Fundamentally: http://lwn.net/Articles/262464/
• Usage: http://lwn.net/Articles/263130/
• API: http://lwn.net/Articles/264090/
• Linux-kernel usage: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

• Other RCU stuff: http://www.rdrop.com/users/paulmck/RCU/

 Parallel Performance Programming (very raw draft)

• Contains source code for user-level RCU implementations
• git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://www.rdrop.com/users/paulmck/scalability/
http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Legal Statement

 This work represents the views of the authors and does
not necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Backup

