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ABSTRACT
There can be no doubt that a great many technologies have

been added to Linux
TM

over the past ten years. What is
less well-known is that it is often necessary to introduce a
large amount of Linux into a given technology in order to
successfully introduce that technology into Linux. This pa-
per illustrates such an introduction of Linux into technology
with Read-Copy Update (RCU). The RCU API’s evolution
over time clearly shows that Linux’s extremely diverse set of
workloads and platforms has changed RCU to a far greater
degree than RCU has changed Linux—and it is reasonable
to expect that other technologies that might be proposed
for inclusion into Linux would face similar challenges. In
addition, this paper presents a summary of lessons learned
and an attempt to foresee what additional challenges Linux
might present to RCU.

1. INTRODUCTION
Linux is an operating-system kernel that is used in a vari-

ety of platforms ranging from cellphones to super-computers,
with more than an 80% share of the Top 500 Supercomputer
Sites as of November 2007 [47], up from about 10% in late
2000. Although a very large amount of functionality has
been added to the Linux kernel between 2000 and 2007,
space constraints limit this paper to discussing but one spe-
cific niche technology, namely RCU. We shall see that the
extreme diversity of Linux’s platforms and workloads posed
special challenges to RCU. It seems likely that this diver-
sity would pose similar challenges to other technologies that
might be proposed for inclusion into the Linux kernel.

Section 2 gives a brief overview of RCU, Section 3 gives
a quantitative summary of RCU’s use by the Linux ker-
nel since its acceptance in late 2002, and Section 4 gives an
overview of RCU and its environment in production systems
prior to its acceptance into Linux. Section 5 reviews the evo-
lution of the RCU API in the Linux kernel, and Section 6
delineates some of the forces underlying this evolution. Sec-
tion 7 presents some speculation on the future evolution of
the RCU API, and Section 8 presents concluding remarks.
Finally, Section 9 contains RCU history subsequent to this
paper’s initial publication in SIGOPS Operating Systems
Review [46].

2. OVERVIEW OF RCU
This paper does not discuss RCU itself in extreme depth,

nor does it require that the reader possess any special knowl-
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edge of RCU (or, for that matter, of Linux). That said, this
section provides a brief conceptual overview of RCU. People
who are already familiar with RCU may wish to skip this
section.

RCU is a specialized synchronization primitive that can
be thought of as a replacement for reader-writer locking, but
with extreme read-side performance, scalability, and deter-
minism. These read-side benefits are achieved by allowing
reads to run concurrently with a single update, in contrast
with conventional locking primitives, which enforce strict
mutual exclusion between readers on the one hand and up-
daters on the other. RCU provides readers a coherent view
of shared data by maintaining multiple versions of objects
and by ensuring that old versions are retained until all pre-
existing RCU read-side critical sections complete. RCU im-
plementations provide efficient and scalable mechanisms for
publishing and reading new objects and for appropriately de-
ferring collection of old objects. These implementations op-
timize the read paths at the expense of the update paths, in
fact, in the limiting case of non-preemptible kernels, RCU’s
read-side primitives generate absolutely no code, and thus
enjoy zero overhead.

This leads to the question “what exactly is RCU?”, and,
not infrequently, “how could RCU possibly work??”, to say
nothing of the assertion that RCU cannot possibly work.
RCU is made up of three fundamental mechanisms, the first
being a publish-subscribe mechanism used for insertion (Sec-
tion 2.1), the second being a mechanism that defers stor-
age reclamation until all RCU readers in progress during
deletion have completed (Section 2.2), and the third being
a multi-version mechanism that permits readers to toler-
ate concurrent insertion and deletion (Section 2.3). Sec-
tion 2.4 presents a “toy” RCU implementation, and finally,
Section 2.5 lists citations to which interested readers may
refer in order to learn more about RCU.

2.1 Publish-Subscribe Mechanism
RCU updaters publish an object by first initializing the

object, then storing a pointer to the object into a memory
location accessible to all CPUs. RCU readers subscribe to
an object by loading its pointer. This mechanism is simple,
and would be completely trivial were it not for the fact that
both CPUs and compilers freely re-order operations. For
example, both compilers and weakly ordered CPUs might
execute lines 2-5 in any order:



1 spin_lock(&mylock);

2 p->a = 1;

3 p->b = 2;

4 p->c = 3;

5 gp = p;

6 spin_unlock(&mylock);

In particular, if this section of code suffered from register
pressure, and if the address of gp was already in a register,
the compiler might choose to generate the code for line 5
first, freeing up the register for use in lines 2-4. Such reorder-
ing could fatally confuse concurrent readers, who might then
see the old garbage values for p->a, p->b, and p->c. The
rcu_assign_pointer() primitive directs both the compiler
and the CPU to suppress such fatal reordering, as follows:

1 spin_lock(&mylock);

2 p->a = 1;

3 p->b = 2;

4 p->c = 3;

5 rcu_assign_pointer(gp, p);

6 spin_unlock(&mylock);

Read-side misordering is highly counter-intuitive, but still
possible given value-speculation compiler optimizations and
the DEC Alpha [26], although a full explanation is beyond
the scope of this paper. The rcu_dereference() primitive
is used to suppress such reordering by both compiler and
CPU, as follows:

1 rcu_read_lock();

2 p = rcu_dereference(gp);

3 if (p != NULL) {

4 do_something_with(p->a, p->b, p->c);

5 }

6 rcu_read_unlock();

Line 2 has the same effect that p=gp would, but also sup-
presses any reordering that might otherwise be undertaken
by CPU or compiler. The rcu_read_lock() and rcu_read_

unlock() primitives delimit the RCU read-side critical sec-
tion.

The rcu_assign_pointer() primitive publishes a struc-
ture, and the rcu_dereference() primitive subscribes to
a previously published structure, allowing new structures to
be inserted despite the presence of concurrent readers. How-
ever, it is also necessary to handle removal and deletion, as
discussed in the following section.

2.2 Wait For Pre-Existing RCU Readers to
Complete

The following code is a first attempt to replace the struc-
ture referenced by gp, freeing the old version:

1 spin_lock(&mylock);

2 p->a = 1;

3 p->b = 2;

4 p->c = 3;

5 q = gp;

6 rcu_assign_pointer(gp, p);

7 spin_unlock(&mylock);

8 kfree(q);

Note that rcu_dereference() is not needed on line 5 be-
cause holding mylock excludes all other updaters. However,
it is possible that other CPUs might reference gp immedi-
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synchronize_rcu()

kfree()
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1,2,3 5,6,7 11,4,8

Figure 1: RCU Deletion From Linked List

ately before the assignment on line 6 above. Such an un-
lucky reading CPU might still be referencing the structure
after it is freed (and perhaps immediately reallocated) on
line 8 above. This problem can be avoided by using the
synchronize_rcu() primitive as shown below:

1 spin_lock(&mylock);

2 p->a = 1;

3 p->b = 2;

4 p->c = 3;

5 q = gp;

6 rcu_assign_pointer(gp, p);

7 spin_unlock(&mylock);

8 synchronize_rcu();

9 kfree(q);

The synchronize_rcu() primitive waits for the comple-
tion of all pre-existing RCU read-side critical sections. Thus,
any reading CPU holding a reference to the old value of
gp will have released it before synchronize_rcu() returns.
This approach has the effect of maintaining multiple ver-
sions, as described in the following section.

2.3 Maintain Multiple Versions of Recently
Updated Objects

Figure 1 shows the sequence of states of an RCU-protected
linked list when the second element is being deleted and
freed. The triples in each element represent the values of
the fields a, b, and c, respectively. The red-shaded elements
indicate that readers might be holding references to them.

The list_del_rcu() primitive unlinks the second element
from the list, resulting in the state shown in the second row
of Figure 1. The element is shaded yellow because although
old RCU readers might still be referencing it, new RCU
readers cannot obtain a reference. At this point, there are
in effect two versions of the list: some RCU readers will see



{1,2,3 5,6,7 11,4,8}, while others will see {1,2,3 11,4,8}.
The synchronize_rcu() primitive blocks until all pre-

existing RCU readers complete, after which point there can
be no readers referencing the second element, as indicated
by the green shading on the third row. At this point, all
RCU readers see a single version of the list, namely, {1,2,3
11,4,8}. It is then safe to free that element, as shown on the
last row.

This of course leads to the question of how one could
possibly implement synchronize_rcu(), especially in cases
where the read-side primitives generate no code. This ques-
tion is taken up in the next section.

2.4 Toy RCU Implementation
Consider a non-preemptive kernel environment, where all

threads run to block. In this case, it is illegal to block while
holding a spinlock, as doing so can result in a deadlock sit-
uation where all the CPUs are spinning on a lock held by
a blocked thread. The CPUs cannot acquire the lock until
it is released, but the blocked thread cannot release until
after at least one of the CPUs acquires the lock. This same
restriction applies to RCU read-side critical sections, so that
it is illegal to block while traversing an RCU-protected data
structure.

This restriction is sufficient to admit the following trivial
implementation of synchronize_rcu():

1 void synchronize_rcu()

2 {

3 foreach_cpu(cpu)

4 run_on(cpu);

5 }

This code fragment simply runs on each CPU in turn. To
see how this works, consider the situation once synchronize_
rcu() has started running on CPU 0. Whatever was run-
ning on CPU 0 beforehand must have blocked, otherwise
synchronize_rcu() could not have begun running on CPU 0.
Because it is illegal to block within an RCU read-side critical
section, all prior RCU read-side critical sections running on
CPU 0 must have completed. This same line of reasoning
applies to each of the other CPUs that synchronize_rcu()
runs on, so that once synchronize_rcu() has completed, all
prior RCU read-side critcial sections throughout the system
must have completed.

Production-quality synchronize_rcu() implementations
are more complex due to the need for performance and scal-
ability, the need to preempt RCU read-side critical sections
in real-time systems, and the need to tolerate CPUs being
added to and removed from the system, for example, in or-
der to conserve energy when the system is mostly idle.

2.5 Additional Information on RCU
Readers wishing more information on RCU are referred to

a number of RCU-related publications covering fundamen-
tal concepts [45], usage [35], the Linux-kernel RCU API [34],
implementation of the RCU infrastructure [1, 24, 28, 31, 32,
33], real-time adaptations of RCU [12, 16, 43, 41, 29, 60],
and the performance of RCU [13, 25, 51, 53]. There are also
a number of publications on other mechanisms that in some
ways resemble RCU [10, 15, 18, 19, 20, 21, 22, 55, 56, 59,
61]. In addition, the Linux 2.4 kernel’s use of the brlock

per-CPU reader-writer locking primitive in the networking
stack also has some resemblance to RCU. (The brlock prim-
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Figure 2: RCU API Usage in the Linux Kernel

itive resembles Hsieh’s and Weihl’s scalable reader-writer
locks [17].)

3. RCU USAGE WITHIN LINUX
RCU’s usage within the Linux kernel has increased rapidly

over the past five years, as shown in Figure 2 [27]. In some
cases, RCU has displaced other synchronization mechanisms
in existing code (for example, brlock in the networking pro-
tocol stacks [50, 65, 66]), while in other cases it has been in-
troduced with code implementing new functionality (for ex-
ample, the audit system within SELinux [51]). Despite its
rapid growth, RCU remains a niche technology, as shown
by the comparison with locking in Figure 3. Nonetheless,
RCU can be characterized as a reasonably successful niche
technology within the Linux kernel. As such, it is useful to
review the path RCU took in achieving this modest level of
success, which was due more to RCU’s being dramatically
changed by Linux than by Linux being changed by RCU.

4. RCU BEFORE LINUX
Before Linux, production use of RCU-like mechanisms ap-

pears to have been confined to large data-processing systems
such as the IBM mainframe’s VM/XA [15] and Sequent’s
(now IBM’s) Symmetry and NUMA-Q systems running the
DYNIX/ptx operating system [44]. These were large (for the
time) enterprise systems running parallel data-processing
workloads. These systems normally ran in a protected net-
working environment, behind firewalls or client machines
with restricted usage modes. The real-time response re-
quired of these machines is perhaps best exemplified by the
TPC/A benchmark [67], which has the very soft real-time
requirement that 90% of transactions complete in two sec-
onds or less.

Back when the author was still foolish enough to believe
that he knew all that there was to know about RCU, the
RCU API for DYNIX/ptx [40] consisted of only the follow-
ing members (translated to their Linux equivalents, where
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Locking

available):

1. rcu_read_lock(), which marks the beginning of an
RCU read-side critical section,

2. rcu_read_unlock(), which marks the end of an RCU
read-side critical section,

3. call_rcu(), which invokes a specified function after
all pre-existing RCU read-side critical sections have
completed,

4. kfree(), which frees an unadorned block of memory,

5. kmem_cache_free(), which frees a typed block of mem-
ory, and

6. kmem_deferred_free(), which frees an untyped block
of memory some time after all pre-existing RCU read-
side critical sections have completed. (This primitive
is not available in Linux, as it turns out to be simpler
to open-code it.)

In addition, this variant of the RCU API made use of explict
memory barriers [26].

The next section describes how the Linux kernel’s RCU
API evolved over time.

5. EVOLUTION OF THE RCU API
The RCU API has not evolved continuously, but rather

in a manner reminiscent of punctuated equilibrium. Each
burst of API change has had its own distinct motivation,
including simplicity, distaste for explicit memory barriers,
real-time response, memory conservation, networking loads,
kernel modules that can be unloaded, and several specific al-
gorithmic needs. Each such burst is covered in chronological
order in the following sections, as summarized in Table 1.

Section Cause of Change

5.1 Simplicity
5.2 Memory Barriers Unloved, Part I
5.3 Real-Time Systems, Part I
5.4 Small-Memory Systems
5.5 Heavy Networking Loads
5.6 Network-Based Denial-of-Service Attacks
5.7 Memory Barriers Unloved, Part II
5.8 Linux Accepts RCU’s Namesake
5.9 Real-Time Systems, Part II
5.10 Unloadable Kernel Modules Use RCU
5.11 RCU Readers Must Block
5.12 RCU Readers of Lists Being Reaped
5.13 Summary of RCU API Evolution

Table 1: Evolution of the Linux-Kernel RCU API

5.1 Simplicity
The first force to act on the RCU API was the Linux com-

munity’s unusually vociferous preference for simplicity. Of
course, almost everyone prefers simplicity, but will normally
accept a complex solution if it is the only solution known.
In contrast, the Linux community often insists that a sim-
pler solution be invented. Such a solution is in fact invented
surprisingly frequently. Any technology being proposed for
inclusion into Linux can therefore expect to face this chal-
lenge.

This demand for simplicity first manifested itself as a de-
mand for an minimal API. Because the early RCU imple-
mentations used context switches to determine when pre-
existing RCU read-side critical sections had completed, and
because early Linux kernels were non-preemptible, the read-
side primitives rcu_read_lock() and rcu_read_unlock()

generated no code. This fact accounts for their extreme per-
formance and scalabilty: free is indeed a very good price.
However, it also caused the Linux community to insist that
these primitives be eliminated (temporarily, as it turns out).

The kmem_deferred_free() primitive provided a safe way
of freeing RCU-protected data elements in face of concur-
rent RCU readers. However, because open-coding this prim-
itive turned out very nearly as simple as invoking kmem_

deferred_free(), this primitive was also eliminated. In
essence, an API designed to simplify the developer’s life
turned out to provide almost no simplification!

On the other hand, this drive for simplicity provided the
easier-to-use synchronize_kernel() as an alternative to the
asynchronous call_rcu(). The synchronize_kernel() prim-
itive blocks until all pre-existing RCU read-side critical sec-
tions complete. However, synchronize_kernel() could not
completely replace call_rcu() because as blocking is not
permitted within interrupt handlers.

Although this vociferous demand for simplicity can be
painful at times, it can also be quite beneficial, and might
in fact account for much of Linux’s popularity. After all, if
you know only one way to implement something, it is likely
to be neither the simplest nor the most optimal approach.
The spirited discussions conducted in the Linux community
often uncover solutions that are much simpler, faster, and
more capable than those originally proposed. And in fact a
number of RCU implementations were created during this
time, including those from Andi Kleen, Rusty Russell, and



Andrea Arcangeli, with Dipankar Sarma doing the heavy
lifting required to compare them and combine their best fea-
tures into the implementation that was eventually accepted
into the Linux kernel [1, 39, 42, 64].

5.2 Memory Barriers Unloved, Part I
Given an operating system with a small developer com-

munity and that runs on but a single CPU family, a good
strategy might be to ensure that all the developers under-
stand how to correctly use facilities such as memory barri-
ers [11]. Memory barriers enforce ordering of memory ref-
erences on weakly ordered multiprocessor systems and on
systems with aggressive optimizing compilers, both of which
can change the order in which code is executed. The cor-
rect use of memory barriers is somewhat of a black art, but
an art that is critical to the creation of high-performance
shared-memory-parallel operating-system kernels. Although
only performance-critical technologies are likely to face this
memory-barrier challenge, operating-system kernels tend to
have more than their share of situations where performance
is critical.

However, the above global-understanding strategy fails to
scale, both with the number of maintainers and with the
number of CPU architectures. In fact, in the case of mem-
ory barriers, a number of Linux-kernel maintainers have at
times enforced a blanket policy rejecting any patch adding
an explicit memory barrier to the Linux kernel. More re-
cently, the checkpatch.pl patch-vetting script (found in the
scripts directory in the Linux-kernel source tree) rejects
any patch that adds a memory barrier lacking an explana-
tory comment.

In the case of Linux, with thousands of developers and
more than 20 CPU families, an even better strategy is to do
away with the need for explicit memory barriers, preferably
by burying them into an easy-to-use higher-level API. To
this end, Manfred Spraul recommended adding new RCU-
protected linked-list primitives that contained any needed
memory barriers [62], relieving Linux kernel developers of
the need to consider RCU-related memory barriers, at least
when using Linux’s circular doubly linked lists. The prim-
itives list_for_each_entry_rcu() (which iterates through
the specified list), list_add_rcu() (which adds an item to
the beginning of the specified list), list_add_tail_rcu()

(which adds to the end), and list_del_rcu() (which deletes
the specified item) were duly added to the RCU API.

These additions eliminated the need for explicit memory
barriers in code using RCU-protected lists, freeing the ker-
nel developers from the need to concern themselves with
the memory model provided by the underlying hardware.
This represented a great leap forward in readability of code
using RCU-protected lists. Code using other types of RCU-
protected data structures was dealt with later, as described
in Section 5.7.

5.3 Real-Time Systems, Part I
Specially modified versions of Linux have been used for

real-time computing since the mid-to-late 1990s. Of course,
each such version of Linux was subtly different, and consider-
able development effort was expended creating very similar
functionality. This situation called out for the addition of
real-time functionality to the mainline Linux kernel.

An important step towards this goal occurred early in the
2.5 development effort with the introduction of the CONFIG_

PREEMPT configuration option, which improved the Linux
kernel’s real-time response by introducing kernel preemp-
tion. Unfortunately, all of the Linux RCU implementations
at that time assumed a non-preemptible kernel, as they re-
lied on context switches to determine when all pre-existing
RCU readers had completed. A simple fix was to cause RCU
readers to disable preemption across RCU read-side critical
sections, reintroducing the (nestable) rcu_read_lock() and
rcu_read_unlock() primitives. The outermost rcu_read_

lock() and rcu_read_unlock() disable and enable preemp-
tion, respectively.

This change enabled RCU to be used in real-time envi-
ronments that required millisecond-scale scheduling laten-
cies. It is reasonable to expect that many technologies will
face real-time response challenges, particularly those based
on backoff or retry techniques.

5.4 Small-Memory Systems
Linux is used on numerous embedded platforms, which

often have tight constraints on system memory, particularly
for platforms that are powered by batteries. These small-
memory platforms will likely pose special challenges for any
technology constructed using infinite-memory assumptions.
On such platforms, Linux’s circular doubly linked lists con-
sume two pointers worth of memory per hash bucket, which
can be problematic for large hash tables. Such large hash ta-
bles can also be problematic on large-memory systems with
small CPU caches.

Andi Kleen therefore implemented hlist, which is a lin-
ear doubly linked list. Although each element still requires
two pointers, one in each direction, each bucket of a hash
table need only have a single pointer to the first element
of the list, as opposed to the pair of pointers required for
a list header for a circular doubly linked list. This re-
duction from two pointers per hash bucket down to a sin-
gle pointer per hash bucket halves the memory consumed
by the bucket array making up a large hash table, which
can be the dominating factor in lightly loaded hash ta-
bles optimized for fast lookup. However, it also required
Andi to also introduce the to the RCU API the primitives
hlist_for_each_entry_rcu() (which iterates through the
specified hlist), hlist_del_rcu() (which deletes the spec-
ified hlist element), hlist_add_after_rcu() (which adds
a new entry after the specified hlist element), hlist_add_
before_rcu() (which adds a new entry before the specified
hlist element), and hlist_add_head_rcu() (which adds a
new entry to the head of the specified hlist).

The addition of these APIs greatly improved performance
of some filesystem workloads on systems with small CPU
caches.

5.5 Heavy Networking Loads
As noted in Section 1, the Linux 2.4 networking stack

used a brlock primitive based on per-CPU reader-writer
locks. Updaters write-acquired and then immediately write-
released this lock, guaranteeing that all pre-existing readers
had completed, a use that is similar to RCU. Steve Hem-
minger therefore replaced this brlock primitive with RCU,
introducing synchronize_net() to ease the transition (and
also to ease a transition back, if need be). This primitive
was retained after the transition proved successful, which
permitted brlock to be eliminated. However, synchronize_
net() remains a useful documentation aid, despite its being



simply a synonym for synchronize_kernel(): both primi-
tives wait for all pre-existing RCU read-side critical sections
to complete.

This change reduced the number of distinct synchroniza-
tion primitives in the Linux kernel by eliminating brlock.

5.6 Network-Based Denial-of-Service Attacks
Enterprise systems are often protected from network-based

attacks by firewalls. However, this strategy fails for Linux,
because Linux often is the firewall. Robert Olsson found
that extremely heavy networking loads from possible network-
based denial-of-service attacks could, among other things,
indefinitely postpone critical RCU-infrastructure operations
(“grace periods”), resulting in exhaustion of free memory
and subsequent system hangs. Dipankar Sarma worked with
Robert to design a “bottom-half” variant of RCU that solved
this problem, allowing Robert to pursue other problems ex-
posed by such attacks. This solution added the rcu_read_

lock_bh(), rcu_read_unlock_bh(), and call_rcu_bh() prim-
itives to the RCU API. These new primitives are analogous
to the rcu_read_lock(), rcu_read_unlock(), and call_

rcu() primitives that were described in Section 4, the main
difference being that the new call_rcu_bh() primitive com-
pletes much more quickly than the older call_rcu() primi-
tive, reducing the amount of memory waiting for such com-
pletions, in turn preventing the denial-of-service attack from
exhausting system memory.

Merging bottom-half RCU into the implementation of the
normal RCU API proved infeasible due to the higher over-
head of the new bottom-half read-side primitives, so the
Linux kernel retains both the normal APIs (for example,
rcu_read_lock()) and the bottom-half variants (for exam-
ple, rcu_read_lock_bh()).

The addition of these bottom-half RCU primitives was a
significant step in enabling Linux to survive network-based
denial-of-service attacks, though we can expect such attacks
to continue increasing in sophistication. Linux’s heavy use in
networking infrastructure can be expected to pose significant
challenges to a broad range of technologies that might be put
forward for inclusion into Linux.

5.7 Memory Barriers Unloved, Part II
Although the primitives described in Sections 5.2 and 5.4

eliminated the need for explicit memory barriers in RCU-
protected linked lists, increasingly complex data structures
appeared over time, including the RCU-protected trees in-
troduced by Robert Olsson [53] and by Nick Piggin [54].
These more-complex RCU-protected data structures mo-
tivated eliminating explicit memory barriers for arbitrary
RCU-protected data structures, which required addition of
two more members of the RCU API, rcu_dereference()

and rcu_assign_pointer(). The rcu_assign_pointer()

primitive publishes a new data structure through an RCU-
protected pointer, while rcu_dereference() subscribes to a
previously published data structure.

The addition of these two primitives further reduced the
need for explicit memory barriers in code using RCU, again
improving the readability of such code.

5.8 Linux Accepts RCU’s Namesake
The acronym “RCU” stands for “read-copy update”. This

name was chosen because RCU readers can access the RCU-
protected data structure concurrently with copy-mediated

updates. RCU’s namesake is therefore the use case where
the RCU updater carries out the following sequence of steps:
(1) allocate a new element, (2) copy the old element to the
new element, (3) update the new element, and finally (4) link
the new element into the data structure in place of the old
one. But as Murphy would have it, this use case turned out
to be quite rare. Instead, most RCU updaters simply add
elements to and delete elements from RCU-protected data
structures, as opposed to updating existing elements.

It was not until the 2.6.11 kernel that Kaigai Kohei needed
to use this technique to implement the Security-Enhanced
Linux (SELinux) access-vector cache [51]. The two primi-
tives list_replace_rcu() (which replaces an existing list
element) and hlist_replace_rcu() (which replaces an ex-
isting hlist element) were therefore added to the RCU API.

These primitives have since found use in a number of other
situations, providing a valuable addition to the Linux kernel
developer’s toolbox.

The key point of this particular change is that the Linux
community is likely to continue its practice of accepting only
those portions of a given technology that are immediately
useful. In fact, there are a number of Linux-community
members who put significant effort into pruning the Linux
source base of code that is unused or otherwise unneces-
sary. Therefore, new technologies will frequently need to be
introduced into Linux in an incremental fashion.

5.9 Real-Time Systems, Part II
The real-time functionality described in Section 5.3, al-

though useful, proved insufficient for more-aggressively real-
time systems. Therefore, a number of projects worked to
improve Linux’s real-time response [4]. Ingo Molnar’s -rt
patchset prevailed, but required that RCU read-side critical
sections be preemptible [5], invalidating the basic RCU as-
sumption that read-side critical sections be non-preemptible.

Although a rough-and-ready workaround was generated
in due time [6], this workaround was prone to indefinite-
postponement failures. Furthermore, a number of devel-
opers had used RCU strictly for its ability to wait until
all interrupt and NMI handlers have completed, an ability
that was an unintended side effect. This situation resulted
in the deprecation of the synchronize_kernel() primitive
in favor of the new synchronize_rcu() and synchronize_

sched() primitives, the former for its conventional use (wait-
ing for pre-existing RCU read-side critical sections to com-
plete) and the latter for waiting for pre-existing preemption-
disabled code sections (including interrupt and NMI han-
dlers) to complete. In addition, the preempt_disable() and
preempt_enable() primitives became members of the RCU
API, as did a number of other primitives that disable and
re-enable preemption.

In addition, this effort required substantial changes to the
RCU implementation [29]. These changes helped to greatly
improve the Linux kernel’s real-time latencies, achieving la-
tencies on the order of a few tens of microseconds on quad-
CPU blade-based systems. Of course, the need to achieve
such aggressive scheduling latencies will likely pose severe
challenges for any technology that has been developed with-
out consideration of real-time response requirements.

5.10 Unloadable Kernel Modules Use RCU
The Linux kernel supports loadable kernel modules, which

allow a small base kernel to dynamically load only that func-



tionality required by the system it is running on, conserving
memory while also preserving the ability to adapt to a wide
variety of hardware configurations. The Linux kernel also
allows such modules to be unloaded, which removes the un-
loaded module’s code and data from the kernel.

Such a module might use RCU’s asynchronous call_rcu()
interface, which can result in some of that module’s func-
tions (“RCU callbacks”) being invoked at a later time, once
all pre-existing RCU read-side critical sections have com-
pleted. Clearly, that module’s code and data must remain
in memory until all such RCU callbacks have been invoked,
which means that module unloading must be delayed until
after all of that module’s RCU callbacks have completed.
This requirement can be expected to affect any technology
that relies on deferred processing.

When an RCU-using module appeared, an rcu_barrier()

primitive [32], originally developed for ReiserFS by Dipankar
Sarma, was added to the Linux 2.6.15 kernel. This primitive
blocks until all RCU callbacks created by earlier calls to
call_rcu() have been invoked, allowing the module to be
safely unloaded.

This primitive permits Linux kernel modules using the
call_rcu() primitive to be dynamically unloaded.

5.11 RCU Readers Must Block
People have asked for RCU readers to be able to block for

well over a decade. This request has invariably indicated a
lack of understanding of RCU.

That is, it indicated a lack of understanding of RCU un-
til early 2006, when a group of Linux kernel developers
really did need RCU readers to block. This meant cre-
ating a variant of RCU (named “SRCU”) that permitted
generalized blocking in read-side critical sections, but while
avoiding the memory-exhaustion scenarios that would nor-
mally ensue [28]. Because the resulting implementation re-
quired slight changes to the RCU API, this also required
adding the srcu_read_lock(), srcu_read_unlock(), and
synchronize_srcu() primitives to the Linux 2.6.19 kernel.
These primitives are roughly analogous to the rcu_read_

lock(), rcu_read_unlock(), and synchronize_kernel() prim-
itives described in Section 4.

Addition of these primitives permitted RCU to be used
in situations requiring RCU’s extremely low read-side over-
heads, but where readers might occasionally need to block.
An example of such a situation would be a heavily used in-
memory cache of a disk-based data structure with a high hit
rate. The design of such a system can be simplified by use
of SRCU without sacrificing performance or scalability.

Although this change was specific to RCU, it clearly il-
lustrates how the wide usage of the Linux kernel can force
unexpected changes into a given technology.

5.12 RCU Readers of Lists Being Reaped
One of the more unconventional features of RCU is that it

allows readers and updaters to make forward progress even
when running concurrently. This property is key to the high
performance, unlimited scalability, and O(1) computational
complexity for RCU’s read-side primitives, but can provide
interesting challenges in some situations.

In particular, Corey Minyard needed to remove all ele-
ments of an RCU-protected circular doubly linked list with
a single operation. Of course, the fact that RCU readers
run concurrently with updaters means that readers might
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be referencing such a list at the time of full-list removal.
Such removal must therefore be performed carefully, using
the following steps:

1. Adjust the list so that new readers perceive it to be
empty, but so that old readers still find the list header
so that they terminate correctly upon reaching the end
of the list.

2. Wait for all old readers to complete their scan of the
list. RCU provides primitives such as synchronize_

rcu() for this purpose.

3. Complete the removal process, linking the list into a
new list header so that it may be processed further.

This process was packaged into the list_splice_init_

rcu() primitive [49]. As with the change described in Sec-
tion 5.11, this change is specific to RCU, but again demon-
strates how the wide usage of the Linux kernel can force
changes into a given technology.

5.13 Summary of RCU API Evolution
Seven years of exposure to Linux increased the size of

the RCU API from the initial six components (seven if one
counts explicit memory barriers) to 31 components as of the
Linux 2.6.24 kernel, as shown in Figure 4. Any way you
calculate it, this is an extremely large increase in size, an in-
crease that was completely unexpected, given that the initial
DYNIX/ptx RCU API had been running in production sup-
porting large datacenter workloads for well over five years
beforehand. Of course, the Linux kernel has a variety of
internal software environments, including process context,
interrupt context, and so on, which results in more than 50
API members for simple locking. However, DYNIX/ptx had
a similar variety of internal software environments.

This situation therefore motivated a search for the reasons
why a technology so well-suited for datacenter workloads
should require so much change upon being introduced into



Linux. The lessons learned during this search are discussed
in the next section.

6. LESSONS LEARNED
The experience of adapting RCU for Linux taught a num-

ber of valuable lessons. The first set of lessons pertained to
working with free/open source software (FOSS) communi-
ties, and are covered in Section 6.1. Subsequent lessons are
more specific to the evolution of the RCU API, including the
wide range of workloads and platforms that Linux supports,
the use of Linux in networking infrastructure, the economics
of Linux’s large community, and the high degree of innova-
tion fostered by the Linux community. These RCU-specific
lessons are covered by sections 6.2 through 6.5.

6.1 The Workings of FOSS Communities
Although my five-to-ten years with the Linux community

by no means qualifies me as an expert on the FOSS commu-
nities, my combined experience with academia, research or-
ganizations, proprietary software development groups, stan-
dards organizations, and the Linux community does provide
an interesting vantage point. This section leverages this van-
tage point to describe how one might work with the Linux
community, drawing analogies with situations that might be
more familiar to many readers.

For example, consider a researcher working with a mo-
tivated proprietary software vendor. Such a vendor might
make a particular developer responsible for implementing
the results of the research in the product. This sort of
relationship can also happen in FOSS projects, for exam-
ple, when Alexey Kuznetsov implemented stochastic fairness
queuing [23] in Linux—my only involvement in this process
was to send Alexey a copy of my paper. Although this pro-
cess can work extremely well, it depends on a developer be-
ing ready, willing, and able to do the necessary work. Such
a developer might or might not be available.

FOSS projects permit another approach, namely, the re-
searcher downloading the project, making the necessary mod-
ifications, conducting experiments, and reporting the re-
sults. On the one hand, this approach eliminates the de-
pendency on the developer, but on the other hand it does
nothing to foster inclusion of the researcher’s modifications
into the FOSS project’s official repository. Such inclusion
does require more work, but can greatly ease collaboration
and do much to advance the overall research agenda [3].

Although different projects have different criteria for in-
clusion, even within the confines of the Linux community, it
is well worthwhile to consider the following questions:

1. Does the value of your contribution exceed the cost of
its inclusion in the FOSS project and its maintenance
thereafter?

2. Are there community members who are enthusiastic
about your contribution?

3. If community members invest the time and effort re-
quired to include your contribution, are you willing
to make a compensating investment of your time and
effort into the project?

These questions are considered in the following sections.

6.1.1 Code as Liability
Source code is commonly considered to be an asset rather

than a liability. After all, it can take great effort to pro-
duce, and can sometimes be sold for considerable amounts
of money. The fallacy of the “source code as asset” view-
point can be seen by considering the fate of those unfortu-
nates who purchase a body of source code, but fail to retain
the services of that code’s developers. Without the develop-
ers, it is often impossible to properly service, support, and
maintain the source code, possibly resulting in bankruptcy
or legal action.

It is often better to instead view the source code as a liabil-
ity that one might be willing to incur only if the correspond-
ing functionality and performance is sufficiently valuable to
the rest of the community. Only then can the community be
expected to continually invest the time and effort required
to fix the inevitable bugs, adapt the code to the inevitable
changes in the enclosing software environment, support the
users, add features demanded by those users, and so on.

In short, by incorporating your source-code contribution,
the project will be making an ongoing investment of time
in effort in order to give you your 15 minutes of fame and
glory. What will you give the project in return?

6.1.2 Community Enthusiasm
The community might be willing (perhaps even happy) to

accept your source-code contribution if enough community
members are enthusiastic about the corresponding function-
ality or performance. These members might be either devel-
opers or users. This of course leads to the question of how
to generate the necessary enthusiasm.

One approach is to identify the community’s enthusiasm
ahead of time, and then selecting a project that provides
something that the community badly wants or needs. This
approach can have the further advantage of garnering com-
munity help and support during your research and imple-
mentation, and greatly easing the inclusion process. You
should nevertheless take care to learn the community’s cul-
ture and coding style, and be prepared to interact with the
community to shape your contribution into a form consis-
tent with community expectations. You might also need to
provide training and documentation to the community in
order to ease their learning and support burden. With the
proper preparation, this approach can be quite gratifying to
both the researcher and the community.

Another approach is to “sell” your contribution to the
community, either before or after creating it. Although I
have seen situations where this has worked well, I must defer
to those who have the relevant sales/marketing skills.

6.1.3 Compensating Investments
In order to get your contribution included into a FOSS

project, you might need to invest some of your own time
and effort to compensate the community for the time and
effort that they will incur supporting and maintaining your
contribution. This is no different than the situation with
any given academic journal: authors are often expected to
contribute their time and effort acting as reviewers, and may
in addition need to be active members of the research com-
munity that the journal serves.

FOSS communities also value review: contributors may
be expected to review and comment on the contributions
of others, thereby increasing the quality and robustness of



the FOSS project. Such efforts also build trust: a history
of on-point reviews, debugging, bug fixes, and contributions
that are consistent with the aims and culture of the project
will tend to increase the stature of the contributor within
that community.

However, the typical FOSS review process differs from the
typical academic process in a number of ways:

1. FOSS reviews are not anonymous.

2. Contributors can (and usually do) respond to FOSS
reviews.

3. Multiple contributors with similar goals will often col-
laborate to produce a single contribution that meets
all their goals. This can also happen in academic cir-
cles, but the open nature of the FOSS review process
more directly encourages such alliances.

4. FOSS reviews can often be more harsh in tone than
those in academic circles, though the effects of this
harshness are balanced by the ability to respond di-
rectly and immediately.

A developer who contributes to the review process (includ-
ing debugging and bug-fix efforts) will earn the community’s
trust, and thus meet less resistance to future contributions.
This situation is not all that different from an academic com-
munity. As is the case with academic communities, trust in
one community does not necessarily immediately translate
to trust in another. In particular, trust within an academic
community does not necessarily automatically translate to
trust within the corresponding FOSS community, and vice
versa. There are of course exceptions, one prominent ex-
ample being Van Jacobson’s high level of esteem within the
Linux-kernel networking community.

Within FOSS communities, as within most organizations,
trust is key. And, also like most organizations, one’s level of
trust is determined by one’s words and (especially) actions
over time.

6.1.4 FOSS Communities Summary
The advent of FOSS communities is critically important,

as they have the potential of offering a publicly available
bridge between research and practice by offering researchers
a way to test their ideas in real-world software systems. The
fact that the FOSS projects are publicly available also allows
other researchers to easily replicate results, in happy con-
trast to proprietary software. FOSS communities also offer
the prospect of academic research being applied to practice
in a timely manner, increasing the impact of this research.

The following sections describe lessons that are more spe-
cific to the Linux kernel.

6.2 Wide Range of Workloads and Platforms
A key lesson learned from the RCU experience is that

Linux runs an incredible variety of workloads on a wide va-
riety of platforms, including embedded systems, cell phones,
desktops, network processors, servers, and supercomputers.
Each of these platforms brings its own set of issues and re-
quirements, a number of which affected RCU’s design and
implementation. In particular, Linux runs real-time work-
loads, which required significant changes to RCU, as de-
scribed in Sections 5.3 and 5.9. Furthermore, Linux is used
in embedded systems with small memory, which also affected

RCU as described in Section 5.4. Therefore, any technology
that has been developed in a protected niche is likely to
require substantial changes in order to operate safely and
effectively in the less-protected Linux environment.

One advantage of the Linux kernel’s FOSS nature is that
not only is the source code freely available, but that design
discussions are also freely available. In fact, design discus-
sions are open to general participation, the only hard re-
quirement being an ability to read and write English, but not
necessarily to converse in spoken English. To their credit,
many researchers are already taking advantage of this open-
ness, using the Linux kernel as a platform for their research.
It is hoped that such collaborations will help to narrow the
researcher/practitioner divide, increasing the impact of re-
search, while speeding the evolution of the Linux kernel.

6.3 Networking Infrastructure
In addition, Linux is heavily used in network infrastruc-

ture. As noted earlier, this means that Linux cannot be
protected by a firewall because Linux is the firewall. There-
fore, Linux must efficiently process networking loads that
might bring a machine designed for a carefully cossetted
datacenter environment to its knees. This requirement had
significant effects on the RCU API, as noted in Sections 5.5
and 5.6.

6.4 Software Development Economics
Economics also plays a part. For example, there were

only a few tens of kernel developers working on DYNIX/ptx,
perhaps 50 at most. This means that an innovation in
DYNIX/ptx that saved 1% of each developer’s time would
save at most six person-months per year. If the innova-
tion itself required one person-year to implement, two years
would be required to recover the cost of implementation.
Because there would be very likely be higher-payoff invest-
ments of kernel-developer time, such an innovation might
never be implemented.

In contrast, many thousands of people work with the
Linux kernel. Even if we restrict our attention to people
whose changes were accepted into the 2.6.24 release of the
Linux kernel, we end up with 950 [7]. This smaller number
does not count the number of people who read kernel code
to provide support, to fix bugs in older versions of Linux,
or to understand how best to implement Linux-based appli-
cations. However, if we nevertheless take 1,000 as an esti-
mate of the number of full-time equivalent effort spent on
the Linux kernel, our one-person-year innovation could save
ten person-years per year, recovering the investment in not
much more than a month.

This economic effect had a large effect on the RCU API,
for example, in the form of the RCU-based list-manipulation
primitives discussed in Section 5.2. Such primitives would
likely have remained open-coded in operating systems with
smaller communities. Because such primitives arguably in-
crease productivity, it is interesting to speculate on the long-
term prospects of Linux compared to kernels with commu-
nities having fewer active members. Similar effects on the
RCU API are described in Sections 5.1 and 5.7.

6.5 Linux-Community Innovation
Arguably the largest effect was due to the highly inno-

vative group of developers in the Linux community, who
applied RCU in a number of ways, some completely unan-



ticipated. This is not necessarily to say that Linux devel-
opers are more innovative than those in other environments
(though the Linux community by no means lacks extremely
innovative and talented developers), but rather that the
widespread sharing of viewpoints in the open design pro-
cess does much to foster innovation. Some of the effects of
this innovation on RCU are covered in 5.10, 5.11, and 5.12.
In addition, the drive towards simplicity discussed in Sec-
tion 5.1 forced incremental adoption of RCU, as described
in Section 5.8.

One can argue that Linux-community innovation will con-
tinue to drive change into RCU, and into much else besides.
Such future prospects for RCU are taken up in the next
section.

7. FUTURE PROSPECTS
Has every conceivable change to RCU already been made,

or will RCU continue to evolve? This second view seems
most likely. And, although it is said that the best way to
predict the future is to invent it, it is also true that thinking
a bit about the future can help identify useful directions for
invention. The following sections therefore consider RCU-
related issues in the areas of power consumption, massively
multicore systems, real-time response, new synchronization
primitives, and, finally, RCU API orthogonality.

7.1 Power Consumption
There has been some progress over the past year better in-

tegrating preemptible RCU (the real-time variant) with the
dynamic ticks power-conservation feature (selected by the
CONFIG_NO_HZ Linux kernel parameter). The idea behind
dynamic ticks is that idle CPUs should forgo the scheduling-
clock interrupt, allowing them to reach deeper “sleep states”,
thus better conserving power.

Unfortunately, older versions of preemptible RCU would
awaken all CPUs, including those in sleep states, whenever
an RCU updater required an RCU grace period to elapse.
This problem was addressed by a new interface between dy-
namic ticks and RCU that avoids waking sleeping CPUs [58].
This same technique could profitably be applied to other im-
plementations of RCU as well.

7.2 Massively Multicore Systems
Increased CPU counts might require that the scalability

of RCU’s grace-period detection be improved (and much else
besides). Although the original “classic” implementation of
RCU has been modified to run efficiently on a 512-CPU Al-
tix machine [63], other variants would require more work to
run well on systems with large numbers of CPUs. Spraul’s
hierarchical approach has proven successful in other envi-
ronments, and is likely to be the method of choice on very
large systems.

However, if per-chip CPU counts were to rise without
limit, then it is entirely possible that memory bandwidth
and on-chip cache size will fail to increase sufficiently to
permit some workloads from taking full advantage of all of
the CPUs. A rational response to this situation might well
be to simply avoid using some fraction of these (presumably
extremely low-cost) CPUs. However, power-consumption
issues might motivate high CPU utilization in order to min-
imize the total number of systems required for a given work-
load. If such a situation arises, memory conservation might

well be required on large machines as well as on tiny embed-
ded systems.

Such a need for memory conservation would further in-
crease the motivation to shrink the rcu_head structure by
tabulating RCU callback functions and encoding the result-
ing table index into this structure’s pointer to next [43],
thereby reducing the memory footprint of heavily replicated
RCU-protected data structures, such as those making up the
directory-entry cache.

Of course, increased focus on memory footprint would un-
doubtably affect many other aspects of the Linux kernel as
well.

7.3 Real-Time Response
The need for improved real-time response has already had

a large effect on RCU, as discussed in Sections 5.3 and 5.9. It
seems likely that increasingly aggressive real-time response
constraints will be applied to additional areas within the
Linux kernel. For example, the advent of low-cost, high-
capacity, and low-latency solid-state storage removes the
traditional seek-time and rotational-latency barriers to real-
time mass-storage access. This turn of events may well raise
interest in real-time mass storage access, both with and
without filesystems. RCU might well have a role to play
in this arena, which in turn might require changes to RCU,
either in the RCU infrastructure itself or in the way that
RCU is used and applied.

Increasing bandwidths and decreasing latencies of data-
communications hardware seem quite likely to have the same
effect on Linux’s protocol stacks.

In addition, as multi-core CPUs continue to gain popular-
ity in real-time systems, we may possibly see a need for RCU
in user applications, at least for those applications written
in non-garbage-collected languages such as C and C++.

However, it is important to note that real-time RCU work
to date has focused almost entirely on RCU’s read-side prim-
itives. When performing RCU updates, it is often necessary
to defer destructive actions (such as freeing memory previ-
ously removed from an RCU-protected data structure) until
all pre-existing RCU readers have completed. The length
of time that such actions must be deferred is known as an
“RCU grace period”. In some RCU implementations, these
grace periods can extend for tens of milliseconds [12], which
can sometimes be inconveniently long [2, 68].

This situation inspired a new implementation of RCU that
favors updates, named QRCU [30, 33, 52]. However, QRCU
has not yet been accepted into the Linux kernel, and might
or might not ever be. There has also been discussion of
mechanisms to expedite grace-period computation for ex-
isting RCU implementations, perhaps providing RCU API
members such as synchronize_rcu_expedited(). Many
open questions remain in this area.

7.4 New Synchronization Primitives
RCU is a specialized synchronization primitive that is in-

tended for use in read-mostly situations or in situations re-
quiring deterministic readers. Because RCU is not so foolish
as to attempt to be all things to all developers in all situ-
ations, it must interface conveniently and efficiently with
other synchronization mechanisms. RCU has a long history
of interfacing well with lock-based updates, and has also seen
extensive use interfacing with atomic-instruction-based up-
dates. There have also been some successful experiments in-



terfacing RCU with non-blocking-synchronization-based up-
dates [24].

More recently, researchers have attempted to interface
RCU to transactional-memory-based update, however, early
attempts resulted in RCU readers unnecessarily aborting
transactional updates [57]. More recent work avoids this
problem, but restricts the transactional-memory implemen-
tation. Should transactional memory graduate from research
to practice, more work will be needed to interface it effi-
ciently with RCU.

7.5 RCU API Orthogonality
The RCU API is currently not orthogonal: a tabulation of

the RCU API shown in Tables 2 and 3 reveals several missing
members, namely synchronize_rcu_bh() (the synchronous
counterpart to call_rcu_bh()), call_rcu_sched() (the asyn-
chronous counterpart to synchronize_sched()), rcu_barrier_
sched() (the barrier counterpart to call_rcu_bh()), and
rcu_barrier_bh() (the barrier counterpart to call_rcu_

sched()).
Of course, orthogonality alone is not necessarily sufficient

to motivate adding code to the Linux kernel. However, a
need for call_rcu_sched() and rcu_barrier_sched() has
recently arisen [8], which might result in adding this pair of
interfaces.

It is of course unwise to measure the capability of a tech-
nology such as RCU by the number of elements in its API.
In fact, a reduction in the size of the RCU API would un-
doubtably be quite welcome. There is at least a theoretical
possibility of substantial convergence [14], but the question
remains open as to whether SRCU can subsume all the func-
tionality of the other forms of RCU, while still providing
adequate performance.

8. CONCLUSIONS
Introducing RCU into Linux forced dramatic and unex-

pected change into RCU, for example, expanding the RCU
API from six members in 2001 to more than 30 members
in 2007. There is reason to believe that Linux will continue
forcing change into RCU, in particular, one welcome change
would be a slower increase, or better yet a decrease, in the
size of the RCU API.

These additions occurred a few at a time, and were moti-
vated by the increasingly wide range of workloads and plat-
forms that Linux supports, the use of RCU in networking
infrastructure, the economics of Linux’s large community,
and the high degree of innovation fostered by the Linux
community. To give only one example, although datacen-
ters tend to be protected by firewalls, Linux cannot assume
firewall protection because Linux is the firewall. There-
fore, technologies developed in protected datacenter envi-
ronments will likely require significant overhauls when be-
ing adapted to Linux, and it in fact seems likely that Linux
will require continued changes to RCU. It seems likely that
RCU’s experience applies to other technologies that might
be introduced to the Linux kernel.

Nevertheless, the opportunity to work on an artifact as
widely used as is Linux is a rare privilege, and working on
Linux’s RCU implementation continues to be a deeply re-
warding learning experience.

And, as the following section demonstrates, it is also an
ongoing learning experience.

9. EPILOG
This section presents ongoing experience with RCU sub-

sequent to initial publication of this paper in mid-2008 [46].

9.1 2.6.27 Linux Kernel
This release added the call_rcu_sched(), rcu_barrier_

sched(), and rcu_barrier_bh() RCU API members, and
predicted in Section 7.5.

9.2 2.6.28 Linux Kernel
One welcome change involved an actual reduction in the

size of RCU’s API with the removal of the list_for_each_

rcu() primitive. This primitive is superseded by list_for_

each_entry_rcu(), which has the advantage of iterating
over structures rather than iterating over the pointer pairs
making up a list_head structure (which, confusingly, acts
as a list element as well as a list header). This change was
accepted into the 2.6.28 Linux kernel.

Unfortunately, the 2.6.28 Linux kernel also added some
RCU API members, namely, rcu_read_lock_sched() and
rcu_read_unlock_sched(), which Section 7.5 somehow failed
to anticipate. These APIs were added to promote readabil-
ity. In the past, primitives to disable interrupts or preemp-
tion were used to mark the RCU read-side critical sections
corresponding to synchronize_sched(). However, this prac-
tice led to bugs when developers removed the need to disable
preemption or interrupts, but failed to notice the need for
RCU protection. Use of rcu_read_lock_sched() will help
prevent such bugs in the future.

9.3 2.6.29 Linux Kernel
A new more-scalable implementation, dubbed “Tree RCU”,

replaces the flat bitmap with a combining tree, and was
accepted into the 2.6.29 Linux kernel. This implementa-
tion was inspired by the ever-growing core counts of modern
multiprocessors (see Section 7.2, and is designed for many
hundreds of CPUs. Its current architectural limit is 262,144
CPUs, which the authors (perhaps näıvely) believe to be
sufficient for quite some time. This implementation also
adopts preemptible RCU’s improved dynamic-tick interface
(see Section 7.1).

Mathieu Desnoyers added rcu_read_lock_sched_notrace()

and rcu_read_unlock_sched_notrace(), which are required
to permit the tracing code in the Linux kernel to use RCU.
Without these APIs, attempts to trace RCU read-side crit-
ical sections lead to infinite recursion.

Eric Dumazet added a new type of RCU-protected list
that allows single-bit markers to be stored in the list point-
ers. This type of list enables a number of lockless algo-
rithms, including some reported on by Maged Michael [48].
Eric’s work adds the hlist_nulls_add_head_rcu(), hlist_
nulls_del_rcu(), hlist_nulls_del_init_rcu(), and hlist_

nulls_for_each_entry_rcu(). It also adds a new structure
named hlist_nulls_node.

Although it is strictly speaking not part of the Linux ker-
nel, at about this same time, Mathieu Desnoyers announced
his user-space RCU implementation [9]. This is an impor-
tant first step towards the real-time user-level RCU imple-
mentation discussed in Section 7.3.

9.4 2.6.31 Linux Kernel
Jiri Pirko added list_entry_rcu and list_first_entry_

rcu() primitives that encapsulate the rcu_dereference()



Category Publish Retract Subscribe

Pointers rcu_assign_pointer() rcu_assign_pointer(...,NULL) rcu_dereference()

Lists
list_add_rcu()
list_add_tail_rcu()
list_replace_rcu()

list_del_rcu() list_for_each_entry_rcu()

Hlists

hlist_add_after_rcu()
hlist_add_before_rcu()
hlist_add_head_rcu()
hlist_replace_rcu()

hlist_del_rcu() hlist_for_each_entry_rcu()

Table 2: RCU Publish and Subscribe Primitives

RCU Classic RCU BH RCU Sched SRCU

Read-Side Primitives
rcu_read_lock()
rcu_read_unlock()

rcu_read_lock_bh()
rcu_read_unlock_
bh()

preempt_disable()
preempt_enable()
and friends

srcu_read_lock()
srcu_read_unlock()

Update-Side Primitives
(Synchronous)

synchronize_rcu()
synchronize_net()

synchronize_sched() synchronize_srcu()

Update-Side Primitives
(Asynchronous)

call_rcu() call_rcu_bh() N/A

Update-Side Barriers rcu_barrier() N/A

Table 3: RCU Read- and Update-Side Primitives

RCU-subscription primitive into higher-level list-access prim-
itives, which will hopefully eliminate a class of bugs.

In addition, the “Tree RCU” implementation was up-
graded from “experimental” status.

9.5 2.6.32 Linux Kernel
Perhaps the largest change in this version of the Linux

kernel is the removal of the old “Classic RCU” implementa-
tion. This implementation is superseded by the “Tree RCU”
implementation.

This version saw a number of other changes, including:

1. The synchronize_rcu_expedited() RCU API mem-
ber discussed in Section 7.3, along with synchronize_

sched_expedited() as well as synchronize_rcu_bh_

expedited(). These primitives are equivalent to their
non-expedited counterparts, except that they take mea-
sures to expedite the grace period.

2. Add preemptible-RCU functionality to the “Tree RCU”
implementation, thus removing one obstacle to real-
time response from large multiprocessor machines run-
ning Linux.

3. This new “Tree Preemptible RCU” implementation
obsoletes the old preemptible RCU implementation,
which was removed from the Linux kernel.

9.6 2.6.33 Linux Kernel
Perhaps the most dramatic addition to this release was a

day-one bug in Tree RCU [36]. Other changes include:

1. “Tiny RCU”, also known as “RCU: The Bloatwatch
Edition” [37].

2. Expedited SRCU in the form of synchronize_srcu_

expedited().

3. A cleanup of Tree RCU synchronization prompted by
the afore-mentioned bug.

4. Add expedited implementation for Tree Preemptible
RCU (in earlier releases, “expedited” support had sim-
ply mapped to synchronize_rcu(), which is seman-
tically correct if somewhat unhelpful from a perfor-
mance viewpoint.)

5. Add a fourth level to Tree RCU, which improves stress
testing. Therefore, if someone ever wants to run Linux
on a system with 16,777,216 CPUs, RCU is ready for
them! Give or take the response-time implications of
scanning through 16 million per-CPU data elements...

9.7 2.6.34 Linux Kernel
The most visible addition for this release was CONFIG_

PROVE_RCU, which allows rcu_dereference() to check for
correct locking conditions [38]. Other changes include:

1. Simplifying Tree RCU’s interactions between forcing
an old grace period and starting a new one.

2. Rework counters so that free-running counters are un-
signed. (You simply cannot imagine the glee on the
faces of certain C-compiler hackers while they discussed
optimizations that would break code that naively over-
flowed signed integers!!!)

3. Update Tree Preemptible RCU’s stall detection to print
out any tasks preempted for excessive time periods
while in an RCU read-side critical section.

4. Other bug fixes and improvements to Tree RCU’s CPU-
stall-detection code. This code checks for CPUs being
locked up, for example, in infinite loops with interrupts
disabled.

5. Prototype some code to accelerate grace periods when
the last CPU goes idle in battery-powered multipro-
cessor systems. There were people who were quite un-
happy about RCU taking a few extra milliseconds to
get the system in a state where all CPUs could be
powered down!



9.8 2.6.35 Linux Kernel
This release includes a number of bug fixes and cleanups.

The major change is the first installment of Mathieu Desnoy-
ers’s patch to check for misuse of RCU callbacks, for exam-
ple, passing a rcu_head structure to call_rcu() a second
time within a single grace period.

9.9 What Comes After 2.6.35?
The remainder of Mathieu Desnoyers’s debugobjects work

should appear in 2.6.36. Hopefully, cross-tree conflicts will
be resolved to allow Arnd Bergmann’s sparse-based checking
work to go into 2.6.36, but if not, it will go into 2.6.37.

Paul’s implementation of preemptible Tiny RCU passes
testing, and will follow Arnd’s work into mainline. Other
changes include improvements to the RCU CPU stall-warning
code, documentation improvements, rcutorture improvements
from Lai Jiangshan, and a few other cleanups and fixes.

Paul is also working on priority boosting for preemptible
RCU readers (but has been for longer than he cares to ad-
mit). He also finally has something that just might be a
decent design for pulling SRCU into the Tree RCU imple-
mentation. However, it may be a few releases before these
changes make it into mainline.
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