
Paul E. McKenney, IBM Linux Technology Center

Joint work with Lihao Liang*, Daniel Kroening, and Tom Melham,
University of Oxford

Verification of Tree-Based
Hierarchical Read-Copy Update

in the Linux Kernel

What Is RCU?

3/15/18 Verification of Linux-Kernel RCU 2

• Synchronization primitive used in Linux kernel
– Heavily used, and gaining use elsewhere as well

• Some implementations do read-only traversal
of linked data structures using exactly the
same sequence of machine instructions used
in the absence of updates

– Readers get excellent performance, scalability, …
– Complex and highly concurrent implementation

• http://www.rdrop.com/users/paulmck/RCU/

What Is RCU?

3/15/18 Verification of Linux-Kernel RCU 3

RCU Is Specialized: Area of Applicability

3/15/18 Verification of Linux-Kernel RCU 4

Need fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

R
ea

d-
M

os
tly

,
S

ta
le

/I
nc

on
si

st
en

t
O

K
 (

R
C

U
 I

s
G

re
at

!!
!)

R
ea

d-
M

os
tly

,
N

ee
d

C
on

si
st

en
t

D
at

a
(R

C
U

 I
s

O
K

)

R
ea

d-
W

rit
e,

N
ee

d
C

on
si

st
en

t
D

at
a

(R
C

U
 M

ig
ht

 B
e

O
K

)

U
pd

at
e-

M
os

tly
,

N
ee

d
F

re
sh

 C
on

si
st

en
t

D
at

a
(R

C
U

 N
ot

S
o

G
oo

d)
1,

2

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

What Exactly Does “Heavily Used” Mean?

3/15/18 Verification of Linux-Kernel RCU 5

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 6

1

19
75

N
H

S
Million-Year Bug: Once Per Million Years

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 7

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

Million-Year Bug: Once In Ten Millennia

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 8

19
95

S
Q

N
T

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

Million-Year Bug: Once Per Century

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 9

2
00

5
L

in
u

x

19
95

S
Q

N
T

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

Million-Year Bug: Once a Month

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 10

100K

10K

10M

2
01

5
L

in
u

x

2
00

5
L

in
u

x

19
95

S
Q

N
T

1K

100

10

1

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

10G

Million-Year Bug: Several Times per Day

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 11

100K

10K

10M

2
01

5
L

in
u

x

2
00

5
L

in
u

x

19
95

S
Q

N
T

1K

100

10

1

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

10G

100K

10K

10M

20
1

7
L

in
u

x

1K

100

10

1

10G

100GMillion-Year Bug: Several Times per Hour

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 12

100K

10K

10M

2
01

5
L

in
u

x

2
00

5
L

in
u

x

19
95

S
Q

N
T

1K

100

10

1

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

10G

100K

10K

10M

20
1

7
L

in
u

x

1K

100

10

1

10G

100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

Io
T

Million-Year Bug?
You don't want to know...

1T

Isn't Making Software Work A Solved Problem?

3/15/18 Verification of Linux-Kernel RCU 13

100K

10K

10M

2
01

5
L

in
u

x

2
00

5
L

in
u

x

19
95

S
Q

N
T

1K

100

10

1

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

N
H

S

19
85

V
ar

io
u

s

10G

100K

10K

10M

20
1

7
L

in
u

x

1K

100

10

1

10G

100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

Io
T

Million-Year Bug?
You don't want to know...
But Murphy has transitioned
from nice guy to
homicidal maniac!!!

1T

• Almost any bug can become a security exploit
– Internet: Physical presence no longer required
– Not restricted to software: Meltdown and Spectre

● RCU is not the only thing with empirical spec!

• RCU is low level does not imply low risk
– After all, Row Hammer hit DRAM!

• Might be a trillion IoT devices in the World
– Translates to huge numbers of failures
– Some of which might put the general public at risk

• RCU is well-contained test case for PoC

Why Stress About Potential Low-Probability Bugs?

3/15/18 Verification of Linux-Kernel RCU 14

Why Not Try Formal Verification?

3/15/18 Verification of Linux-Kernel RCU 15

Why Not Try Formal Verification?

3/15/18 Verification of Linux-Kernel RCU 16

In Linux-Kernel RCU's
Regression Tests...

• Either automatic or no translation

• Correctly handle environment: memory model!

• Reasonable memory and CPU overhead

• Map back to lines of code containing bugs

• Main input: source code under test

• Find relevant bugs

Formal Verification & Regression Tests: Requirements

3/15/18 Verification of Linux-Kernel RCU 17

Scorecard for Linux-Kernel C Code

3/15/18 Verification of Linux-Kernel RCU 18

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

CBMC (Very) Rough Schematic

3/15/18 Verification of Linux-Kernel RCU 19

Encode into
logic expression

Trace generation
(if counterexample

located)

C Code

SAT solver

Verification Result

CBMC

Kroening, Clarke, and Lerda,
“A tool for checking ANSI-C
Programs”, Tools and Algorithms
for the Construction and Analysis
of Systems, 2004, pp. 168-176.
https://github.com/diffblue/cbmc

Applying CBMC to Linux-Kernel RCU

3/15/18 Source code: https://github.com/lihaol/verify-treercu 20

Linux kernel (v4.3.6)

Linux-kernel
RCU

Test Scaffolding

Linux-kernel
RCU

Port &
trim

CBMCRun

● Reflects server-class RCU up to 16 CPUs with default
config (32 or 64 CPUs w/non-default configs)

● Approximated interrupts & grace-period kthread w/hand-
placed function calls, specified per-loop unrolling limits

● Modeled per-CPU variables with arrays
● Modeled locks with __CPROVER_atomic*()
● Memory consistency models: SC, TSO, and PSO
● Tested safety and a weak form of liveness

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 21

• Formal verification of Linux-kernel RCU?

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 22

• Formal verification of Linux-kernel RCU?
– Sure, I can also write printf(“VERIFIED\n”);

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 23

• Formal verification of Linux-kernel RCU?
– Sure, I can also write printf(“VERIFIED\n”);

• I therefore maintain bug-injected RCU versions
– https://paulmck.livejournal.com/46993.html

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 24

• Formal verification of Linux-kernel RCU?
– Sure, I can also write printf(“VERIFIED\n”);

• I therefore maintain bug-injected RCU versions
– https://paulmck.livejournal.com/46993.html

• How did CBMC do?

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 25

• Formal verification of Linux-kernel RCU?
– Sure, I can also write printf(“VERIFIED\n”);

• I therefore maintain bug-injected RCU versions
– https://paulmck.livejournal.com/46993.html

• How did CBMC do? Only 2 failures out of 30.
– Interrupt over-approximation, memory exhaustion
– Up to 90.4M SAT variables, 75GB, ~70 CPU hours

● Ran on 64-bit 2.4GHz Xeon, 12 cores & 96GB memory

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 26

• Formal verification of Linux-kernel RCU?
– Sure, I can also write printf(“VERIFIED\n”);

• I therefore maintain bug-injected RCU versions
– https://paulmck.livejournal.com/46993.html

• How did CBMC do? Only 2 failures out of 30.
– Interrupt over-approximation, memory exhaustion
– Up to 90.4M SAT variables, 75GB, ~70 CPU hours

● Ran on 64-bit 2.4GHz Xeon, 12 cores & 96GB memory

• But did not find new-to-me bugs!

Healthy Skepticism

3/15/18 Verification of Linux-Kernel RCU 27

Summary and Challenges

3/15/18 Verification of Linux-Kernel RCU 28

• Linux-kernel RCU robustness is important
– Large installed base poses severe challenge

• First automated LK RCU formal verification
– Two other teams have since done similar work

• Formal verification in regression tests: Almost
– Future work: Find bugs I don't already know about!

• Nevertheless, this work demonstrates the
nascent ability and potential of SAT-based
formal-verification tools to handle real-world
production-quality synchronization primitives

Summary

3/15/18 Verification of Linux-Kernel RCU 29

• Better modeling of interrupts & kernel threads

• Model concurrent linked lists: call_rcu()

• Incorporate Linux-kernel memory model
– And/or ARM, PowerPC, RISC-V, ...

• Forward progress: Detect hangs & deadlocks
– Can already detect unconditional hangs/deadlocks

• Fully analyze unbounded looping
– Or at least automatically derive unrolling bounds

• Larger programs: Automatic decomposition?

Challenges/Limitations/Future Work

3/15/18 Verification of Linux-Kernel RCU 30

• Find bug in rcu_preempt_offline_tasks()
– http://paulmck.livejournal.com/37782.html

• Find bug in RCU_NO_HZ_FULL_SYSIDLE
– http://paulmck.livejournal.com/38016.html

• Find bug in RCU linked-list use cases
– http://paulmck.livejournal.com/39793.html

• Verification Challenge 6
– http://paulmck.livejournal.com/46993.html

• Find bugs in other popular open-source SW

Additional Challenges

3/15/18 Verification of Linux-Kernel RCU 31

• This work represents the view of the authors and
does not necessarily represent the view of IBM or
University of Oxford.

• IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other
countries.

• Linux is a registered trademark of Linus Torvalds.

• Other company, product, and service names may
be trademarks or service marks of others.

Legal Statement

3/15/18 Verification of Linux-Kernel RCU 32

Questions?

3/15/18 Verification of Linux-Kernel RCU 33

	Audio/Visual Template
	Audio/Visual Guidelines
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

