
Specialization Oriented Programming

Jim Newton – Cadence Design Systems

October 4, 2007

1 Abstract

This paper presents an implementation of a general-
ization of OOP called SOP (Specialization Oriented
Programming). Numerous examples are provided of
how the system is used both at the meta program-
ming level as well as the application level.

The SOP system presented here is implemented in
Skill, a lisp interpreter product of Cadence Design
Systems. The design of the infrastructure is under-
standable to those familiar with Common Lisp and
CLOS (Common Lisp Object System), and have a
high-level understanding of the CLOS MOP (metaob-
ject protocol). Although the system’s main applica-
tions are in Electronic Design Automation (EDA), no
understanding of EDA is necessary to understand the
concepts presented here.

2 Motivation

The users of Cadence Design Systems custom IC (in-
tegrated circuit) tools use the Skill programming
language extensively. Programmers write applica-
tions which customize the look and feel of the graph-
ical system, automate the design process by reduc-
ing the amount of repetitive work the design engi-
neer must do, and preform time-consuming, tedious
verification checks. Other types of programs include
automatic layout generation which quickly produce
parameterizable layouts which are correct by design.
The language has an optional C-style syntax with
many engineer-friendly shortcuts which makes it easy
for non-programmers to write simple scripts to help
in their daily work.

The same language is also a lisp system having

the features one would expect such as a REPL (read,
evaluate, print loop), a debugger, garbage collection,
lexical and dynamic scoping, macros, and lambda
functions. As with most lisp systems, the language
can be extended though adding functions to the run-
time environment.

The Skill language has a built-in object sys-
tem called the Skill++ Object System or simply
Skill++1. Skill++ is conceptually based on CLOS,
but fails to provide many of the capabilities of CLOS.
Missing are features such as: multiple dispatch, mul-
tiple inheritance, method combination, method qual-
ifiers, equivalence specializers, and meta-object pro-
tocol. Rather, its features include: single dispatch,
single inheritance, callNextMethod / nextMethodP,
class and method redefinition, explicit environment
objects, and a per-method choice between lexical dy-
namic scoping. Also important to note is that while
the language itself is interpreted in terms of a propri-
etary virtual machine, the method dispatch mecha-
nism is implemented in a high performance compiled
language. Consequently, generic function calls are as
fast as normal function calling protocol.

Because of the limitations of Skill++ it was de-
sirable to implement a more capable object system
which would (1) provide more of the features of
CLOS, (2) interface to programs written in the ex-
isting Skill++ system, (3) use OO techniques on ex-
isting systems whose object models are out of our
control, and (4) be extensible for the types of prob-
lems faced in application programming for IC devel-
opment.

1The term Skill refers to a Cadence proprietary lisp dialect
which is integrated into the Cadence IC design software. The
term Skill++ refers to a set of features available in the out-of-
the-box Skill language which provide an object system.

1

Neither VCAD (an organizational department
within Cadence) nor VCAD’s customers have access
to the Skill implementation and are prohibited from
changing the language itself. Any such extension
would need to be provided as a loadable Skill ap-
plication. Luckily, because Skill is a lisp, this can
be done in such a way as to seem native to the pro-
grammer and invisible to the to the end user.

3 Introduction

A certain progression of generality can be observed in
Object Oriented programming system development.
This trend can be observed historically in language
design, but also is relevant to OO application de-
velopment to a great extent. First is the message
passing approach where objects are able to listen for
certain messages, which sometimes contain axillary
data, and perform actions consequent to those mes-
sages. In this approach problems are solved by defin-
ing message protocols which allow objects to make
the necessary calculations to arrive at the desired so-
lutions.

Second is the class based approach in which the
programmer attempts to isolate and encode common
behavior for groups or classes of objects. In these sys-
tems it is often the case that programmers attempt to
embed the complete behavior of a object group into
opaque classes. In such an approach, problems are
solved by partitioning capabilities into classes whose
objects can manipulate the domain data as necessary.

Third is the generic function approach. The pro-
grammer in these systems attempts to describe the
consequence of invoking a generic function.
Problems are solved in this approach by assuring that
when a generic function is called, the correct methods
get triggered in the correct order.2

A fourth generalization of OOP is SOP. Problems
are solved in Specialization Oriented Programming

2In CLOS, this is achieved by determining three things:
(1) which of the predefined methods are applicable, (2) what is
their order from most specific to least specific, and (3) which of
the methods are automatically evaluated. There is also some
ability to affect control flow by incorporating such tools as
call-next-method, method qualifiers, and method combina-
tions.

(defgeneric Walk (expr env call-stack)

(:generic-function-class

sop-cons-generic-function))

Figure 1: Code Walker Generic Function

by describing method applicability in terms of spe-
cializers which are appropriate for the target data.
Object systems such as CLOS provide predetermined
specialization types such as class based and equiva-
lence based. However, not all data can be described
adequately in terms of classes or equivalence.

In this development of an SOP system, called VC-
LOS (VCAD Common Lisp-like Object System), the
concept of specializer has been generalized so that
class based and object (equivalence) based specializ-
ers are two very important special cases. The VCLOS
MOP also allows application-specific specialization.

4 Example: Application Pro-
gramming

The following excerpts are from a code walker, named
Walk written using SOP style. The code walker ex-
amines code written in a particular lisp dialect and
reports unbound and unused variables. For purposes
of simplicity, the illustrated implementation uses a
fictitious Common Lisp-like syntax.

The goal of this illustration is to show that a solu-
tion can be more elegant when the language is expres-
sive enough to easily describe wider ranges of data.
The goal is not to convince the reader that a partic-
ular type of specializer such as the CONS specializer
itself is a good idea. As with any pedagogical ex-
ample, the same application could be written many
different ways, even without such a extensible spe-
cializer approach.

The form (figure 1) declares the generic function to
use the generic-function-class named sop-cons-
generic-function which is assumed to already ex-
ist. The following sections of this paper discuss one
way such a generic function meta-class has been im-
plemented.

2

The implementation of Walk contains four concep-
tual parts:

• a recursion engine which includes a termination
condition and error handling,

• code to recognized variable references and mark
bindings as used,

• code to ignore all irrelevant forms encountered
during the recursion, and

• code to handle special forms.

The main engine of the code walker (figure 2) starts
at a top level expression. If the expression is a list,
it calls itself recursively on the elements of the list –
with a few notable exceptions. Some of the necessary
exceptions can be handled by equivalence specializers
such as (eql t) and (eql nil). Lisp special forms,
such as (quote ...) and (lambda ...), cannot be
described by equivalence specializers but can be with
CONS specializers.

Next is the traversal engine based on the class spe-
cializer list and the termination condition based
on an equivalence specializer (eql nil). Thus the
engine keeps traversing the lists until they are ex-
hausted. There is also a method specializing on class
t which will be called if something is encountered
which the code walker cannot otherwise handle. The
job of the methods that follow will be to assure that
everything that occurs in the traversal is handled by
an appropriate method and this "invalid expres-
sion" never gets printed.

When a symbol is encountered the method in fig-
ure 3 is applicable. A check is made to see whether
the variable is bound in the environment3. If so, re-
member the call stack in the used slot of the binding
object to keep a record of all the uses of the variable.
If the variable is unbound, then print a diagnostic
message informing the user where the reference to
the unbound variable was made.

3The implementation of the find-binding function is omit-
ted. It returns a binding object by searching for a named vari-
able in a given environment object. Such a binding object
has a setf-able accessor named used which can hold a list of
call stacks indicating where the code references the variable
binding.

(defmethod Walk ((expr list)

env

call-stack)

(let ((call-stack (cons expr call-stack)))

(Walk (car expr) env call-stack)

(Walk (cdr expr) env call-stack)))

(defmethod Walk ((expr (eql nil))

env

call-stack)

nil)

(defmethod Walk ((expr t) env call-stack)

(format t

"invalid expression ~A: ~A: ~A~%"

(class-name (class-of expr))

expr

call-stack))

Figure 2: Recursion Engine and Termination Condi-
tion

(defmethod Walk ((var symbol)

env

call-stack)

(if-let (binding (find-binding env var))

(setf (used binding) call-stack)

(format t

"unbound: ~A: ~A~%"

var

call-stack)))

Figure 3: Check The Binding of Symbols

3

(defmethod Walk ((expr string)

env

call-stack)

nil)

(defmethod Walk ((expr number)

env

call-stack)

nil)

(defmethod Walk ((expr (eql t))

env

call-stack)

nil)

Figure 4: Ignore Certain Atoms

Figure 4 shows how ertain types of self-evaluating
atoms encountered such as strings, numbers, and the
symbol t are simply ignored when searching for vari-
able references.

We now implement some of the special forms. Note
that QUOTE and LAMBDA are not special forms, they
are simply symbols which evaluate as any other sym-
bol. If one of these symbols is encountered in a con-
text where it is used as a variable, the code walker
with treat it as such. This means we cannot write
a method for Walk specializing on (eql QUOTE)4 or
on (eql LAMBDA). However, lists whose first elements
are QUOTE or LAMBDA are special and must be in-
tercepted before the walker reaches the QUOTE and
LAMBDA symbols themselves.

The CONS specializer provides a mechanism for
making a method applicable for such a list. Figure 4
implements a method which is applicable if its first
argument is a list whose first element is the sym-
bol QUOTE. Since an evaluator would simply return
the second element of this special form unevaluated,
there can be no variable references inside it; so the
code walker simply returns nil.

Figure 4 implements a method to handle a list
whose first element is LAMBDA. This method creates
new bindings as indicated by the lambda list, and

4Notice that unlike Common Lisp, here the argument of
the EQL specializer is unevaluated, thus does not need to be
quoted. (eql QUOTE) is correct, rather than (eql ’QUOTE)

(defmethod Walk ((form (cons (eql QUOTE)))

env

call-stack)

nil)

Figure 5: Handling Special Form (QUOTE ...)

walks the body of the LAMBDA with those bindings
in place. After the code walker returns from walk-
ing the lambda body we can report if any of the new
bindings were not referenced by the walked code.5

This implementation of the code walker allows us
to have a single generic function, Walk, whose meth-
ods specialize on all of the different types of forms
that must be handled differently.

5 Synopsis of Implementation

Being inspired by Object-Oriented Programming in
Common Lisp - A Programmer’s Guide to CLOS by
Sonya E. Keene, I decided to implement a CLOS like
system for Skill++. As mentioned before Skill++
supports single inheritance class definition and single
dispatch. In addition the Skill language provides
a powerful defmacro facility. These building blocks
seemed sufficient to implement the meta-objects nec-
essary to represent the dispatch mechanism in CLOS,
most notably: generic function meta-objects, and
method meta-objects. Skill macros were defined to
hide some of the implementation details and to make
generic function and method definition look very sim-
ilar to that of CLOS.

A meta-object protocol was also needed. As the
basic functionality would be implemented as Skill++
methods on the standard generic function meta-class
and the standard method meta-class, the Skill++
class inheritance mechanism gave me a Meta-object

5The implementations of the functions derive-bindings-

from-ll and make-environment are omitted for this illustra-
tion as they do not aid in understanding extensible special-
izers. The derive-bindings-from-ll function returns a list
of binding objects from a lambda list. The make-environment

function allocates a new environment references the given list
of binding objects, and also references the given parent envi-
ronment.

4

(defmethod Walk ((form (cons (eql LAMBDA))) env call-stack)

(destructuring-bind (lambda lambda-list &rest body) form

(let ((bindings (derive-bindings-from-ll lambda-list)))

(dolist (form body)

(Walk form

(make-environment bindings env)

(cons form call-stack)))

(dolist (bind bindings)

(unless (used bind)

(format t "unused: ~A: ~A~%"

var (used call-stack)))))))

Figure 6: Handling Special Form (LAMBDA ...)

protocol almost for free. Users of the system (sys-
tem meta-level programmers) would be able to make
Skill++ subclasses of the standard generic function
class or standard method class and specialize alter-
native behavior in terms of Skill++ methods, calling
the Skill++ callNextMethod6 as necessary.

The resulting system developed over several years
and including incremental phases of development:

1. Generic functions

2. Multiple dispatch

3. Meta-object protocol

4. Method precedence

5. ClosCallNextMethod

6. Method qualifiers: before, after, around

7. Generic specializers

8. Equivalence specializers

9. Application extensible specializers

The Art of the Metaobject Protocol (by Gregor
Kiczales and others) was used as a guide–but not ad-
hered to explicitly. In many cases, concessions were

6The Skill language reader interprets infix operators. foo-
bar parses as (difference foo bar). This makes it difficult to
imbed special characters such as - and * into symbols. Con-
sequently it is convention to use camel case names such as
callNextMethod rather than hyphenated names such as call-

next-method.

made to accommodate the Skill language, and also
some normal functions in AMOP were implemented
in VCLOS as generic functions to enhance extensibil-
ity. The fundamental conceptual difference between
the implementations of the CLOS MOP and VCLOS
is that many concepts which in CLOS MOP are
implemented in terms of the class meta-class,
have been implemented in the VCLOS MOP
in terms of the more general specializer meta-
class. Notably:

(1) The VCLOS classes ClosClassSpecializer78

and ClosEqvSpecializer are both subclasses of
ClosSpecializer.
Users are encouraged to create other subclasses of
ClosSpecializer.

(2) The CLOS function compute-applicable-
methods-using-classes has been replaced with
ClosComputeApplicableMethods-
UsingSpecializers.

(3) CLOS memoizes applicable methods with a
hash key based on the list of class names of the re-
quired arguments. VCLOS memoizes as a function
of the return value of the generic function ClosCom-
puteSpecializerNames called on the generic func-
tion meta-object and the list of required arguments.

7The Skill language does not have a package system. How-
ever, programmers define packages by convention by prefixing
global variable names, function names, and class names with a
common prefix. In this case the Clos prefix denotes functions
and classes in the VCLOS Skill package.

8Skill symbols are case sensitive. EQV and eqv are two
different symbols.

5

ClosComputeSpecializerNames returns class names
for ClosClassSpecializer objects.

As it should be enlightening to the reader, figure
?? shows the the simple implementations of ClosCom-
puteSpecializerNames and the corresponding func-
tion ClosComputeSpecializerName.9 10 ClosSt-
dGenericFunction only supports class specializers,
but ClosSpecGenericFunction supports generalized
specializers. The function ClosComputeSpecializ-
erNames is called when the run-time arguments to a
generic function when the generic function is envoked.
11

The details that follow do not provide low level
details of how the VCLOS MOP was designed, but
rather how to use the system to implement a new
specializer such as the CONS specializer used in the
code walker illustrated above.

6 Details of Defining a New
Specializer: SOP Meta Level
Programming

To define a new type of specializer, the programmer
must use the VCLOS MOP to define several things:

• How to recognize the syntax of a specializer in a
method declaration.

• How to compare (sort in order) this type of spe-
cializer to previously existing specializers.

• How to compare two specializers of the same
type.

9The function ClosGetSpecializerAlist is an accessor
which returns an assoc list mapping the required parameters
to the generic function to the set of actual specializers declared
for that parameter in all the declared methods of the generic
function. This list is maintained as a side effect of the Clos-

DefMethod machinery.
10The macro VcadFirstST declares a local iteration variable

and returns the first element of a given list which makes the
given expression (which is normally in terms of of that iteration
variable) true.

11The Skill idiom (foreach mapcar (v1 v2 v3) expr1

expr2 expr3 ...) is equivalent to (mapcar (lambda (v1 v2

v3) ...) expr1 expr2 expr3).

(ClosDefMethod foo ((obj (cons string)))

...)

Figure 8: Example Method Declaration

;; less specific than the one above.

(ClosDefMethod foo ((obj list))

...)

Figure 9: Another Method of foo

• How to determine whether an object matches the
specializer.

First we look at how to define a specializer. There-
after, well look at defining a new type of generic func-
tion which will be able to recognize the specializer.

We would like to declare methods using CONS spe-
cializers with the Skill syntax as in figure 6.

The code in figure 6 should have the meaning that
if the argument of the generic function foo is a list
whose first element is a string, then this method is ap-
plicable. The method is more specific that a method
specializing on the list class (figure 6), and less spe-
cific than a method specializing via an equivalence
specializer on a particular list such as ("hello").

Furthermore, wed like the declaration to work in-
tuitively when used recursively as shown in figure 6.12

The following method should be applicable if its ar-
gument obj is a list whose first element is equivalent
to 42: e.g., (42 23 16 15 8 4).

The method defined in figure 6 should be applica-
ble if its first argument is a list whose first element
is again a list whose first element is equivalent to 42:
e.g., ((42 23) (16 15 8) (4)).

12Skill uses the function eqv which is similar to the Com-
mon Lisp EQL function.

(ClosDefMethod foo ((obj (cons (eqv 42))))

...)

Figure 10: Recursive CONS Specializers

6

(defmethod ClosComputeSpecializerNames ((gf ClosStdGenericFunction) args)

(foreach mapcar (_param arg) (ClosGetRequiredParams gf)

args

(ClosClassNameOf arg)))

(defmethod ClosComputeSpecializerNames ((gf ClosSpecGenericFunction) args)

(foreach mapcar (_param arg sublist) (ClosGetRequiredParams gf)

args

(ClosGetSpecializerAlist gf)

(ClosComputeSpecializerName gf arg (car sublist) (cdr sublist))))

(defmethod ClosComputeSpecializerName ((_gf ClosSpecGenericFunction) arg _param specializers)

(VifLet (spec (VcadFirstST sp specializers

(ClosArgMatchesSpecializerP sp arg)))

(ClosGetName spec)

(className arg)))

Figure 7: The Implementations of ClosComputeSpecializerNames and ClosComputeSpecializerName

(ClosDefMethod foo ((obj (cons (cons number))))

...)

Figure 11: Recursive CONS Specializers

7 Example Implementation of
CONS specializer

The following examples show the steps of using the
VCLOS MOP to implement CONS specializers in
Skill.

7.1 Class definition

To declare the existence of a new specializer we must
make a subclass of ClosSpecializer as shown in fig-
ure 7.1. The purpose of the slots, enclosedSpecial-
izer and classPrecedenceList will be explained
layer1314.

13In Skill, slot information is indicated by @initarg, @init-
form, @reader, and @writer. There is no built-in setf mecha-
nism and consequently no @accessor mechanism. The VCAD
Skill framework does provide a Vsetf macro and the VCAD
ClosDefClass implements @accessor. However, this paper
does not explain the development or usage of ClosDefClass.

14We will use the Skill package prefix Sop to indicate func-
tions, classes, and global variables defined in this application

(defclass SopConsSpecializer (ClosSpecializer)

((enclosedSpecializer

@initarg enclosedSpecializer

@reader SopGetEnclosedSpecializer

@writer SopSetEnclosedSpecializer)

(classPrecedenceList

@initform nil)))

Figure 12: The Specializer Meta-Class

7.2 Generic Function Definition

In order to ever hope to use the specializer, we need
a generic function class which knows about it. In this
case we define SopConsGenericFunction (figure 7.2)
to be a Skill++ subclass of ClosSpecGenericFunc-
tion which is already a subclass of ClosStdGener-
icFunction15 .

but not native to the VCLOS package.
15The difference between the ClosSpecGenericFunction and

the ClosStdGenericFunction is that the latter memoizes ac-
cording to the algorithm in AMOP; i.e., it memoizes based on
classes of its arguments. This is very fast because the classOf

function is an atomic operation in Skill.

7

(defclass SopConsGenericFunction

(ClosSpecGenericFunction)

())

Figure 13: The Generic Function Meta-Class

7.3 The Method ClosAvailableSpe-
cializers Specializing on Generic
Function Class

Next, we must describe how the new specializer
compares to the other specializers understood by
ClosSpecGenericFunction. If there are applica-
ble methods containing equivalence specializers, class
specializers, and CONS specializers, how should they
be sorted? This is done by specializing a Skill++
method ClosAvailableSpecializers on the generic
function class
SopConsGenericFunction (figure 7.3).

7.4 Several Methods Specializing on
the Specializer Class

Next, we need to tell the function which parses the
ClosDefMethod that the syntax (cons ...) denotes
a SopConsSpecializer; i.e., a CONS specializer; for
example (cons list) and (cons (eqv 42)). We
must also provide a mechanism for saving and retriev-
ing the sub-specializer component. As we eluded to
above a CONS specializer may reference any other spe-
cializer name which is itself available to the generic
function. In the cases of (cons list) and (cons
(eqv 42)) the sub-specializer names are list and
(eqv 42) respectively. The syntax pattern match-
ing is done by the generic function ClosMatchesSpe-
cializerSyntaxP. We must specialize a method
of ClosMatchesSpecializerSyntaxP (figure 7.4) on
the Skill++ specializer class16 .

The specializer name is destructured with the
generic function
ClosSetSpecializerData (figure 7.4). Notice that

16Given a specializer name such as (cons (eqv 42)) and
the generic function meta-object, the function ClosNameToSpe-

cializer efficiently retrieves the specializer object (instance of
some subclass of ClosSpecializer of the given name.

SopGetEnclosedSpecializer and
SopSetEnclosedSpecializer are already declared
as accessors to the
enclosedSpecializer slot of the SopConsSpecial-
izer class. The
ClosSetSpecializerData method assures that the
slot is initialized.

Next, (figure 7.4) we must tell the discriminating
function how to decide whether an argument passed
to a generic function invocation matches the special-
izer17.

The method ClosAvailableSpecializers pro-
vides the discriminating function with sufficient clues
to sort applicable methods of different specializers.
We still need to provide the necessary information for
determining which of several like-specializers is more
specific or less. The discriminating function calls the
function ClosCmpLikeSpecializers for this purpose
(figure 7.4).

Our implementation here calls the function
ClosCmpSpecializers which needs an implementa-
tion of ClosGetClassPrecedenceList. Since this is
a computationally expensive calculation the method
memoizes the calculated value in the specializer slot
classPrecedenceList.

The code in figure 7.4 uses several Skill idioms18
19 20 which might not be immediately understandable
to the reader.

For example: the function ClosGetClassPrece-
denceList calculates the class precedence list
(which might be more accurately called specializer
precedence list) of (cons fixnum)to be ((cons
fixnum) (cons number)
(cons primitiveObject) (cons systemObject)
(cons t) list primitiveObject systemObject
t).

17The Skill dtpr function returns TRUE if its argument is
a non-nil list.

18foreach is a primitive in Skill. The idiom (foreach

mapcar x some list exprs ...) is equivalent to (mapcar

(lambda (x) exprs ...) some list)
19Skill keyword symbols are prefixed by ? rather than : as

in Common Lisp. ?foo is a symbol that will always evaluate
to itself.

20The VcadAndNotList function creates a new list containing
the elements which are in the first list AND NOT in the second
list.

8

;; Define the specializer precedence list for SopConsGenericFunction

;; to be

;; 1. ClosEqvSpecializer (most specific)

;; 2. SopConsSpecializer

;; 3. ClosClassSpecializer (least specific)

(defmethod ClosAvailableSpecializers ((gf SopConsGenericFunction))

’(ClosEqvSpecializer

SopConsSpecializer

ClosClassSpecializer))

Figure 14: The ClosAvailableSpecializers Method

;; E.g., return TRUE if specializer_name is something like (cons number)}

(defmethod ClosMatchesSpecializerSyntaxP ((specializer SopConsSpecializer)

specializer_name)

(and (listp specializer_name)

(eq ’cons (car specializer_name))

(cdr specializer_name)

(null (cddr specializer_name))

(ClosNameToSpecializer (ClosGetGenericFunction specializer)

(cadr specializer_name))))

Figure 15: The ClosMatchesSpecializerSyntaxP Method

(defmethod ClosSetSpecializerData ((spec SopConsSpecializer)

specializer_form)

(SopSetEnclosedSpecializer spec

(ClosNameToSpecializer

(ClosGetGenericFunction spec)

(cadr specializer_form))))

Figure 16: The ClosSetSpecializerData Method

(defmethod ClosArgMatchesSpecializerP ((spec SopConsSpecializer) arg)

(and (dtpr arg)

(ClosArgMatchesSpecializerP (SopGetEnclosedSpecializer spec)

(car arg))))

Figure 17: The ClosArgMatchesSpecializerP Method

9

(defmethod ClosCmpLikeSpecializers ((spec1 SopConsSpecializer) spec2 gf param spec)

;; required by ClosCmpLikeSpecializers protocol to check for errors

(callNextMethod)

(ClosCmpSpecializers gf

(SopGetEnclosedSpecializer spec1)

(SopGetEnclosedSpecializer spec2)

param

spec))

Figure 18: The ClosCmpLikeSpecializers Method

(defmethod ClosGetClassPrecedenceList ((specializer SopConsSpecializer))

(or (slotValue specializer ’classPrecedenceList)

(let ((cpl (ClosGetClassPrecedenceList (ClosFindClass ’list))))

(Vsetf (slotValue specializer ’classPrecedenceList)

(append (VcadAndNotList

(foreach mapcar cl (ClosGetClassPrecedenceList

(SopGetEnclosedSpecializer

specializer))

(makeInstance ’SopConsSpecializer

?enclosedSpecializer cl))

cpl)

cpl)))))

Figure 19: The ClosGetClassPrecedenceList Method

10

7.5 The Method ClosGetSpecializer-
Comparators Specializing on the
Generic Function Class

The discriminating function must look at all the
methods defined for a generic function for a given
invocation and decide which ones are applicable. It
can do this efficiently because it can memoize the re-
sults in most cases.

The function ClosMatchSubSpecializer calls
ClosGetSpecializerComparators when trying to
figure out whether an object passed to a generic func-
tion invocation (called the argument) matches the
corresponding parameter of a declared method.

Every method ClosGetSpecializerComparators
must return a list of a certain format. It is a list of
sublists. Each sublist is a list of objects called com-
parators, each an instance of ClosSpecializerCom-
paratorClass. These comparators are created by
the factory function (actually a macro) ClosDefCom-
parator. Each comparator specifies code for making
a certain type of applicability decision in order to
filter the list of methods into the list of applicable
methods.

When the discriminating function is comparing
a given generic function argument to a special-
izer (meth spec) for a method in question it finds
the most specific specializer declared for that argu-
ment (arg spec). It determines arg spec by us-
ing the method ClosArgMatchesSpecializerP de-
scribed above. Once the pair (meth spec arg spec)
has been found a unique comparator can be identified
by examining the return value of ClosGetSpecial-
izerComparators (and memoizing the result). The
discriminating function evaluates the specified code
provided by the comparator to determine whether
the method is applicable as far as that argument is
concerned21 .

This is a complicated explanation so an example
should help. Consider a generic function foo, figure
7.5, being called with argument 42. Of the methods
shown, the most specific specializer for the argument
is (eqv 42). The discriminating function needs to be

21In the case of multi-methods (multiple dispatch), a method
is only applicable if it is applicable as far as all required argu-
ments are concerned.

(ClosDefMethod foo ((obj (eqv -42)))

(max 100 (ClosCallNextMethod)))

(ClosDefMethod foo ((obj (eqv 42)))

(max 100 (ClosCallNextMethod)))

(ClosDefMethod foo ((obj number))

200)

(ClosDefMethod foo ((obj string))

300)

(foo 42)

Figure 20: Methods With Different Specializers

able to look only at (eqv 42) and all from the list of
the methods determine which are applicable without
actually having access to the argument 42 itself22.

It must ask the following questions. Is the spe-
cializer number applicable if (eqv 42) is the most
specific specializer? YES. Is the specializer string
applicable? NO. Is the specializer (eqv -42) appli-
cable? NO.

The method ClosGetSpecializerComparators
for the SopConsGenericFunction generic function
is implemented in figure 7.5. The method simply
conses a predefined sublist of ClosSpecializerCom-
paratorClass instances onto the list returned from
ClosGetSpecializerComparators called on the su-
perclass. The tricky thing is to define the list SopGv-
ConsSpecializerComparators (figure 7.8). Doing
so is a non trivial task.

According to ClosAvailableSpecializers above,
there are only three specializers available for use on
methods. These are
ClosEqvSpecializer, SopConsSpecializer, and
ClosClassSpecializer. Therefore, SopGvConsSpe-
cializerComparators must provide a mechanism
for comparing SopConsSpecializer to each of these.
Thus SopGvConsSpecializerComparators is a list of
length three. This list is built by calling ClosDefCom-

22The hash key of the memoizer must not depend explic-
itly on the arguments; for the potential set of arguments is
huge. Rather it should depend on the small set of declared
specializers. Otherwise, memoization would not be practical.

11

(defmethod ClosGetSpecializerComparators ((gf SopConsGenericFunction))

(cons SopGvConsSpecializerComparators

(callNextMethod)))

Figure 21: The ClosGetSpecializerComparators Method

parator three times (see NOTES A-1, B-1, and C-1
in the example.) and collecting the results into a list.
The order of the elements does not matter.

The purpose of the three comparators are to an-
swer three possible questions respectively. Given
the most specific specializer for the argument to the
generic function, and a specializer for a method in
question, is the method applicable as per that ar-
gument? To emphasize, the question must be an-
swered without having access to the argument itself,
but rather to the most specific specializer of the ar-
gument.

7.6 A: Comparator for SopConsSpe-
cializer vs. SopConsSpecializer

The comparator declaration at A-1 handles the case
that the argument to the generic function is known to
match a particular CONS specializer and asks whether
it follows that it also matches another method specific
CONS specializer.

For example: Suppose the most specific specializer
matching an argument is (cons fixnum); meaning
that the argument is a list whose first element is a
fixnum. And suppose we want to know whether a
method with a declared specializer (cons number)
is applicable. The code at A-2 asks whether it is a
list whose first element is a number? The answer is
YES.

7.7 B: Comparator for SopConsSpe-
cializer vs. ClosEqvSpecializer

The comparator declaration at B-1 handles the case
that the argument to the generic function is known
to match a particular equivalence specializer and asks
whether it follows that it also matches a method spe-
cific CONS specializer.

For example: Suppose the most specific special-
izer matching an argument is the equivalence special-
izer (eqv (1)); meaning the argument is equivalent
to (1). And suppose we want to know whether a
method whose declared specializer is (cons number)
is applicable. The code at B-2 asks whether it is also
a list whose first element is a number? The answer is
YES.

7.8 C: Comparator for ClosClassSpe-
cializer vs. SopConsSpecializer

The comparator declaration at C-1 handles the case
that the argument to the generic function is known
to match a particular CONS specializer and and asks
whether it follows that it also matches a method spe-
cific class specializer.

For example: Suppose the most specific specializer
matching an argument is a CONS specializer such as
(cons number); meaning that the argument is a list
whose first element is a number. And suppose we
want to know whether a method whose declared spe-
cializer is list is applicable. The code at C-2 asks
whether it is also a list? The answer is YES.

This concludes the details of the development of
the CONS specializer.

8 Analysis

In many ways the development shown above, and also
in the VCLOS MOP itself is brut force. The imple-
mentation is fully functional and extensively tested
with Unit tests as well as part of live design projects.
Much time has been spent on optimization and refac-
toring for performance and readability of the code.
But of course much more work could be done. It is
difficult to create benchmarks which measures per-
formance against similar implementations as I know

12

(defvar SopGvConsSpecializerComparators

(list

;; NOTE A-1

;; applicable? (ClosDefMethod foo ((obj (cons number))) ...)

;; most specific: (ClosDefMethod foo ((obj (cons fixnum))) ...)

;; application: (foo (list 1))

(ClosDefComparator ((meth_spec SopConsSpecializer)

(arg_spec SopConsSpecializer))

;; NOTE A-2

(ClosMatchSubSpecializer (ClosGetGenericFunction meth_spec)

(SopGetEnclosedSpecializer meth_spec)

(SopGetEnclosedSpecializer arg_spec)))

;; NOTE B-1

;; applicable? (ClosDefMethod foo ((bar (cons number))) ...)

;; most specific: (ClosDefMethod foo ((bar (eqv (1)))) ...)

;; application: (foo (list 1))

(ClosDefComparator ((meth_spec SopConsSpecializer)

(arg_spec ClosEqvSpecializer))

;; NOTE B-2

(and (dtpr (ClosGetData arg_spec))

(ClosArgMatchesSpecializerP (SopGetEnclosedSpecializer meth_spec)

(car (ClosGetData arg_spec)))))

;; NOTE C-1

;; applicable? (ClosDefMethod foo ((obj list)) ...)

;; most specific: (ClosDefMethod foo ((obj (cons number))) ...)

;; application: (foo (list 1))

(ClosDefComparator ((meth_spec ClosClassSpecializer)

(arg_spec SopConsSpecializer))

;; NOTE C-2

(memq (ClosGetClassName meth_spec)

’(list primitiveObject systemObject t)))))

Figure 22: Building the Comparators

13

of no other implementation. But clearly some bench-
mark numbers are needed.

Performance aside, it is clear, that from an API
usage perspective, the system does provide a very
enlightening abstraction in applications where it is
exploited. This results in code that is more expres-
sive and more consistent, and with fewer number of
lines needed to implement than would be necessary
without the API.

9 Results

The goals of the development of this system were
stated earlier.

1. Provide more of the features of CLOS to the
Skill programmer.

2. Interface to programs written in the existing
Skill++ system.

3. Enable OO techniques on existing systems whose
object models are out of our control.

4. Be extensible for the types of problems faced in
application programming for IC development.

Goal 1 was achieved by implemented the object
system in a CLOS-like style. Using this system, pro-
grammers are able to use more advanced features of
OO programming and are not limited to single inher-
itance, single dispatch, and simple method combina-
tion.

Goal 2 was achieved by writing the extensions in
Skill++ rather than modifying the low level lan-
guage. Potential users of the system are applications
programmers within Cadence. These programmers
provide Skill based applications to Cadence’s exter-
nal customers. Any of these users of the Skill lan-
guage can load the VCLOS library and make use of
the enhanced object system. This enhances the busi-
ness model by allowing application delivery based on
higher abstractions that are provided by Skill out-
of-the-box.

Goal 3 was achieved by making the specializer ca-
pability sufficient to express characteristics of the Ca-
dence data base objects. Because the reader is not

assumed to have any understanding of the Cadence
data base structure or API, this paper has presented
examples of a different nature. However, analogous
to the CONS specializers described here, the VCLOS
system provides a variety of specializers which enable
the programmer to describe on the types of non-OO
objects which comprise IC design data in the Cadence
system.

Goal 4 was achieved by incorporating the concept
of specializer in the meta-object protocol of the VC-
LOS system. When new types of data are encoun-
tered, the meta-level programmer can build a generic
function class which is able to specialize on charac-
teristics of that data. The method dispatch protocol
behaves in an intuitive way when applied to that new
data via the domain specific specializers.

10 Recommendations

The enhancements provided to Skill by VCLOS
have proved useful, especially the extensible special-
izers. It seems the type of abstraction made by these
specializers would be useful to the CLOS program-
mer. But it is not clear whether the CLOS MOP
is general enough to implement a VCLOS SOP like
system. There do indeed seem to be significant obsta-
cles. Nevertheless, these concepts are presented here
in hopes that MOP experts consider whether such an
implementation would be desirable.

Foreseeable obstacles include the fact that the
CLOS system makes some low level assumpations
about the behavior of class and equivalence specializ-
ers. One of these assumpations is that the defmethod
macro does not have different implementations for
different generic function classes. This makes it diffi-
cult for defmethod to recognize different syntax forms
for different types of specializers.

Another obstacle is that functions such as
compute-applicable-methods-using-classes ig-
nore the potential that something more general than
classes needs to be considered.

14

11 Conclusion

There are two dual approaches to abstraction en-
abling programmers to use a computer language to
solve a problem. The first is to transform the do-
main data into a form which is manipulatable by the
computer language (the mountain to Mohammad ap-
proach). The second is to transform the language to
something that can express truths about the data
(the Mohammad to the mountain approach).

Application data does not usually come prepack-
aged in OO form which the available libraries can
manipulate. And systems cannot always be refac-
tored to solve new problems. Rather new program-
ming models must be imposed on old data models.
The development shown in this paper is one small
way in which lisp-like languages can build abstrac-
tions which make problems more easily expressible.

SOP in the form of extensible specializers allow
programmers to use object oriented techniques on
data that does not fit traditional object oriented
views.

12 References

The Art of the Metaobject Protocol; by Gregor Kicza-
les, et al. 1991 Massachusetts Institute of Technology.

Object-Oriented Programming in Common Lisp -
A Programmer’s Guide to CLOS; by Sonya E. Keene;
Addison-Wesley (1 Jan 1989)

Paradigms of Artificial Intelligence Programming:
Case Studies in Common LISP; by Peter Norvig;
Morgan Kaufmann Publishers Inc,US (4 Dec 1991)

SKILL: A CAD system extension language; by Tim
Barns; Proceedings of the 27th ACM/IEEE confer-
ence on Design automation. 1991

SKILL: A Lisp Based Extension Language; by Ed-
win Petrus. June 4 1993.

15

