A Critical RCU Safety Property is... Ease of Use!

Paul E. McKenney

IBM Linux Technology Center
Hillsboro, OR, USA
paulmckrcu@gmail.com

ABSTRACT

Some might argue that read-copy update (RCU) is too low-
level to be targeted by hackers, but the advent of Row Ham-
mer [19] demonstrated the naiveté of such views. After all, if
black-hat hackers are ready, willing, and able to exploit hard-
ware bugs such as Row Hammer, they are assuredly ready,
willing, and able to exploit bugs in RCU. Nor is it any longer
the case that RCU’s involvement in exploitable Linux-kernel
bugs is strictly theoretical. However, this bug involved not
RCU’s correctness, but rather its ease of use. Nevertheless, it
was a real bug that really needed fixing. This paper describes
this bug and the road to its eventual fix.

CCS CONCEPTS

« Computer systems organization — Multicore archi-
tectures; - Software and its engineering — Multithread-
ing; « General and reference — Validation;

KEYWORDS

Operating systems, Security: Exploitable bugs, Concurrency
control, Read-copy update

ACM Reference Format:

Paul E. McKenney. 2019. A Critical RCU Safety Property is... Ease
of Use!. In Proceedings of ACM International Systems and Storage
Conference (SYSTOR’19). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3319647.3325836

1 INTRODUCTION

RCU is a technique that often replaces reader-writer locking,
due to RCU’s read-side primitives being both wait-free and
an order of magnitude faster than uncontended locking. How-
ever, it turns out that even the combination of wait-freedom,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SYSTOR’19, June 2019, Haifa, Israel

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6749-3...$15.00
https://doi.org/10.1145/3319647.3325836

extreme scalability, and excellent performance do not con-
stitute an excuse to completely ignore ease-of-use issues.
This paper presents a brief overview of RCU, the ease-of-use
issue in RCU that led to the exploit, a couple of non-fixes, the
ultimate fix (thus far, anyway), further consequences, and
lessons (re)learned.

2 A BRIEF OVERVIEW OF RCU

Although RCU has enjoyed heavy use by the Linux kernel
and a number of other projects for quite some time, detailed
awareness of its uses and implementation is not yet main-
stream. Therefore, Section 2.1 summarizes RCU’s conceptual
properties and cites formalizations, Section 2.2 presents a
trivial use case, Section 2.3 presents an equally trivial im-
plementation, and finally Section 2.4 summarizes the three
flavors of Linux-kernel RCU. Readers who have used or im-
plemented RCU may wish to skip ahead to Section 2.4 on
page 5, and readers fluent in Linux-kernel RCU may wish to
skip further ahead to Section 3, also on page 5.

2.1 Relevant RCU Properties

RCU [27, 33, 36] permits updaters to wait for pre-existing
RCU read-side critical sections, and is intended for situations
in which such critical sections are executed much more fre-
quently than the corresponding update-side waits. Each RCU
read-side critical section begins with rcu_read_lock() and
ends with rcu_read_unlock(), and any region of code not
in a critical section represents a quiescent state. Nested crit-
ical sections are flattened, so that a nested set of critical
sections acts as one large critical section.

RCU updaters are typically split into phases. The first
phase changes reader-visible state, for example, removing a
data element. The second phase waits for pre-existing read-
ers, relying on the fact that new readers cannot see the old
state, for example, being unable to gain a reference to a
just-removed element. The third and final phase carries out
reader-unsafe actions such as freeing a just-removed element.
These actions are now safe because all remaining readers
are aware of the new reader-visible state, for example, being
guaranteed not to hold a reference to the just-removed ele-
ment. The wait phase invokes synchronize_rcu(), which
waits for a grace period that starts at the time of invocation


https://doi.org/10.1145/3319647.3325836
https://doi.org/10.1145/3319647.3325836
https://doi.org/10.1145/3319647.3325836

SYSTOR’19, June 2019, Haifa, Israel

@ | rcu_read_lock()

rcu_read_unlock() ﬂ

synchronize_rcu()

2
@ | reu_read_lock() synchronize_rcu()

rcu_read_unlock()

® rcu_read_lock()

e synchronize_rcu()
rcu_read_unlock()

\

=)

4)
rcu_rﬁ_ ‘ } 74
. nchronize_rcu()
rcu - ck() %

Figure 1: RCU Execution Constraints

and ends after all pre-existing readers have completed. Dur-
ing a grace period, all CPUs and tasks must visit a quiescent
state at least once, hence any CPU or task failing to ever
visit a quiescent state will prevent any future synchronize-
_rcu() invocations from returning. Any period of time con-
taining a grace period is itself a grace period.

RCU differs from reader-writer locking in that
synchronize_rcu() need only wait for pre-existing
RCU read-side critical sections; it need neither exclude nor
wait for critical sections that start execution after the call
to synchronize_rcu(). This relationship between RCU
readers and updaters is illustrated by the four scenarios
shown in Figure 1, the first three of which are permitted and
the last of which is forbidden. Each box on the left-hand side
of this figure represents an RCU read-side critical section,
and each box on the right-hand side of this figure represents
a grace period, that is, the call to synchronize_rcu()
happens at the top of the box and the return at the bottom,
so that within each scenario, time progresses from top to
bottom. The first scenario shows that if a critical section
ends before the end of a given grace period, that critical
section may start before that grace period starts. The second
scenario shows that if a critical section starts after the
beginning of a given grace period, that critical section
may end after that grace period ends. The third scenario
shows that a grace period may completely overlap a given
critical section. The fourth and final scenario shows that a
critical section absolutely must not complete overlap any
grace period. Taken together, these scenarios mean that
although critical sections must affect the execution of grace

P.E. McKenney

1 struct foo {

2 int data;

3 } xgptr = NULL;

4

5 int lookup(int =*dp)
6

7  struct foo *p;
8

9 rcu_read_lock();
10 p = rcu_dereference(gptr);

1 if (Ip) {

12 rcu_read_unlock();
13 return 0;

14 }

15  *dp = p->data;

16 rcu_read_unlock();
17 return 1;

18 }

20 int insert(int newdata)
21 {
22 struct foo *p;

24  p = kmalloc(sizeof (xp), GFP_KERNEL);
25  BUG_ON(!p);

26 p->data = newdata;

27  if (cmpxchg(&gptr, NULL, p)) {

28 kfree(p);

29 return 0;

30 )

31 return 1;

34 int remove(void)

35 {

36 struct foo *p;

37

38 p = xchg(&gptr, NULL);
39  synchronize_rcu();

40  kfree(p);

41 return !!p;

42 3}

Figure 2: RCU Linked Insertion and Removal

periods, the reverse need not be the case. This asymmetry
permits rcu_read_lock() and rcu_read_unlock() to be
exceedingly lightweight and scalable [4].

Formal semantics for RCU are also available [1, 10, 11].

2.2 Trivial RCU Use Case

With the addition of rcu_dereference(),! the RCU primi-
tives described in the preceeding section enable the linked-
list use case that represents the most common application
of RCU, a trivial instance of which is shown in Figure 2.2
Lines 1-3 of this figure show a global pointer gptr that is
initially NULL, but that can reference a struct foo which
contains a single integer ->data. This trivial data structure
has the following three access functions:

e lookup() onlines 5-18, which returns 0 if gptris NULL,
and otherwise returns 1 and stores the current ->data

! Similar to a C11 memory_order_consume load, but in the common case
compiling to a single load instruction.
2 Despite being trivial, it is used in production [40].



A Critical RCU Safety Property is... Ease of Use!

through the argument dp. Figures 3 and 4 illustrate
lookup().

e insert() on lines 20-32, which returns 0 if gptr is
not NULL, and otherwise returns 1 and causes gptr to
reference a struct foo containing the specified value.
Given multiple concurrent insert() invocations, at
most one of them will return 1. Figure 3 illustrates
insert().

e remove() on lines 34-42, which returns 0 if gptr is
NULL, and otherwise returns 1, sets gptr to NULL, and
safely frees the structure previously referenced by
gptr. Given multiple concurrent remove() invoca-
tions, at most one of them will return 1. Figure 4 illus-
trates remove ().

The lookup() function uses an RCU read-side critical
section starting with rcu_read_lock() on line 9 and ending
with rcu_read_unlock() on either line 12 or 16. Line 10
uses rcu_dereference() to fetch gptr, guaranteeing to do
so using a single load instruction and also guaranteeing that
any dereferences of the fetched pointer will happen after
the load. In theory, this line is equivalent to p = gptr,
but in practice both the compiler and CPU could produce
wildly inappropriate results [30, Sections 4.3.4.1 and 15.4.1].
If line 11 sees that gptr was NULL, line 12 ends the critical
section and line 13 returns a failure indication. Otherwise,
line 15 fetches the ->data field, line 16 ends the critical
section, and line 17 returns a success indication. A key point
is that all of the lookup() function’s gptr-related accesses
are within its RCU read-side critical section.

Given the trivial nature of this linked data structure, the
insert() function can synchronize updates using a single
fully ordered atomic compare-and-swap operation, which in
the Linux kernel is cmpxchg (). Initially, the state is as shown
in step (1) in Figure 3: gptr is NULL. Line 24 allocates the new
structure and line 25 checks it, normally resulting in the state
in step (2) in the figure. The color of the new structure is
green, indicating that readers cannot yet obtain a reference to
it. Line 26 initializes the new structure, resulting in the state
shown in step (3) of the figure. Then line 27 uses cmpxchg()
to atomically check whether gptr is NULL, and if so update
it to instead reference the newly allocated structure. If this
cmpxchg () fails, line 28 frees the newly allocated structure
and line 29 returns a failure indication. Otherwise, the state
is as shown in step (4) of the figure, with the new object
colored red to indicate that readers can now reference it, and
finally line 31 returns a success indication. Either way, the
atomic nature of the cmpxchg() ensures that at most one of
a set of concurrently executing insert() invocations can
succeed, as required.

SYSTOR’19, June 2019, Haifa, Israel

(1) gptr

—L ey L

)

.—

3) gptr

cmpxchg(&gptr, NULL, p)

|

(4)

->data=42

Figure 3: RCU Linked-Structure Insertion

->data=42

p = xchg(&gptr, NULL)

@) gptr

synchronize_rcu()

(©)

(1) gptr

->data=42

!

(4)

Figure 4: RCU Linked-Structure Removal

The remove () function’s synchronization is even simpler,
using a fully ordered atomic exchange operation [10, Sec-
tion V.C], which in the Linux kernel is xchg (). Initially, the
state is as shown in step (1) of Figure 4, where gptr refer-
ences an element with ->data equal to 42, which is colored



SYSTOR’19, June 2019, Haifa, Israel

red due to the fact that any number of readers might be refer-
encing it. Line 38 uses xchg() to atomically store NULL into
gptr and return the previous value of this pointer, resulting
in the state shown step (2) of the figure. At this point, new
readers have no way to gain a reference to the old struct
foo instance, but old readers might still retain references,
hence the yellow color.

Note that all potential read-side references to this newly
removed instance are held within the RCU read-side critical
section spanning lines 9-16 of Figure 2. Furthermore, any
such read-side critical section must have executed the rcu-
_dereference() on line 10 before the xchg () on line 38 exe-
cuted and thus before the synchronize_rcu() online 39 ex-
ecuted. Therefore, when synchronize_rcu() returns, there
can no longer be any instances of lookup() retaining refer-
ences to the just-removed struct foo instance. As a result,
once execution reaches line 40, the remove () function’s lo-
cal variable p is the only remaining reference to the newly
removed instance of struct foo. The state is thus as shown
in step (3) of Figure 4, with the newly removed structure
colored green to indicate that there can no longer be any
readers referencing it. Therefore, line 40 can safely invoke
kfree(),® so that the state is as shown in step (4) of Figure 4.
Finally line 41 uses a double-not operation to return zero if
p was NULL and one otherwise. Note that the Linux kernel
carefully conceals the nature of its allocation and free func-
tions from the compiler, thus avoiding the consequences of
the undefined behavior that results from accessing pointers
to already-freed objects [35]. In other environments, it might
be wise to compute ! ! p before invoking kfree().

Note that in step (2) of Figure 4, different readers might
disagree as to whether or not gptr referenced the old struct
foo. A large number of algorithms have no problem with this,
especially those representing real-world state: After all, in-
memory state will not immediately reflect a real-world state
change. Nevertheless, algorithms requiring global read-side
agreement can be accommodated straightforwardly [3].

We have seen a straightforward RCU use case that allows
proper synchronization among readers and updaters where
the updaters synchronize with each other via atomic read-
modify-write operations. More complex linked structures
usually require that updaters use higher-level synchroniza-
tion primitives, with locking being a popular choice. For
lock-based updates, rcu_assign_pointer() is the update-
side counterpart to rcu_dereference(), for example, rcu-
_assign_pointer(gptr, p) assigns the value p to gptr
using store-release semantics. However, RCU interoperates
numerous update-side synchronization mechanisms, includ-
ing transactional memory [14, 15, 37, 39, 47], non-blocking

3 Note that passing a NULL pointer to kfree() is a no-op.

P.E. McKenney

1 #define rcu_read_lock()

2 #define rcu_read_unlock()

3 #define rcu_dereference(p) READ_ONCE(p)

4 #define rcu_assign_pointer(p, v) smp_store_release(&(p), (Vv))
void synchronize_rcu(void)

5
6 {

7 int cpu;
8

9  for_each_online_cpu(cpu)
10 while (raw_smp_processor_id() != cpu)
11 sched_setaffinity(current->pid, cpumask_of(cpu));

Figure 5: Trivial RCU Implementation for Non-
Preemptive Environments

synchronization [9, 10, 34], and a single designated updater
thread [10, 36].

2.3 Trivial RCU Implementation

Section 2.1 noted that rcu_read_lock() and rcu_read-
_unlock() can be exceedingly lightweight and scalable. In
fact, in non-preemptible Linux-kernel builds, they emit no
code whatsoever. Furthermore, as mentioned in Section 2.2,
rcu_dereference() can be implemented as a single load
instruction. Hence, an RCU reader might traverse a linked
data structure using precisely the same sequence of machine
instructions used in a single-threaded environment, despite
concurrent updates.

These are very attractive properties, but they naturally
raise concerns about how this could possibly be imple-
mented. This section provides a trivial implementation for
non-preemptive (run-to-block) environments such as Linux
kernels built with CONFIG_PREEMPT=n. Note that although
building with CONFIG_PREEMPT=n causes the kernel itself to
be non-preemptive, user code running on that kernel can
still be preempted any time, anyplace, and anywhere.

The key insight is that non-preemptive environment pro-
hibit blocking while holding a pure spinlock. Failing to ob-
serve this prohibition leads to a well-known deadlock sce-
nario. To see this, suppose that the thread holding a given
lock is blocked, and all CPUs are spinning on that lock. The
thread holding the lock cannot release it until it resumes on
some CPU, but the threads currently spinning cannot relin-
quish their CPUs until they acquire the lock. Therefore, the
rule is that blocking is prohibited while holding a spinlock.

This same rule applies to RCU readers in the Linux kernel:
Once a rcu_read_lock() is encountered, blocking is pro-
hibited until after the matching rcu_read_unlock(). There-
fore, because blocking results in a context switch, if a CPU
executes a context switch, all prior RCU readers running
on that CPU are guaranteed to have completed. Once all
CPUs have executed a context switch, all pre-existing RCU
read-side critical sections are guaranteed to have completed.



A Critical RCU Safety Property is... Ease of Use!

This means that a slow and fragile but functional implemen-
tation of synchronize_rcu() could simply force itself to
run on each online CPU, for example, by using the Linux
kernel’s internal sched_setaffinity() function. This ap-
proach results in a synchronize_rcu() implementation that
comprises only seven lines of code, as shown by lines 5-12
of Figure 5. Line 9 iterates through the online CPUs, and for
each such CPU, line 10 loops over line 11, each execution
of which attempts to force the current task to migrate over
to that CPU. Therefore, once this function returns, it has
forced a pair of context switches on each online CPU, which
in turn implies that all RCU read-side critical sections that
were running at the time of the call to synchronize_rcu()
have completed, as required.

Note that rcu_read_lock() (line 1) and, rcu_read-
_unlock() (line 2) generate no code.* Note further that rcu-
_dereference() (line 3) generates a C-language volatile
load, which will normally compile to a single load instruc-
tion. This trivial implementation therefore delivers on the
promise of RCU readers using exactly the same sequence
of instructions used by their single-threaded counterparts,
thus incurring exactly zero synchronization overhead in the
absence of updaters. These attractive performance and scal-
ability properties have led to significant RCU use within the
Linux kernel, with more than 15,000 calls to its API as of
Linux kernel v5.0 [23].

2.4 RCU Flavors

There are three flavors of the RCU API. The original flavor,
RCU-sched, relies on disabling read-side preemption and
thus on context switch as its primary quiescent state [33].
However, Robert Olsson’s network-overload tests resulted in
lockups due to the kernel never exiting networking’s bottom-
half handlers long enough to do a context switch [45]. The
solution was the RCU-bh flavor, which has an additional qui-
escent state upon exit (even momentary exit) from bottom-
half handlers [42, 43]. The original RCU-sched flavor was
retained because its read-side primitives are significantly
faster than those of RCU-bh. However, both RCU-sched’s
and RCU-bh’s readers disable preemption, which proved
problematic for deep sub-millisecond workloads [5, 46]. Sup-
porting these workloads required the addition of the third fla-
vor, RCU-preempt, which allows read-side preemption [12].
RCU-sched was retained due to use cases that treat hardware
interrupt handlers as readers. In non-realtime and thus non-
preemptible kernels, the RCU-preempt flavor maps directly
onto the RCU-sched flavor.

4 This trivial implementation can be made safe for preemptible environ-
ments by defining rcu_read_lock() and rcu_read_unlock() as preempt-
_disable() and preempt_enable(), respectively.

SYSTOR’19, June 2019, Haifa, Israel

rcu_read_lock_sched();

p = rcu_dereference(gp);
do_something_with(p);
rcu_read_unlock_sched();

q = rcu_dereference(gp);
rcu_assign_pointer(gp, NULL);
synchronize_rcu();

kfree(q);

B wN =

Figure 6: Exploiting RCU’s Ease-of-Use Bug

As of Linux kernel v4.20, RCU-preempt provides rcu-
_read_lock(), rcu_read_unlock(), rcu_dereference(),
and synchronize_rcu(); RCU-bh provides rcu_read-
_lock_bh(), rcu_read_unlock_bh(), rcu_dereference-
_bh(), and synchronize_rcu_bh(); and RCU-sched
provides rcu_read_lock_sched(), rcu_read_unlock-
_sched(), rcu_dereference_sched(), and synchronize-
_sched ().’ These three sets of primitives are similar to a set
of three locks in that mixing and matching different flavors
of RCU primitives is usually a bug. One exception to this
rule is an implementation quirk that has permitted mixing
rcu_read_lock_bh() readers with synchronize_sched()
updaters. On the other hand, mixing rcu_read_lock-
_sched() readers with synchronize_rcu_bh() updaters
really can fail. RCU’s intolerance of such mixing and
matching is the root cause of the ease-of-use bug described
in the next section.

3 RCU’S EASE-OF-USE BUG

RCU has a long history of ease-of-use facilities, bugs, and
fixes. For example, the original 2002 Linux-kernel RCU pro-
vided rcu_read_lock() and rcu_read_unlock(), which
greatly eases detection of illegal blocking within RCU read-
side critical sections. Further, in 2004, open-coded use of smp-
_read_barrier_depends() and smp_wmb() was replaced
by rcu_dereference() and rcu_assign_pointer(), re-
spectively, greatly easing the code reader’s task of work-
ing out what RCU protects [44]. Finally, starting in 2010,
RCU uses lockdep [6] to more easily detect traversal of RCU-
protected pointers outside of the required critical sections
and/or update-side locks [25].

Returning to the present-day ease-of-use bug, an example
of buggy mixing and matching of different RCU flavors is
shown in Figure 6, in which the read-side code is delimited by
rcu_read_lock_sched() and rcu_read_unlock_sched(),
but the updater incorrectly uses synchronize_rcu() to wait
for readers. Given this mismatch, the reader might execute
lines 1 and 2, thus picking up the pointer to the current object
referenced by gp. The updater might execute lines 1-3, where
line 3’s synchronize_rcu() waits for RCU readers. Unfor-
tunately, line 3 waits only for those RCU readers delimited
by rcu_read_lock() and rcu_read_unlock(), which does
not include Figure 6’s reader, which is instead delimited by
rcu_read_lock_sched() and rcu_read_unlock_sched().

5 The rcu_assign_pointer() primitive is common across all three flavors.



SYSTOR’19, June 2019, Haifa, Israel

This means that the updater’s line 3 could return immedi-
ately, so that line 4’s kfree() will free the object that is still
being used by the reader’s call to do_something_with().
This can result in arbitrary misbehavior, but worse yet, be-
cause usermode code has a high degree of control over the
contents of kernel memory (e.g., due to pathnames, data
transmitted over the network, and so on), a malicious user
could potentially cause the kernel to execute arbitrary code
of the attacker’s choice. In other words, unlike RCU’s prior
ease-of-use bugs, in this case the misbehavior can be (and in
the case at hand, was) exploitable!

Fortunately, the fix was straightforward: Make readers and
updaters use compatible RCU primitives. However, and to his
credit, Linus Torvalds asked me to update RCU to eliminate
this ease-of-use issue, and with it, this class of RCU-usage
bugs. Nor was Linus the first to make this request, in fact,
many developers have requested this over a period of many
years. Furthermore, I attempted to avoid this ease-of-use bug
when originally implementing preemptible RCU for real-time
Linux. Unfortunately, that attempt failed.

However, the kernel has changed considerably during
the intervening decade: (1) Multiple copies of architecture-
specific code (sometimes coded in assembly) have been con-
solidated into core-kernel C functions,® which enabled RCU
to precisely handle idle and CPU-hotplug transitions, which
in turn eliminated a number of troublesome race conditions;
(2) There are formal memory models for several CPU fam-
ilies [2, 22, 38]; (3) The Linux kernel memory model [1]
removes guesswork from the art of Linux-kernel concur-
rent coding; and (4) RCU’s guarantees have been formal-
ized [1, 10, 11]. The models and formalizations mentioned
in these last three items are all executable, that is, there are
tools implementing each of these models. A given tool takes
as input a litmus test that specifies small fragments of concur-
rent code and includes a predicate. The tool then produces
as output a list of all final states that can be reached by all
possible executions of the specified code fragments, given
the constraints specified by the formal model. Finally, the
tool produces an indication of whether all, some, or none of
these final states satisfy the specified predicate. Executable
formal models provide a welcome alternative to the sheer
paranoia guiding earlier implementations of Linux-kernel
RCU. The time therefore seemed ripe for a second attempt
to remove RCU’s ease-of-use bug.

One straightforward way to eliminate this ease-of-use
bug is to change synchronize_rcu() to wait on all RCU
readers, regardless of whether they use rcu_read_lock(),
rcu_read_lock_bh(), rcu_read_lock_sched(), or any of

% In other words, a single C-language hook may be used where tens of
architecture-specific hooks, some in assembly, were once required.

P.E. McKenney

rcu_read_lock_bh();
do_something_1();
rcu_read_lock();
rcu_read_unlock_bh();
do_something_2();
rcu_read_lock_sched();
rcu_read_unlock();
do_something_3();
rcu_read_unlock_sched();

p = remove_something_1_2_3();
synchronize_rcu();
synchronize_rcu_bh();
synchronize_sched();
kfree(p);

Www~NOU A~ WN =

Figure 7: Nesting Disparate Critical Sections

1 { rcu_read_lock_bh(); rcu_read_lock(); }

2 do_something_1();

3 rcu_read_lock();

4 { rcu_read_unlock(); rcu_read_unlock_bh(); 3}

5 do_something_2();

6 { rcu_read_lock_sched(); rcu_read_lock(); }

7 rcu_read_unlock();

8 do_something_3();

9 { rcu_read_unlock(); rcu_read_unlock_sched(); }

Figure 8: Flattening Disparate Critical Sections

the many synonyms of the last two primitives [31].” Straight-
forward to describe, that is; as described in the next section,
the implementation posed some challenges.

4 RCU’S EASE-OF-USE BUG: FIXES

An overlapping set of disparate critical sections must still
be flattened into one large critical section, but fortunately
non-preemptable kernels already do this correctly. Unfor-
tunately, this correctness is an accident of implementation,
due to the fact that non-preemptable kernels do not permit
quiescent states such as schedule() to be invoked within
any of RCU’s critical sections. Unfortunately, preemption can
occur—by design—within an rcu_read_lock() critical sec-
tion in preemptible kernels. For example, although the code
shown in Figure 7 cannot be preempted in non-preemptible
kernels, the preemptibility of rcu_read_lock()-based crit-
ical sections means that preemption can occur at line 5 in
preemptible kernels.® This code can be made safe by using
all three grace-period-wait primitives, as shown on the right-
hand side of the figure, but this sort of burden on the user is
exactly what we are trying to avoid. Addressing this issue is
the subject of the following sections.

4.1 Flattening Disparate Critical Sections

The disparate overlapping RCU read-side critical sections
spanning lines 1-4, 3-7, and 6-9 of Figure 7 must be

7 For example, local_bh_disable() is a synonym for rcu_read-
_lock_bh(), local_bh_enable() for rcu_read_unlock_bh(), preempt-
_disable() for rcu_read_lock_sched(), and preempt_enable() for
rcu_read_unlock_sched().

8 Overlapping (as opposed to nesting) disparate RCU read-side critical
sections is unconventional and should generally be avoided. However, there
are a few valid use cases, so RCU must support this notion.



A Critical RCU Safety Property is... Ease of Use!

| struct rcu_node |

N

| struct rcu_node | | struct rcu_node |

ZARNEIVARN

struct struct struct struct
rcu_data rcu_data rcu_data rcu_data

Figure 9: Linux-Kernel RCU Data Structures

flattened, that is, combined into a single critical section
spanning lines 1-9. One way to do this is to make rcu-
_read_lock_bh() and rcu_read_lock_sched() invoke
rcu_read_lock() just before returning and to make rcu-
_read_unlock_bh() and rcu_read_unlock_sched() in-
voke rcu_read_unlock() immediately upon entry, as de-
picted with curly braces in Figure 8. Because rcu_read-
_lock() and rcu_read_unlock() nest correctly, this would
result in the following pairings: lines 3 and 4, lines 6 and 7,
and lines 1 and 9. This last pairing covers the entire range,
providing the required flattening.

This simple approach is correct by construction. Unfor-
tunately, a few tests demonstrate that this correctness does
not extend to the actual Linux kernel, in which preemption,
bottom halves, and interrupts are enabled and disabled in
assembly language and even by hardware. Thus, another
idea is required, perhaps even the one in the next section.

4.2 Deferring Quiescent States

The problem in Figure 7 is that line 7’s rcu_read_unlock()
prematurely reports a quiescent state that was not reached
until line 9. This suggests deferring reporting of any such qui-
escent states until after both preemption and bottom halves
are enabled, in this case, on line 9, thus also delaying the end
of the grace period. Understanding this alternative requires
the brief overview of RCU’s data structures. As shown in
Figure 9, each CPU has an rcu_data structure, which is as-
signed to a leaf rcu_node structure making up a combining
tree that limits lock contention while mediating reporting
quiescent states. These quiescent states are reported up from
the bottom of the tree, and when the root rcu_node structure
detects that all required quiescent states have been reported,
the grace period ends.

This deferral can be implemented straightforwardly by
adding flags to the rcu_data and rcu_node structures, re-
sulting in only five pages of hand-written code [32, slide
69]. Unfortunately, this initial code failed to account for stall
warnings [29] (which RCU emits when CPUs or tasks become
unresponsive), expedited grace periods [28] (which improve

SYSTOR’19, June 2019, Haifa, Israel

rcu_read_lock();
do_something_1();
preempt_disable();
do_something_2();
rcu_read_unlock();
do_something_3();
rcu_read_lock();
do_something_4();
preempt_enable();
do_something_5();
rcu_read_unlock();

/* AKA rcu_read_lock_sched() =*/

/* AKA rcu_read_unlock_sched() */

- ® WO NOU B~ WN =

Figure 10: Quiescent-State-Deferral Nemesis

@ 'struct rcu_node >blkd_tasks
->gp_tasks

@ |struct rcu_node >blkd tasks-
->gp_tasks

® |'struct rcu_node >blkd_tasks]
->gp_tasks

b

@ |'struct rcu_node >blkd_tasks
->gp_tasks

®) [ struct rcu_node ->blkd_tasks-
->gp_tasks

:

Figure 11: Preemptible RCU Blocked-Tasks List

latency at the expense of increased CPU consumption and
degraded real-time response compared to normal grace pe-
riods), and preempted-task queuing corner cases [26] (in
which the deferred quiescent state must sometimes follow
the preempted task but other times stay with the CPU).

Accounting for these complications results in eight pages
of code [32, slide 70], but fails to handle the overlapping read-
ers shown in Figure 10. Figure 11 shows the resulting progres-
sion of states of one instance of RCU’s leaf rcu_node struc-
tures, whose blkd_tasks and gp_tasks fields track tasks
that have blocked within their current RCU read-side critical
section. Because blocked tasks not on a ->blkd_tasks list
reside in a quiescent state, RCU can focus on tasks on these
lists, avoiding expensive scans of the full task list.

If no task has recently blocked within a critical section,
the system will be in state (1) of Figure 11. If Task A is pre-
empted at line 2 of Figure 10, the system will advance to
state (2): Task A has blocked within a critical section, but is
not blocking a grace period. Once a grace period is initiated,



SYSTOR’19, June 2019, Haifa, Israel

the system will advance to state (3), where ->gp_tasks in-
dicates that Task A® blocks the current grace period. When
Task A resumes and reaches line 5, it will remove itself from
the list, and, because it is the last task in this list, NULL the
->gp_tasks pointer, resulting in state (4).

The problem arises when Task A reaches line 7. The grace
period has already started, and Task A appears to be entering
a new critical section that therefore fails to block the grace
period. This failure to block is incorrect because the entire
block of code spanning lines 1-11 must be treated as one large
critical section. The ->gp_tasks pointer therefore (again
incorrectly) remains NULL. The grace period might therefore
end just after line 9 when it instead needs to extend past
line 11. In short, this approach has failed to flatten the entire
set of critical sections spanning lines 1-11.

Although adding more flags might solve this problem, the
steady growth in code size is a subtle hint to step back and
reconsider the situation, as is done in the next section.

4.3 Deferring Task Dequeuing

The problem with the last section’s approach is that when
it added Task A to the ->blkd_tasks list, it failed to record
that Task A still blocked the grace period. In the spirit of
the medical advice “Then don’t do that!”, let’s try avoid-
ing this second addition altogether. For example, rcu_read-
_unlock() could refrain from removing Task A when within
some other type of critical section, in this case the critical
section beginning with line 3’s preempt_disable(). This
would result in Task A remaining in state (3) after executing
the rcu_read_unlock() on line 7. In fact, Task A would re-
main in that state through line 11, as is required to flatten
all of Figure 10’s disparate critical sections.

This means that tasks can now be on the ->blkd_tasks
list despite not being within RCU read-side critical sections,
and this expansion of RCU’s state space deserves intensive
validation. Also, such tasks must dequeue themselves upon
reaching quiescent states. Expedited grace periods can re-
quire them to dequeue themselves sooner rather than later,
which necessitates calls to the scheduler or use of softirq
handlers [8, 21], depending on the situation [32, slide 83].

The code for this idea consumes only three sheets of pa-
per, down from eight (and growing) for that of the previous
section. Time to actually type it in!

5 IMPLEMENTATION

Implementing Section 4.3’s core idea required only eight
patches, and these patches added a total of only 274 lines and
removed 112 [32, slide 100]. However, these eight patches
could not be applied directly to the kernel. Instead, a large

9 And, if there were any, tasks following Task A in the ->b1kd_tasks list.

P.E. McKenney

number of preparation and cleanup patches were needed, as
summarized in the next section.

5.1 Preparation and Cleanup

For historical reasons, RCU uses a pair of counters to rep-
resent grace-period state, so that a lock must be held when
reading out that state. The addition of deferred quiescent
states adds readouts of grace-period state, including on the
scheduler fastpath. Adding locks on such fastpaths is clearly
not a strategy to win, so the grace-period state was consol-
idated into a single integer that can be read out locklessly.
This conceptually simple task required 35 patches.

Because consolidating the three RCU flavors reduces the
number of locks, it also increases lock contention. Therefore,
three additional patches implemented funnel locking, which
is a combining-tree mechanism that reduces lock contention
during grace-period initiation [16, 20, 28]. Referring to Fig-
ure 9, a given CPU starts the funnel-locking process at its
leaf rcu_node structure. The CPU acquires that structure’s
lock and checks to see if the desired grace period is already
at least in the process of being started, and if so, the CPU
releases locks as needed and returns to its caller: Its work
is at least already being started by some other CPU. Other-
wise, the CPU sets state indicating that the desired grace
period is being started, thus preventing subsequent CPUs
from wasting any further effort attempting to start this same
grace period. The CPU then proceeds to the next rcu_node
structure up the tree and repeats this process. If the CPU
reaches the root node, and has not found any evidence of
some other CPU starting the desired grace period, then this
CPU starts that grace period.!° The key point is that only one
of the CPUs corresponding to a given rcu_node structure
will advance to that structure’s parent, which in turn means
that lock contention on each rcu_node structure remains
bounded, regardless of the number of CPUs in the system.

Another set of 15 patches fixed some rcutorture!! false-
positive reports, removing the possibility that these reports
might hide an actual bug introduced by this work. Another
17 patches added debugging code to help locate such bugs.

Previous versions of rcutorture do not test partially
nested disparate RCU read-side critical sections, nor do they
include forward-progress tests, which verify that RCU can
advance its grace periods despite call_rcu() being invoked
in a tight loop. These tests were added by another 42 patches,
which are discussed in Section 5.2.

Consolidating the RCU-bh, RCU-preempt, and RCU-sched
flavors into a single flavor (RCU-preempt for preemptible

10 The actual funnel-locking algorithm must also handle the possibility that
a prior grace period is still in progress, as well as a few concurrency issues.
However, this description provides a useful conceptual view. Those wishing
more detail should inspect rcu_start_this_gp() and its callers.

11 This is Linux-kernel RCU’s stress-test suite.



A Critical RCU Safety Property is... Ease of Use!

kernels and RCU-sched for non-preemptible kernels) en-
abled many simplifications, which were implemented by
another 107 patches. These simplifications included eliminat-
ing synchronize_rcu_bh() and synchronize_sched() in
favor of synchronize_rcu(), however, the read-side mark-
ers (including rcu_read_lock_bh() and rcu_read_lock-
_sched()) were retained for readability. For example, al-
though it is possible to replace rcu_read_lock_sched()
with preempt_disable(), the former provides a helpful in-
dication that RCU is involved. These simplifications also
slightly reduced scheduler fastpath overhead and signifi-
cantly improved cache locality, resulting in an unplanned
microbenchmark improvement [17].

Finally, the repeated inspection of the code required by
this work located a number of simple optimizations, which
were implemented by another 17 patches.

Although rcutorture results have been quite clean, the
fact is that this work applied more than 200 patches to Linux-
kernel RCU [32, slides 100-118]. Large changes imply a large
need for validation, a topic taken up by the next section.

5.2 Validation

RCU commits are subject to kbuild test robot testing [18] as
soon as they become public. The testing located a number of
build issues on various architectures, a boot-time issue, and
a number of runtime issues, including deadlocks and failure
to properly handle RCU reader corner cases. Additional bugs
were located by code review, -next testing [7], and other
community processes, all of which are deeply appreciated.

This change requires RCU to flatten disparate RCU read-
side critical sections such as those shown in Figures 7 and 10
even in preemptible kernels. Therefore, rcutorture must
intensively test overlapping disparate critical sections. It ran-
domly chooses a number of overlapping critical sections so
that singleton critical sections will be used about 1.6% of the
time and eight-fold overlapping critical sections about 40%
of the time, with the expected case being six-fold overlap-
ping critical sections. Similarly, a given critical section will
use only one type of RCU reader protection about 90% of
the time (as needed to ensure preemption of RCU readers
happens reasonably frequently), and will use multiple types
otherwise. The point of these seemingly arbitrary choices is
to force random testing of transitions among elaborate com-
binations of RCU readers with an eye to catching improbable
corner cases in the comfort and safety of the lab, as opposed
to in much less friendly production environments.

RCU read-side performance is of the essence, but RCU’s
read-side fastpaths are unchanged, so it is no surprise that
RCU read-side performance is not affected by this change.

Of course, the whole point of validation is to reduce risk
during production use, a topic addressed by the next section.

SYSTOR’19, June 2019, Haifa, Israel

4.5|||||||||||||
—~
[
&
I
J]
>
<
o
=)
<
)
°
Q
O
o
8
°
Q
=

15IIIIIIIIIIIII

O M © O N W O A N~NO ™M O O

O O 8 g 4 d A g ¢ ST

> > 3 3 09w > > ><¢ ¥ YC

> > 5 > > > >

Figure 12: Median Age of Lines of RCU Code

6 EFFECT ON RCU RELIABILITY

One immediate measure of RCU reliability is rcutorture
results, which are quite good, reflecting the resolution of the
false-positive warnings as part of this work.

Another measure is code age, with older code often being
considered more reliable. Of course, RCU is a mixture of code
with a wide range of ages, so a statistical representation is
necessary. The median was chosen as an easily understood
and relatively stable statistic. Figure 12 shows that the me-
dian age of RCU lines of code has decreased about 30% since
v4.10, first due to the 2018 rewrite of the Sleepable RCU
(SRCU) [24] implementation, and, starting with v4.18, due to
this effort. There is thus some cause for concern, although
the median age has risen by about 75% since v3.0, despite
the recent decrease.

Another approach is to look at incoming bug rates, cali-
brating using the SRCU rewrite. Of 2018’s six most significant
bugs, two were caused by the SRCU rewrite, one of which
was a data race due to an omitted lock and the other of
which was a real-time response issue [32, slide 116]. This
data might lead one to predict that the work described in
Section 5 would generate an additional pair of bugs in 2019,
along with at least one more bug from the SRCU rewrite.
One objection to this prediction is that the number of bugs
is nowhere near large enough to be statistically significant,
however, it would be extremely unwise to wish to live in
a world where the number of Linux-kernel RCU bugs was
statistically significant. Another objection is that Murphy
cannot be expected to neglect Linux-kernel RCU.

Murphy notwithstanding, Linux-kernel RCU seems to be
in reasonably good shape. Nevertheless, the large recent
changes provide a golden opportunity for those working in
the area of formal verification.



SYSTOR’19, June 2019, Haifa, Israel

7 CONCLUSIONS

This experience underscores the well-known fact that mak-
ing your software do exactly what you want is highly non-
trivial. Worse yet, doing so is in fact insufficient: As was the
case here, requirements might not be fully understood. Other
experiences over the past few years show that these issues
also affect hardware [13]. This experience also underscores
the value of executable formal methods [1, 2, 22, 38], even
to the famously pragmatic Linux kernel community.

But the most important lesson is the critical importance of
ease of use, even for low-level APIs such as RCU. Of course,
the need for careful API design has been long appreciated by
the Linux kernel community [41, slides 39-57], and, as noted
in Section 3, this is not the first RCU ease-of-use improve-
ment. However, this is the first RCU ease-of-use problem
known to result in an exploitable vulnerability. Designers of
even low-level APIs must therefore keep the convenience and
proclivities of their users firmly in mind, not just as a service
to those users, but also to avoid exploitable vulnerabilities.

ACKNOWLEDGMENTS

I am grateful for review of early drafts of this paper from
Joel Nider and Mike Rapoport, and for code review from
Andrea Parri. We all owe Orna Agmon Ben-Yehuda a debt
of gratitude for her shepherding, which helped render this
paper human-readable. I am grateful to Mark Figley for his
support of this effort.

REFERENCES

[1] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea
Parri, and Alan Stern. 2018. Frightening Small Chil-
dren and Disconcerting Grown-ups: Concurrency in
the Linux Kernel. In Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS ’18). ACM, New York, NY, USA, 405-418. https:
//doi.org/10.1145/3173162.3177156

[2] Jade Alglave, Luc Maranget, Pankaj Pawan, Sus-
mit Sarkar, Peter Sewell, Derek Wailliams, and
Francesco Zappa Nardelli. 2011. PPCMEM/ARMMEM:
A Tool for Exploring the POWER and ARM Memory
Models. (4 June 2011). http://www.cl.cam.ac.uk/~pes20/
ppc-supplemental/pldi105-sarkar.pdf.

[3] Andrea Arcangeli, Mingming Cao, Paul E. McKenney,
and Dipankar Sarma. 2003. Using Read-Copy Update
Techniques for System V IPC in the Linux 2.5 Kernel. In
Proceedings of the 2003 USENIX Annual Technical Con-
ference (FREENIX Track). USENIX Association, Berkeley,
CA 94710, USA, 297-310. https://www.usenix.org/
legacy/publications/library/proceedings/usenix03/
tech/freenix03/full_papers/arcangeli/arcangeli.pdf

P.E. McKenney

[4] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao,
Aleksey Pesterev, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. 2010. An Analysis of Linux
Scalability to Many Cores. In 9" USENIX Symposium on
Operating System Design and Implementation. USENIX,
Vancouver, BC, Canada, 1-16.

[5] Jonathan Corbet. 2005. Realtime preemption and read-
copy-update. (March 2005).  URL: http://lwn.net/
Articles/129511/.

[6] Jonathan Corbet. 2006. The kernel lock validator. (31
May 2006). Available: http://lwn.net/Articles/185666/
[Viewed: March 26, 2010].

[7] Jonathan Corbet. 2008. A day in the life of linux-next.
(23 June 2008). https://Iwn.net/Articles/287155/.

[8] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman. 2005. Linux Device Drivers, Third Edition (3
ed.). O'Reilly Media, Inc., Sebastopol, CA 95472, USA.
URL: https://lwn.net/Kernel/LDD3/.

[9] Mathieu Desnoyers. 2009. [RFC git tree] Userspace RCU
(urcu) for Linux. (5 February 2009). http://liburcu.org.

[10] Mathieu Desnoyers, Paul E. McKenney, Alan Stern,
Michel R. Dagenais, and Jonathan Walpole. 2012. User-
Level Implementations of Read-Copy Update. IEEE
Transactions on Parallel and Distributed Systems 23
(2012), 375-382. https://doi.org/10.1109/TPDS.2011.159

[11] Alexey Gotsman, Noam Rinetzky, and Hongseok
Yang. 2012. Verifying Highly Concurrent Al-
gorithms with Grace (extended version). (10 July
2012).  http://software.imdea.org/~gotsman/papers/
recycling-esop13-ext.pdf.

[12] D. Guniguntala, P. E. McKenney, J. Triplett, and J.
Walpole. 2008. The read-copy-update mechanism for
supporting real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems Jour-
nal 47, 2 (May 2008), 221-236. https://doi.org/10.1147/
5j.472.0221

[13] Jann Horn. 2018. Reading privileged mem-
ory with a side-channel. (3 January 2018).
https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html.

[14] Phil Howard. 2012. Extending Relativistic Programming
to Multiple Writers. Ph.D. Dissertation. Portland State
University.

[15] Philip W. Howard and Jonathan Walpole. 2011. A Rela-
tivistic Enhancement to Software Transactional Mem-
ory. In Proceedings of the 3rd USENIX conference on Hot
topics in parallelism (HotPar’11). USENIX Association,
Berkeley, CA, USA, 1-6. http://www.usenix.org/event/
hotpar11/tech/final_files/Howard.pdf

[16] Wilson C. Hsieh and William E. Weihl. 1992. Scalable
Reader-Writer Locks for Parallel Systems. In Proceedings


https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
http://lwn.net/Articles/129511/
http://lwn.net/Articles/129511/
http://lwn.net/Articles/185666/
https://lwn.net/Articles/287155/
https://lwn.net/Kernel/LDD3/
http://liburcu.org
https://doi.org/10.1109/TPDS.2011.159
http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
https://doi.org/10.1147/sj.472.0221
https://doi.org/10.1147/sj.472.0221
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

A Critical RCU Safety Property is... Ease of Use!

of the 6™ International Parallel Processing Symposium.
IEEE Computer Society, Washington, DC, USA, 216-230.
https://doi.org/10.1109/IPPS.1992.222989

[17] kernel test robot. 2019. [LKP] [rcu] 7e28c5af4e: will-it-
scale.per_process_ops 84.7% improvement. (28 February
2019). https://Ikml.org/lkml/2019/2/27/829.

[18] Michael Kerrisk. 2012. KS2012: Kernel build/boot test-
ing. (5 September 2012).  https://lwn.net/Articles/
514278/.

[19] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and
Onur Mutlu. 2014. Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM Dis-
turbance Errors. SIGARCH Comput. Archit. News 42, 3
(June 2014), 361-372. https://doi.org/10.1145/2678373.
2665726

[20] Beng-Hong Lim and Anant Agarwal. 1994. Reactive
Synchronization Algorithms for Multiprocessors. In Pro-
ceedings of the sixth international conference on Architec-
tural support for programming languages and operating
systems (ASPLOS VI). ACM, New York, NY, USA, 25—
35. https://doi.org/10.1145/195473.195490 URL: http://
groups.csail. mit.edu/cag/pub/papers/pdf/reactive.pdf.

[21] Robert Love. 2005. Linux Kernel Development (second
ed.). Novell Press, Provo, UT USA.

[22] Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A
Tutorial Introduction to the ARM and POWER Relaxed
Memory Models. (10 October 2012). https://www.cl.
cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[23] Paul E. McKenney. 2006. RCU Linux Usage. (Octo-
ber 2006). Available: http://www.rdrop.com/users/
paulmck/RCU/linuxusage.html [Viewed January 14,
2007].

[24] Paul E. McKenney. 2006. Sleepable RCU. (9 October
2006). Available: http://lwn.net/Articles/202847/ Re-
vised: http://www.rdrop.com/users/paulmck/RCU/srcu.
2007.01.14a.pdf [Viewed August 21, 2006].

[25] Paul E. McKenney. 2010. Lockdep-RCU. (1 February
2010). https://lwn.net/Articles/371986/.

[26] Paul E. McKenney. 2010. Simplicity Through Op-
timization. In linux.confau 2010. linux.conf.au,
Wellington, New Zealand, 109. Available:
http://www.rdrop.com/users/paulmck/RCU/
SimplicityThruOptimization.2010.01.21f.pdf [Viewed
October 10, 2010].

[27] Paul E. McKenney. 2013. Structured deferral: synchro-
nization via procrastination. Commun. ACM 56, 7 (July
2013), 40-49. https://doi.org/10.1145/2483852.2483867

[28] Paul E. McKenney. 2016. What Happens When 4096
Cores All Do synchronize_rcu_expedited()? (3 Feb-
ruary 2016). linux.conf.au http://www2.rdrop.com/
users/paulmck/RCU/4096CPU.2016.02.03i.pdf.

SYSTOR’19, June 2019, Haifa, Israel

[29] Paul E. McKenney. 2018.
Inscrutible RCU CPU Stall
January 2018). linux.conf.au Kernel Mini-
conf.  Slides:  http://www.rdrop.com/~paulmck/
RCU/stallwarning.2018.01.22a.pdf Video:
https://www.youtube.com/watch?v=23_GOr8Sz-E.

[30] Paul E. McKenney. 2018. Is Parallel Program-
ming Hard, And, If So, What Can You Do About
It? (2018.12.08a Release). kernel.org, Corvallis, OR,
USA. https://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.2018.12.08a.pdf

[31] Paul E. McKenney. 2019. The RCU API, 2019 Edition.
(23 January 2019). https://lwn.net/Articles/777036/.

[32] Paul E. McKenney. 2019. RCU’s First-Ever CVE,
and How I Lived to Tell the Tale. (23 January
2019). linux.conf.au Slides: http://www.rdrop.com/
users/paulmck/RCU/cve.2019.01.23e.pdf Video: https:
//www.youtube.com/watch?v=hZX1aokdNiY.

[33] Paul E. McKenney, Jonathan Appavoo, Andi Kleen,
Orran Krieger, Rusty Russell, Dipankar Sarma, and
Maneesh Soni. 2001. Read-Copy Update. In Ottawa
Linux Symposium. Ottawa Linux Symposium, Ottawa,
Canada, 22. URL: https://www.kernel.org/doc/ols/2001/
read-copy.pdf, http://www.rdrop.com/users/paulmck/
RCU/rclock_OLS.2001.05.01c.pdf.

[34] Paul E. McKenney, Mathieu Desnoyers, and Lai Jiang-
shan. 2013. The URCU hash table API. (12 November
2013). https://lwn.net/Articles/573432/.

[35] Paul E. McKenney, Maged Michael, and Peter Sewell.
2019. N2369: Pointer lifetime-end zap. (1 April
2019). http://www.open-std.org/jtcl/sc22/wgld/www/
docs/n2369.pdf.

[36] Paul E. McKenney and John D. Slingwine. 1998. Read-
Copy Update: Using Execution History to Solve Con-
currency Problems. In Parallel and Distributed Com-
puting and Systems. Acta Press, Las Vegas, NV, 509-
518. http://www.rdrop.com/users/paulmck/RCU/
rclockpdcesproof.pdf

[37] Donald E. Porter and Emmett Witchel.
2007. Lessons From Large Transactional
Systems. (December 2007). Personal com-
munication <20071214220521.GA5721@olive-
green.cs.utexas.edu>.

[38] Christopher Pulte, Shaked Flur, Will Deacon, Jon French,
Susmit Sarkar, and Peter Sewell. 2017. Simplifying
ARM Concurrency: Multicopy-atomic Axiomatic and
Operational Models for ARMv8. Proc. ACM Program.
Lang. 2, POPL, Article 19 (Dec. 2017), 29 pages. https:
//doi.org/10.1145/3158107

[39] Hany E. Ramadan, Christopher J. Rossbach, Donald E.
Porter, Owen S. Hofmann, Aditya Bhandari, and Em-
mett Witchel. 2007. MetaTM/TxLinux: transactional

Decoding Those
Warnings. (22


https://doi.org/10.1109/IPPS.1992.222989
https://lkml.org/lkml/2019/2/27/829
https://lwn.net/Articles/514278/
https://lwn.net/Articles/514278/
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/195473.195490
http://groups.csail.mit.edu/cag/pub/papers/pdf/reactive.pdf
http://groups.csail.mit.edu/cag/pub/papers/pdf/reactive.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
https://lwn.net/Articles/371986/
http://www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.2010.01.21f.pdf
http://www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.2010.01.21f.pdf
https://doi.org/10.1145/2483852.2483867
http://www2.rdrop.com/users/paulmck/RCU/4096CPU.2016.02.03i.pdf
http://www2.rdrop.com/users/paulmck/RCU/4096CPU.2016.02.03i.pdf
http://www.rdrop.com/~paulmck/RCU/stallwarning.2018.01.22a.pdf
http://www.rdrop.com/~paulmck/RCU/stallwarning.2018.01.22a.pdf
https://www.youtube.com/watch?v=23_GOr8Sz-E
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2018.12.08a.pdf
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2018.12.08a.pdf
https://lwn.net/Articles/777036/
http://www.rdrop.com/users/paulmck/RCU/cve.2019.01.23e.pdf
http://www.rdrop.com/users/paulmck/RCU/cve.2019.01.23e.pdf
https://www.youtube.com/watch?v=hZX1aokdNiY
https://www.youtube.com/watch?v=hZX1aokdNiY
https://www.kernel.org/doc/ols/2001/read-copy.pdf
https://www.kernel.org/doc/ols/2001/read-copy.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
https://lwn.net/Articles/573432/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107

SYSTOR’19, June 2019, Haifa, Israel

memory for an operating system. SIGARCH Com-
put. Archit. News 35, 2 (June 2007), 92-103. https:
//doi.org/10.1145/1273440.1250675

[40] Geoff Romer and Andrew Hunter. 2018. An
RAII Interface for Deferred Reclamation. (3 March
2018). http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0561r4.html.

[41] Rusty Russell. 2003. Hanging Out With Smart
People: or... Things I Learned Being A Kernel Monkey.
(25 July 2003). 2003 Ottawa Linux Symposium
Keynote http://ozlabs.org/~rusty/ols-2003-keynote/
ols-keynote-2003.html.

[42] Dipankar Sarma. 2004. RCU: Introduce call_rcu_bh()
[2/5]. (8 August 2004). https://lkml.org/lkml/2004/8/6/
228.

[43] Dipankar Sarma. 2004. RCU: Use call_rcu_bh() in route
cache [3/5]. (8 August 2004). https://lkml.org/lkml/
2004/8/6/231.

[44] Dipankar Sarma. 2004. Re: RCU : Abstracted RCU
dereferencing [5/5]. (August 2004). Available: http:
//Tkml.org/lkml/2004/8/6/237 [Viewed June 8, 2010].

[45] Dipankar Sarma and Paul E. McKenney. 2004. Issues
with Selected Scalability Features of the 2.6 Kernel. In
Ottawa Linux Symposium. Ottawa Linux Symposium,
Ottawa, Canada, 16. https://www.kernel.org/doc/ols/
2004/0ls2004v2-pages-195-208.pdf.

[46] Dipankar Sarma and Paul E. McKenney. 2004. Mak-
ing RCU Safe for Deep Sub-Millisecond Response
Realtime Applications. In Proceedings of the 2004
USENIX Annual Technical Conference (FREENIX Track).
USENIX Association, Berkeley, CA 94710, USA,
182-191. http://www.rdrop.com/~paulmck/RCU/
realtimeRCU.2004.06.12a.pdf

[47] Dimitrios Siakavaras, Konstantinos Nikas, Georgios
Goumas, and Nectarios Koziris. 2017. Combining HTM
and RCU to Implement Highly Efficient Balanced Bi-
nary Search Trees. In 12" ACM SIGPLAN Workshop on
Transactional Computing. ACM, New York, NY, USA.

P.E. McKenney


https://doi.org/10.1145/1273440.1250675
https://doi.org/10.1145/1273440.1250675
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0561r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0561r4.html
http://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
http://ozlabs.org/~rusty/ols-2003-keynote/ols-keynote-2003.html
https://lkml.org/lkml/2004/8/6/228
https://lkml.org/lkml/2004/8/6/228
https://lkml.org/lkml/2004/8/6/231
https://lkml.org/lkml/2004/8/6/231
http://lkml.org/lkml/2004/8/6/237
http://lkml.org/lkml/2004/8/6/237
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-195-208.pdf
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-195-208.pdf
http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf
http://www.rdrop.com/~paulmck/RCU/realtimeRCU.2004.06.12a.pdf

	Abstract
	1 Introduction
	2 A Brief Overview of RCU
	2.1 Relevant RCU Properties
	2.2 Trivial RCU Use Case
	2.3 Trivial RCU Implementation
	2.4 RCU Flavors

	3 RCU's Ease-of-Use Bug
	4 RCU's Ease-of-Use Bug: Fixes
	4.1 Flattening Disparate Critical Sections
	4.2 Deferring Quiescent States
	4.3 Deferring Task Dequeuing

	5 Implementation
	5.1 Preparation and Cleanup
	5.2 Validation

	6 Effect on RCU Reliability
	7 Conclusions
	Acknowledgments
	References

