
RCU vs. Locking Performance on Different CPUs
Paul E. McKenney
IBM Corporation

Abstract

RCU has provided performance benefits in a number
of areas in the Linux 2.6 kernel [MAK

�
01, LSS02,

MSA
�

02, ACMS03, McK03, MSS04], as well as in
several other operating system kernels [HOS89, Jac93,
MS98, GKAS99]. Its use has also been proposed in con-
junction with a number of specific algorithms [KL80,
ML84, Pug90]. This experience has generated a num-
ber of useful rules of thumb, analytic comparisons of
RCU to other locking techniques [MS98, McK99], and
system-wide comparisons of specific RCU patches to the
Linux kernel. However, there have not been any mea-
sured comparisons of RCU to other locking techniques
under a variety of conditions running on different CPUs.

This paper fills that gap, comparing RCU to other
locking techniques on a number of CPUs using a hash-
lookup micro-benchmark. The read intensity, number of
CPUs, and number of searches/updates per grace period
are varied to gain better insight into which tool is right
for a particular job.

1 Introduction
A useful comparison of RCU and other locking primi-
tives requires the following:

1. Repeatability.
2. Relatively short duration to permit testing many

combinations.
3. Code sequences that occur in real life.
4. Conservative treatment of the “new kid on the

block,” in this case, RCU.

Since the Linux kernel contains a very large number
of hash tables, hash-table search is a natural choice for
a mini-benchmark. To promote repeatability, deletions
and insertions are performed in pairs, so that the number
of elements in each hash chain remains constant over the
long term–over the short term, of course, one CPU might
search the hash table between the time after some other
CPU has deleted an element, but before it has re-inserted
it.

In order to err on the conservative side, this bench-
mark is compiled without optimization, which de-
emphasizes the cache-thrashing overhead of the lock-
ing primitives. Comparison with measured memory-
latency and pipeline-flush overheads showed that these
costs dominated, in any case. This benchmark also dis-

regards the possibility of batching RCU updates among
multiple hash tables.

The locking methods compared are as follows:

1. Global spinlock (global).
2. Global rwlock (globalrw).
3. Per-bucket spinlock (bkt).
4. Per-bucket rwlock, but modified to avoid starvation

(bktrw).
5. brlock.
6. Per-bucket spinlock combined with a per-element

reference count (refcnt). Note that this mechanism
helps with deadlock avoidance.

7. RCU, which entails lock-free search with per-
bucket spinlock and RCU guarding updates. Note
that this mechanism also helps with deadlock
avoidance for read-side accesses.

8. Ideal scaling, taking the performance of searches
and updates running without any sort of synchro-
nization, and multiplying by the number CPUs.
Once someone achieves ideal scaling on a given
workload, that workload is thereafter designated
“embarrassingly parallel”.

This benchmark is run with from one to four CPUs,
varying operation mixtures from read-only to update-
only. Note that the single-CPU data still uses locks–see
the “ideal” lines for lock-free performance. From this
data, we will identify the areas of optimality for each
locking primitive. Although these results are quite use-
ful as rules of thumb, they are certainly no substitute for
actually running real-world benchmarks before and after
making changes!

Finally, in keeping with Linus Torvalds’s request at
Ottawa last summer that people place a greater focus on
user-level code, these benchmarks run at user level. As
a result, some of the names of some of the atomic prim-
itives differ slightly from their kernel equivalents in the
code fragments that follow.

Section 2 provides background on RCU. Section 3
describes the hash-table mini-benchmark, including the
code for the various locking mechanisms tested. Sec-
tion 4 displays the measured results, and Section 5
presents summary and conclusions.

2 Background
This section gives a brief overview of RCU; more details
are available elsewhere [MS98, MAK

�
01, MSA

�
02].

A B C(1)

A C(3)

A B C(2)

Figure 1: Lock Protecting Deletion and Search

On SMP systems, any searching of or deletion from
a linked list must be protected, for example, by a lock.
When element B is deleted from the list shown in Fig-
ure 1, searching code is guaranteed to see this list in ei-
ther the initial state (1) or the final state (3). In state (2),
when element B is being deleted, the reader-writer lock
guarantees that no readers (indicated by the absence of a
triangle on element B) will be accessing the list.

A(3) C

!!!!

A(1) CB

A(2) CB

Figure 2: Race Between Deletion and Search

However, many lists are searched much more often
than they are modified. For example, an IP routing table
would normally change at most once per few minutes,
but might be searched many thousands of times per sec-
ond. This could result in well over a million accesses per
update, making lock-acquisition overhead burdensome
to searches.

Unfortunately, omitting locking when searching
means that the update no longer appears to be atomic.
Instead, the update takes the multiple steps shown in Fig-
ure 2. A search might be referencing element B just as it
was freed up, resulting in crashes, or worse, as indicated
by the reader referencing nothingness in step (3).

One solution to this problem is to delay freeing up el-
ement B until all searches have given up their references
to it, as shown in Figure 3. RCU indirectly determines
when all references have been given up. To see how this
works, recall that there are normally restrictions on what

A B C

A(4) C

A B C(3)

A B C(2)

(1)

Figure 3: RCU Protecting Deletion and Search

operations may be performed while holding a lock. For
example, in the Linux kernel, it is forbidden to do a con-
text switch while holding any spinlock. RCU mandates
these same restrictions: even though the RCU-protected
search need not acquire any locks, it is forbidden from
performing any operation that would be forbidden if it
were in fact holding a lock.

Therefore, any CPU that is seen performing a context
switch after the linked-list deletion shown in step (2)
of Figure 3 cannot possibly hold a reference to ele-
ment B. As soon as all CPUs have performed a context
switch, there can no longer be any readers, as shown in
step (3). Element B may then be safely freed, as shown
in step (4).

A simple, though inefficient, RCU-based deletion al-
gorithm could perform the following steps in a non-
preemptive Linux kernel (preemptive kernels can be
handled as well [MSA

�
02]):

1. Unlink element B from the list, but do not free it.
The state of the list will be that shown in step (2) of
Figure 3.

2. Run on each CPU in turn. At this point, each CPU
has performed one context switch after element B
has been unlinked. Thus, there cannot be any more
references to element B.

3. Free up element B.

Much more efficient implementations have been de-
scribed elsewhere [MS98, MSA

�
02].

3 Hash-Table Mini-Benchmark
The hash table is a simple array of buckets, with linked-
list chains. Separate tasks perform searches and updates
in parallel, and a parent task terminates the test after
the prescribed duration. Each experiment runs the test
five times, and prints the average, maximum, and mini-
mum times per-operation times from the five runs, along

1 struct el *
2 _search_bucket(struct list_head *p, long key)
3 {
4 struct list_head *lep;
5 struct el *q;
6
7 list_for_each(lep, p) {
8 q = list_entry(lep, struct el, list);
9 if (q->key == key) {

10 return (q);
11 }
12 }
13 return (NULL);
14 }
15
16 struct el *
17 _search(long key)
18 {
19 struct list_head *p;
20
21 p = KEY2CHAIN(key);
22 return (_search_bucket(p, key));
23 }

Figure 4: Search Functions

with the standard deviation. RCU-based tests print the
same statistics for the maximum number of hash-table
elements that were ever waiting for a grace period to
complete.

The following section describes the common code
used in the test, and the sections after that describe code
specific to each of the locking mechanisms.

3.1 Common Code
Figure 4 shows the code for the generic search func-
tions, which is quite straightforward. The search()
function is used by mechanisms such as RCU and br-
lock that do not use a per-hash-chain lock, while the
search bucket() is used by mechanisms that use

a per-hash-chain lock. The KEY2CHAIN() macro pro-
vides a simple modulus hash function.

Figure 5 shows the test loop. The keys of the ele-
ments in the hash table are consecutive integers, and
each task increments its key by a different odd prime
on each search or update, in order to avoid “con-
voy” effects. The INSERT(), SEARCHSHD(), and
SEARCHX() macros map directly to their lower-case
equivalents for the locking primitives compared in this
paper. This extra level of C-preprocessor indirection will
allow future comparison of wait-free synchronization al-
gorithms. The nsearch variable on line 3 contains the
expected number of searches in the search/update mix;
similarly, the nmodify variable indicates the expected
number of updates in the mix, so that a mixture of 90%
searches might have nsearch=9 and nmodify=1.
The loop from lines 4-13 performs a randomly selected
number of searches based on the desired mix. The
SEARCHSHD() function on line 5 is defined to return
with any required locks or reference counts held, so line
7 invokes releaseshd() to do any necessary releas-

ing. Lines 9-12 increment the search key with wrap, and
line 14 counts the number of operations in a local vari-
able.

Similarly, the loop from lines 16-38 of Figure 5 per-
forms a randomly selected number of updates based on
the desired mix. If the SEARCHX() function on line 18
returns non-NULL, it is defined to return holding what-
ever locks are required to delete the element, and the
DELETE() function on line 21 is defined to drop those
locks before return, and free the deleted element as well.
On the other hand, if SEARCHX() returns NULL, it re-
turns with no locks held. Line 22 allocates a new ele-
ment to replace the one deleted, and line 24 counts an
error if out of memory. Line 26 does some debug checks
if RCU is in use, and is a no-op otherwise, again favoring
normal locking. Lines 27-30 initialize the new element
and insert it. The INSERT() function on line 29 is de-
fined to acquire any needed locks and to release them
before returning. Lines 34-37 advance to the next key
value, and line 39 counts the operations in a local vari-
able. Line 40 forces a quiescent state for RCU, and is a
no-op otherwise.

As noted earlier, this test loop is run five times for
each configuration, and the results are averaged. The
maximum, minimum, and standard deviation are also
computed in order to check repeatability and detect in-
terference.

3.2 Starvation-Free rwlock
In order for the tests to run reliably, a starvation-free
rwlock is required. Similar implementations have been
reinvented many times over the decades, the first that I
am aware of being Courtois et al. [CHP71]. Please note
that I am not advocating that the Linux kernel also adopt
a starvation-free rwlock, since freedom from starvation
incurs additional overhead in low-contention situations.
Use the right tool for the job!

The rwlock is implemented as an atomically manipu-
lated integer that takes on values as follows:

1. RW LOCK BIAS: lock is idle. This is the initial
value.

2. RW LOCK BIAS ��� , where � is less than
RW LOCK BIAS/2: � readers hold the lock.

3. 0: one writer holds the lock.
4. ��� : one writer is waiting for � readers to release

the lock.

Figure 6 shows the acquisition procedure. The outer
loop from lines 6-16 spins until we have read-acquired
the lock. The inner loop from lines 9-11 spins until any
current write-holder has released the lock, and also takes
a snapshot of the lock value at this point. Lines 15-16
then attempt to read-acquire the lock. Finally, line 17
issues whatever memory barrier instructions are required

1 key = 0;
2 while (atomic_read4(&shdctl->state) == STATE_GO) {
3 n = random() % (2 * nsearch + 1);
4 for (i = 0; i < n; i++) {
5 q = SEARCHSHD(key);
6 if (q != NULL) {
7 releaseshd(q);
8 }
9 key += incr;

10 if (key >= nelements) {
11 key -= nelements;
12 }
13 }
14 mycount += n;
15
16 n = random() % (2 * nmodify + 1);
17 for (i = 0; i < n; i++) {
18 q = SEARCHX(key);
19 if (q != NULL) {
20 key = q->key;
21 DELETE(q);
22 q = kmalloc(sizeof(*q), 0);
23 if (q == NULL) {
24 shdctl->pt[id].err_count++;
25 } else {
26 RCU_VALIDATE_ALLOC(q, key);
27 init_el(q);
28 q->key = key;
29 if (!INSERT(q)) {
30 kfree(q);
31 }
32 }
33 }
34 key += incr;
35 if (key >= nelements) {
36 key -= nelements;
37 }
38 }
39 mycount += n;
40 RCU_QS();
41 }

Figure 5: Test Loop

1 static inline void
2 read_lock(atomic_t *rw)
3 {
4 long oldval;
5
6 do {
7 /* Wait for writer to get done. */
8
9 do {

10 oldval = (long)atomic_read4(rw);
11 } while (oldval <= RW_LOCK_BIAS / 2);
12
13 /* Attempt to read-acquire the lock. */
14
15 } while (atomic_cmpxchg4(rw,oldval,oldval-1) !=
16 oldval);
17 spin_lock_barrier();
18 }

Figure 6: Read-Acquiring an rwlock

1 static inline void
2 read_unlock(atomic_t *rw)
3 {
4 spin_unlock_barrier();
5 (void)atomic_xadd4(rw, 1);
6 }

Figure 7: Read-Releasing an rwlock

to prevent the critical section from “bleeding out” into
the preceding code.

Figure 7 shows how an rwlock is released. Line 4 ex-
ecutes any memory barriers required to prevent the crit-
ical section from bleeding out into the following code,
and line 6 atomically increments the lock variable, indi-
cating that one fewer reader is holding the lock.

Figure 8 shows the procedure to write-acquire the
rwlock. The outer loop spanning lines 7-19 spins re-
peatedly attempting to write-acquire the lock, contend-
ing with any other concurrent writers. The inner loop
spanning lines 11-14 repeatedly takes a snapshot of the
lock variable and subtracts the bias, spinning until the re-
sult indicates that any preceding writer has released the
lock. Once any preceding writer has released the lock,
lines 18-19 attempt to atomically update the lock vari-
able to indicate that this CPU is write-holding the lock.
Then the loop from lines 23-25 spins waiting for any
read-holding CPUs to release the lock. Finally, line 26
executes whatever memory-barrier instructions are re-
quired to prevent the critical section from bleeding out
into the preceding code.

Figure 9 shows the code to release an rwlock. This
is very similar to the read-release code. Line 4 executes
whatever memory-barrier instructions are needed to pre-
vent the critical section from bleeding out into the fol-
lowing code, and line 5 atomically adds the bias back
into the lock variable.

Note that once a writer releases the lock, either a
reader or a writer might acquire it next, so that a series
of writers cannot deterministically starve a reader. Once

1 static inline void
2 write_lock(atomic_t *rw)
3 {
4 long newval;
5 long oldval;
6
7 do {
8
9 /* Wait for previous writer to finish. */

10
11 do {
12 oldval = (long)atomic_read4(rw);
13 newval = oldval - RW_LOCK_BIAS;
14 } while (newval < -RW_LOCK_BIAS / 2);
15
16 /* Attempt to write-acquire. */
17
18 } while (atomic_cmpxchg4(rw,oldval,newval) !=
19 oldval);
20
21 /* Wait for any readers to finish. */
22
23 while (((long)atomic_read4(rw)) < 0) {
24 continue;
25 }
26 spin_lock_barrier();
27 }

Figure 8: Write-Acquiring an rwlock

1 static inline void
2 write_unlock(atomic_t *rw)
3 {
4 spin_unlock_barrier();
5 (void)atomic_xadd4(rw, RW_LOCK_BIAS);
6 }

Figure 9: Write-Releasing an rwlock

1 struct el *
2 searchshd(long key)
3 {
4 struct el *q;
5
6 spin_lock(&(KEY2BUCKET(key)->bktlock));
7 q = _search(key);
8 if (q != NULL) {
9 return (q);

10 }
11 spin_unlock(&(KEY2BUCKET(key)->bktlock));
12 return (NULL);
13 }

Figure 10: Per-Bucket Search

1 void
2 delete(struct el *q)
3 {
4 struct list_head *p = &(q->list);
5
6 list_del(p);
7 releasex(q);
8 kfree(q);
9 }

Figure 11: Per-Bucket Delete

a writer makes its presence known, it will eventually ob-
tain the lock, so that readers cannot starve a writer.

3.3 Per-Bucket Spinlock
Figure 10 shows the per-bucket-spinlock search func-
tion. It simply computes the hash, acquires the spinlock
for the corresponding hash bucket, searches the hash
chain, and returns with the lock held for a successful
search, or drops the lock (and returns NULL) for an un-
successful search. The searchx() function is identi-
cal.

Figure 11 shows the delete() function, which
is passed an element returned by a successful call to
searchx(), and is thus invoked with the bucket lock
held. Line 6 removes the element from the hash chain,
line 7 releases the bucket lock, and line 8 frees up the
newly removed element.

Figure 12 shows the insert() function. Line 6 ac-
quires the bucket lock. Lines 7-11 verify that the ele-
ment’s key is not already in the list, dropping the lock
and returning failure if it is. If the key is not already in
the list, line 12 adds the new element to the list, line 13
releases the lock, and line 14 returns success.

3.4 Per-Bucket rwlock
The per-bucket rwlock’s searchshd() function is the
same as that shown in Section 3.3, but with the spin-
lock operations replaced with read-side rwlock opera-
tions. Similarly, the per-bucket rwlock’s searchx(),
insert(), and delete() functions are the same as
those shown in Section 3.3, with the spinlock operations
replaced with write-side rwlock operations.

1 int
2 insert(struct el *q)
3 {
4 struct el *p;
5
6 spin_lock(&(KEY2BUCKET(q->key)->bktlock));
7 p = _search(q->key);
8 if (p != NULL) {
9 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));

10 return (0);
11 }
12 list_add(&(q->list), KEY2CHAIN(q->key));
13 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));
14 return (1);
15 }

Figure 12: Per-Bucket Insert

1 void
2 releaseshd(struct el *q)
3 {
4 if (atomic_xadd4(&q->refcnt, -1) == 1) {
5 kfree(q);
6 }
7 }

Figure 13: Reference-Count Release

3.5 Per-Bucket Spinlock and Per-Element
Refcnt

Figure 13 shows how a reference count is released by
releaseshd(). Line 4 atomically decrements the
count and checks to see if the old value was 1, in which
case this is the last reference, and the item may now be
freed by line 5. Note that the linked list itself holds a
reference, so that the element cannot possibly be freed
until after a successful delete().

The releasex() function simply releases the per-
bucket lock.

Figure 14 shows the searchshd() function, which
returns with the reference count held upon successful
search. Line 6 acquires the per-bucket spinlock, and
line 7 searches for the specified key. If the search is suc-
cessful, line 9 increments the reference count, line 10
releases the per-bucket spinlock, and line 11 returns a
pointer to the element. Otherwise, if the search is unsuc-
cessful, line 13 releases the per-bucket spinlock and line
14 returns NULL.

Note that both the search and the reference-count in-
crement are done under the per-bucket lock. Since dele-
tion is also done under the lock, it is not possible to gain
a reference to an element that has already been removed
from its list.

The searchx() exclusive-lock search function is
identical in function to the per-bucket-spinlock version
shown in Figure 10. Upon successful search, it returns
with the per-bucket lock held.

Figure 15 shows the reference-count delete()
function. This function must be passed an element
that was returned from searchx(), so that the per-

1 struct el *
2 searchshd(long key)
3 {
4 struct el *q;
5
6 spin_lock(&(KEY2BUCKET(key)->bktlock));
7 q = _search(key);
8 if (q != NULL) {
9 (void)atomic_xadd4(&q->refcnt, 1);

10 spin_unlock(&(KEY2BUCKET(key)->bktlock));
11 return (q);
12 }
13 spin_unlock(&(KEY2BUCKET(key)->bktlock));
14 return (NULL);
15 }

Figure 14: Reference-Count Shared Search

1 void
2 delete(struct el *q)
3 {
4 struct list_head *p = &(q->list);
5
6 list_del(p);
7 releasex(q); /* for search. */
8 releaseshd(q); /* for list. */
9 }

Figure 15: Reference-Count Delete

bucket lock is held on entry to delete(). In addition,
since the linked list itself holds a reference to the ele-
ment, we know that the reference count value must be at
least one, even if there are no references obtained from
searchshd() currently in force. Therefore, line 7
simply removes the element from the list, line 8 drops
the per-bucket lock, and line 9 releases the linked list’s
reference to the element. If there are no outstanding
searchshd() references, the releaseshd() invo-
cation on line 9 will also free up the element, otherwise,
the last searchshd() reference to be dropped will
free up the element.

Figure 16 shows the reference-count insert()
function. This function is identical to the per-bucket-
spinlock version shown in Figure 12, with the addition
of the initialization of the reference count to 1 (for the
linked list, remember?) on line 13.

1 int
2 insert(struct el *q)
3 {
4 struct el *p;
5
6 spin_lock(&(KEY2BUCKET(q->key)->bktlock));
7 p = _search(q->key);
8 if (p != NULL) {
9 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));

10 return (0);
11 }
12 atomic_set4(&q->refcnt, 1);
13 list_add(&(q->list), KEY2CHAIN(q->key));
14 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));
15 return (1);
16 }

Figure 16: Reference-Count Insert

1 struct el *
2 searchshd(long key)
3 {
4 struct el *q;
5
6 br_read_lock(bbrlock);
7 q = _search(key);
8 if (q != NULL) {
9 return (q);

10 }
11 br_read_unlock(bbrlock);
12 return (NULL);
13 }

Figure 17: brlock Shared Search

1 void
2 delete(struct el *q)
3 {
4 struct list_head *p = &(q->list);
5
6 list_del(p);
7 releasex(q);
8 kfree(q);
9 }

Figure 18: brlock Delete

3.6 Big-Reader Lock

Figure 17 shows the brlock searchshd() function.
Line 6 read-acquires the lock and line 7 performs the
search. If this search is successful, line 9 returns a
pointer to the element, while still holding the lock. Oth-
erwise, line 11 drops the lock and line 12 returns NULL.

The only difference between the searchx()
function and the searchshd() function is that
searchx() write-acquires the brlock.

Figure 18 shows the brlock delete() function.
Line 6 removes the specified from the list, line 7 write-
releases the brlock, and line 8 frees the element.

Figure 19 shows the brlock insert() function,
which is quite similar to the per-bucket-spinlock version
shown in Figure 12, but with the per-bucket exclusive
lock operations replaced with the corresponding write-
side brlock operations.

1 int
2 insert(struct el *q)
3 {
4 struct el *p;
5
6 br_write_lock(bbrlock);
7 p = _search(q->key);
8 if (p != NULL) {
9 br_write_unlock(bbrlock);

10 return (0);
11 }
12 list_add(&(q->list), KEY2CHAIN(q->key));
13 br_write_unlock(bbrlock);
14 return (1);
15 }

Figure 19: brlock Insert

1 struct el *
2 searchshd(long key)
3 {
4 struct el *q;
5
6 rcu_read_lock();
7 q = _search(key);
8 if (q != NULL) {
9 return (q);

10 }
11 rcu_read_unlock();
12 return (NULL);

}

Figure 20: RCU Shared Search

1 void
2 delete(struct el *q, struct rcu_handle *rhp)
3 {
4 struct list_head *p = &(q->list);
5
6 list_del(p);
7 RCU_SET_DELETED(q);
8 releasex(q);
9 call_rcu_kfree(rhp, q);

10 }

Figure 21: RCU Delete

3.7 RCU
Figure 20 shows the RCU searchshd() func-
tion, which does a simple search. Note that
rcu read lock() and rcu read unlock() gen-
erate no code in this case. The RCU searchx() func-
tion is identical to its per-bucket-lock counterpart shown
in Figure 10.

Figure 21 shows the RCU delete() function.
Again, this function is called with the per-bucket lock
held. Line 6 removes the specified element from the list,
line 7 updates debug information, line 8 releases the per-
bucket lock, and line 9 frees up the element at the end of
the next grace period. The call rcu kfree() func-
tion also updates statistics that track the maximum num-
ber of elements waiting for a grace period to expire.

Figure 22 shows RCU’s insert() function. Line 6
acquires the lock, and line 7 checks to see if the desired
key is already present in the list. If it is, lines 9-10 re-
lease the lock and return failure. Otherwise, if the de-
sired key is not already present, line 12 updates debug
information, line 13 adds the element to the list with ap-
propriate memory barriers, line 14 releases the lock, and
line 15 returns success.

4 Measured Results
This section shows measured results from running the
hash-table benchmark using the different locking meth-
ods on the different CPUs. The CPUs used are as fol-
lows:

1. Four-CPU 700MHz P-III system.
2. Four-CPU 1.4GHz IPF system.

1 int
2 insert(struct el *q)
3 {
4 struct el *p;
5
6 spin_lock(&(KEY2BUCKET(q->key)->bktlock));
7 p = _search(q->key);
8 if (p != NULL) {
9 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));

10 return (0);
11 }
12 RCU_SET_INUSE(q);
13 list_add_rcu(&(q->list), KEY2CHAIN(q->key));
14 spin_unlock(&(KEY2BUCKET(q->key)->bktlock));
15 return (1);
16 }

Figure 22: RCU Insert

3. Four-CPU 1.4GHz Opteron system.
4. Eight-CPU 1.45GHz POWER4+ system (but only

four CPUs were used in these benchmarks).

Section 4.1 displays results for a read-only workload,
while Section 4.2 shows how the breakevens vary as the
update intensity of the workload varies.

4.1 Read-Only Workload
Figures 23, 24, 25, and 26 show performance results
for each of the locking mechanisms. The y-axes are nor-
malized in order to prevent inappropriate comparison of
the different CPUs.

The left-hand graph of each figure shows the perfor-
mance of a global spinlock and a global rwlock. In each
case, these primitives give negative scaling. The cache
misses incurred by rwlock overwhelm any read-side par-
allelism one might hope to gain. For rwlock to show de-
cent scaling, the read-side critical sections must be quite
lengthy.

The right-hand graph of each figure shows the per-
formance of brlock, the per-bucket-locking mechanisms,
and RCU. Note that RCU does not achieve ideal perfor-
mance, even in this read-only benchmark. In fact, for
some CPUs, the deviation from ideal is significant, in
contrast to experience in the kernel, where the overhead
of the checks is not measurable. This is due to the fact
that this user-level benchmark does not have an existing
scheduler tick() function in which a low-cost test
can be placed. User-level code therefore bears a greater
cost for RCU than does does the kernel, so, once again,
these comparisons are conservative.

4.2 Mixed Workload
The mixed-workload results are more interesting. Al-
though RCU outperforms the other mechanisms in the
read-only case, the extra overhead of detecting grace
periods should slow it down for updates. RCU would
therefore be expected to be optimal only up to a particu-
lar update fraction.

This section shows what this update fraction is for
different values of

�
, which is the expected number of

searches and updates per grace period. The greater the
value of

�
, the greater the number of searches and up-

dates to absorb the overhead of detecting a grace pe-
riod. One would therefore expect RCU’s breakeven up-
date fraction to increase with increasing

�
.

The two values chosen for
�

are 10 and 100.
These values are quite conservative given that realtime-
response-time tests of the Linux 2.6.0 kernel under
heavy load have observed more than 1,000 updates per
grace period. The corresponding value of

�
would be

even greater, but the current kernel instrumentation does
not measure the number of read-side RCU critical sec-
tions. However, even if the number of read-side critical
sections is zero, the values of 10 and 100 used in this
paper are quite conservative. This came as a surprise, as
experience with RCU in other operating systems [MS98]
has placed

�
in the range from 0.1 to 10.

Figures 27 through 38 show the performance of the
various locking mechanisms for 4-CPU systems of x86,
IPF, Opteron, and PPC CPUs. In each figure, the graph
on the left shows

�
of 10, and the graph on the right

shows
�

of 100. Again, the y-axis is normalized to
prevent inappropriate comparison between the different
CPUs.

The crossover update fractions between RCU and
per-bucket locking are summarized in Table 1. The
crossover numbers in the table are approximate–note
that the lines crossing are often nearly parallel, which
means that small experimental errors translate to rel-
atively large changes in the crossover number. The
crossover update fractions are all rather large, with RCU
remaining optimal when up to half of the accesses are
updates for some CPUs. The x86 results show RCU im-
proving with increasing numbers of CPUs, but Opteron,
and particularly IPF/x86, show decreases. Future work
for IPF includes running the test in the native instruction
set to see if this behavior is an artifact of the x86 hard-
ware emulation environment. In the case of Opteron, the
effect is much smaller, but it would still be quite interest-
ing to run this experiment on an 8-CPU Opteron system.

The “wavy” lines in a number of plots are due to run-
to-run variation in measured performance.

RCU comes very close to the ideal performance in a
number of cases, but not universally. This is why single-
CPU benchmarks are a special challenge for RCU-based
changes, and also why it is so important to subject RCU-
based changes to single-CPU benchmarks.

It appears from this data that RCU should provide a
performance benefit on most systems when the update
fraction is less than 0.1 or 10%. One important exception
to this rule of thumb is the case of a data structure that
already uses RCU for some of its code paths. Since the

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

H
as

h
Ta

bl
e

S
ea

rc
he

s
pe

r U
ni

t T
im

e

CPUs

"ideal"
"global"

"globalrw"

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

CPUs

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 23: x86 Performance for Read-Only Workload

first use of RCU must bear the entire update cost, RCU
may be used much more aggressively on additional code
paths. As always, your mileage may vary–the data in this
paper is in no way a substitute for careful performance
evaluation under realistic conditions.

5 Summary
A hash-table mini-benchmark was used to evaluate the
suitability of RCU for a range of update intensities on
four different types of CPUs. As expected, RCU is
best for read-only workloads. RCU remains best up
to about a 10% update fraction on all systems under
all tested conditions, and is best up to a 50% update
fraction for 4-CPU x86, 1- and 2-CPU Opteron, and 2-
and 4-CPU PPC for systems running with at least 100
searches/updates per grace period. Since machines run-
ning heavy workloads have been observed with more
than 1,000 updates per grace period, these figures appear
to be conservative.

Therefore, a conservative rule of thumb would be to
use RCU when no more than about 10% of the accesses
update the hash table. However, once a given data struc-
ture uses RCU on some code paths, RCU may be ap-
plied to its other code paths much more aggressively. Of
course, your mileage may vary, so this paper is in no
way a substitute for careful testing under realistic con-
ditions. Update-intensive workloads generally do well
with a per-bucket lock. In update-intensive situations
where deadlock is a problem, it would be better to use
reference counts with per-bucket locking. Note that the
plots of performance data are qualitatively similar, as
would be expected given that cacheline traffic is respon-

sible for much of the overhead. Therefore, these rules of
thumb are likely to be quite reliable.

Future work includes running on a greater variety of
CPUs and on different models within the same CPU
family, and testing the locking mechanisms on different
data structures.

Acknowledgements
I am indebted to Jack Vogel, Chris McDermott, Dave
Hansen, and Adam Litke, who provided time on the test
systems. I owe thanks to Dan Frye, Jai Menon, and Juer-
gen Deicke for their support of this work. As always, I
look forward to continuing to learn about RCU and its
uses, and am grateful to the many people who have tried
it out. It is from them that I learn the most.

References
[ACMS03] Andrea Arcangeli, Mingming Cao, Paul E.

McKenney, and Dipankar Sarma. Using
read-copy update techniques for System V
IPC in the Linux 2.5 kernel. In Proceed-
ings of the 2003 USENIX Annual Technical
Conference (FREENIX Track), June 2003.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Par-
nas. Concurrent control with “readers” and
“writers”. Communications of the ACM,
14(10):667–668, October 1971.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan Ap-
pavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a
shared memory multiprocessor operating

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

H
as

h
Ta

bl
e

S
ea

rc
he

s
pe

r U
ni

t T
im

e

CPUs

"ideal"
"global"

"globalrw"

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

CPUs

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 24: IPF/x86 Performance for Read-Only Workload

system. In Proceedings of the 3rd Sympo-
sium on Operating System Design and Im-
plementation, New Orleans, LA, February
1999.

[HOS89] James P. Hennessey, Damian L. Osisek,
and Joseph W. Seigh II. Passive serializa-
tion in a multitasking environment. Techni-
cal Report US Patent 4,809,168, US Patent
and Trademark Office, Washington, DC,
February 1989.

[Jac93] Van Jacobson. Avoid read-side locking via
delayed free. Verbal discussion, September
1993.

[KL80] H. T. Kung and Q. Lehman. Concur-
rent maintenance of binary search trees.
ACM Transactions on Database Systems,
5(3):354–382, September 1980.

[LSS02] Hanna Linder, Dipankar Sarma, and Ma-
neesh Soni. Scalability of the directory en-
try cache. In Ottawa Linux Symposium,
pages 289–300, June 2002.

[MAK
�

01] Paul E. McKenney, Jonathan Appavoo,
Andi Kleen, Orran Krieger, Rusty Russell,
Dipankar Sarma, and Maneesh Soni. Read-
copy update. In Ottawa Linux Symposium,
July 2001.

[McK99] Paul E. McKenney. Practical performance
estimation on shared-memory multiproces-
sors. In Parallel and Distributed Comput-
ing and Systems, pages 125–134, Boston,
MA, November 1999.

[McK03] Paul E. McKenney. Using RCU in
the Linux 2.5 kernel. Linux Journal,
1(114):18–26, October 2003.

[ML84] Udi Manber and Richard E. Ladner. Con-
currency control in a dynamic search struc-
ture. ACM Transactions on Database Sys-
tems, 9(3):439–455, September 1984.

[MS98] Paul E. McKenney and John D. Slingwine.
Read-copy update: Using execution history
to solve concurrency problems. In Par-
allel and Distributed Computing and Sys-
tems, pages 509–518, Las Vegas, NV, Oc-
tober 1998.

[MSA
�

02] Paul E. McKenney, Dipankar Sarma, An-
drea Arcangeli, Andi Kleen, Orran Krieger,
and Rusty Russell. Read-copy update. In
Ottawa Linux Symposium, pages 338–367,
June 2002.

[MSS04] Paul E. McKenney, Dipankar Sarma, and
Maneesh Soni. Using rcu in the linux 2.6
directory-entry cache. to appear in Linux
Journal, 1(118), January 2004.

[Pug90] William Pugh. Concurrent maintenance
of skip lists. Technical Report CS-TR-
2222.1, Institute of Advanced Computer
Science Studies, Department of Computer
Science, University of Maryland, College
Park, Maryland, June 1990.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

H
as

h
Ta

bl
e

S
ea

rc
he

s
pe

r U
ni

t T
im

e

CPUs

"ideal"
"global"

"globalrw"

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

CPUs

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 25: Opteron Performance for Read-Only Workload

Legal Statement
This work represents the view of the author and does not nec-
essarily represent the view of IBM.
Linux is a registered trademark of Linus Torvalds.
i386 and Pentium are trademarks of Intel Corporation or its
subsidiaries in the United States, other countries, or both.
Other company, product, and service names may be trade-
marks or service marks of others.

CPU
�

CPUs Crossover Figure
x86 10 1 0.2 27

2 0.3 28
4 0.3 29

100 1 0.4 27
2 0.4 28
4 0.5 29

IPF/x86 10 1 0.3 30
2 0.2 31
4 0.1 32

100 1 0.4 30
2 0.4 31
4 0.2 32

Opteron 10 1 0.3 33
2 0.2 34
4 0.2 35

100 1 0.5 33
2 0.5 34
4 0.4 35

PPC 10 1 0.3 36
2 0.5 37
4 0.4 38

100 1 0.4 36
2 0.5 37
4 0.5 38

Table 1: Summary of RCU Crossover Update Fractions

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

H
as

h
Ta

bl
e

S
ea

rc
he

s
pe

r U
ni

t T
im

e

CPUs

"ideal"
"global"

"globalrw"

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4
S

ea
rc

he
s/

U
pd

at
es

 p
er

 U
ni

t T
im

e
CPUs

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 26: PPC Performance for Read-Only Workload

0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 27: x86 1-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1
S

ea
rc

he
s/

U
pd

at
es

 p
er

 U
ni

t T
im

e
Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 28: x86 2-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 29: x86 4-CPU Performance for Mixed Workload

0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.1

1

10

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 30: IPF/x86 1-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 31: IPF/x86 2-CPU Performance for Mixed Workload

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1
S

ea
rc

he
s/

U
pd

at
es

 p
er

 U
ni

t T
im

e
Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 32: IPF/x86 4-CPU Performance for Mixed Workload

0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 33: Opteron 1-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1
S

ea
rc

he
s/

U
pd

at
es

 p
er

 U
ni

t T
im

e
Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 34: Opteron 2-CPU Performance for Mixed Workload

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 35: Opteron 4-CPU Performance for Mixed Workload

0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.1

1

0 0.2 0.4 0.6 0.8 1S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 36: PPC 1-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 37: PPC 2-CPU Performance for Mixed Workload

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=10)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"
0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

S
ea

rc
he

s/
U

pd
at

es
 p

er
 U

ni
t T

im
e

Update Fraction (lambda=100)

"ideal"
"bkt"

"bktrw"
"brlock"
"refcnt"

"rcu"

Figure 38: PPC 4-CPU Performance for Mixed Workload

