
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 1

User-Level Implementations of Read-Copy Update
Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais and Jonathan Walpole

Abstract—Read-copy update (RCU) is a synchronization tech-
nique that often replaces reader-writer locking because RCU’s
read-side primitives are both wait-free and an order of magnitude
faster than uncontended locking. Although RCU updates are
relatively heavy weight, the importance of read-side performance
is increasing as computing systems become more responsive to
changes in their environments.

RCU is heavily used in several kernel-level environments.
Unfortunately, kernel-level implementations use facilities that
are often unavailable to user applications. The few prior user-
level RCU implementations either provided inefficient read-
side primitives or restricted the application architecture. This
paper fills this gap by describing efficient and flexible RCU
implementations based on primitives commonly available to user-
level applications.

Finally, this paper compares these RCU implementations with
each other and with standard locking, which enables choosing
the best mechanism for a given workload. This work opens the
door to widespread user-application use of RCU.

Index Terms—D.4.1.f Synchronization < D.4.1 Process Man-
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads < D.4.1 Process Management < D.4
Operating Systems < D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Management < D.4 Operating
Systems < D Software/Software Engineering

I. INTRODUCTION

READ-COPY UPDATE (RCU) is a synchronization tech-

nique that was added to the Linux kernel in October of

2002. In contrast with conventional locking techniques that

ensure mutual exclusion among all threads, or with reader-

writer locks that allow readers to proceed concurrently with

each other, but not with updaters, RCU permits both readers

and updaters to make concurrent forward progress. RCU en-

sures that reads are coherent by maintaining multiple versions

of objects and ensuring that each version remains intact until

the completion of all RCU read-side critical sections that

might reference that version. RCU defines and uses efficient

and scalable mechanisms for publishing and reading new

versions of an object and for deferring reclamation of old

versions. These mechanisms distribute the work between read

and update paths so as to make read paths extremely fast,

typically more than an order of magnitude faster than un-

contended locking. RCU’s light-weight read paths support the

Manuscript received August 17, 2009; revised December 16, 2010
Mathieu Desnoyers (mathieu.desnoyers@efficios.com) is with EfficiOS,

work done while at the Computer and Software Engineering Department,
Ecole Polytechnique de Montreal.

Paul E. McKenney (paulmck@linux.vnet.ibm.com) works at the IBM Linux
Technology Center on the Linaro project.

Alan S. Stern (stern@rowland.harvard.edu) is with the Rowland Institute,
Harvard University.

Michel R. Dagenais (michel.dagenais@polymtl.ca) is with the Computer
and Software Engineering Department, Ecole Polytechnique de Montreal.

Jonathan Walpole (walpole@cs.pdx.edu) is with the Computer Science
Department, Portland State University.

increasing need to track read-mostly connectivity, hardware-

configuration, and security-policy data. Other mechanisms

must be used to coordinate among multiple writers, for ex-

ample locking, transactions, non-blocking synchronization, or

single designated updater thread.

Techniques similar to RCU have appeared in several

operating-system kernels [1, 2, 3, 4, 5], and, as shown in

Figure 1, RCU is heavily used in the Linux kernel [6].

One reason RCU is heavily used is that it eases lock-based

programming when the locks themselves are dynamically

created and destroyed, which occurs frequently in concurrent

programs. However, RCU is not heavily used in applica-

tions, in part because prior user-level RCU-like algorithms

severely constrained application design [7], incurred heavy

read-side overhead [8, 9], or relied on sequential consistency

and garbage collection [10, 11]. The popularity of RCU in

operating-system kernels owes much to the fact that ker-

nels can accommodate the global constraints imposed by the

high-performance quiescent-state based reclamation (QSBR)

class of RCU implementations. QSBR implementations pro-

vide unmatched performance and scalability for read-mostly

data structures on cache-coherent shared-memory multiproces-

sors [7], even with weakly ordered hardware and compilers.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2
0
0
2

 2
0
0
3

 2
0
0
4

 2
0
0
5

 2
0
0
6

 2
0
0
7

 2
0
0
8

 2
0
0
9

 2
0
1
0

 2
0
1
1

#
 R

C
U

 A
P

I
U

s
e
s

Year

Fig. 1. Linux-Kernel Usage of RCU

Whereas we cannot yet put forward a single user-level RCU

implementation that is ideal for all environments, the three

classes of RCU implementations described in this paper should

suffice for most user-level uses of RCU.

This article is organized as follows: Section II first provides

a brief overview of RCU, with a definition of RCU semantics

in Appendix C in the Supplementary Material. Then, Sec-

tion III describes user-level scenarios that could benefit from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 2

RCU. This is followed by the presentation of three classes

of RCU implementation in Appendix D in the Supplementary

Material. Section V presents experimental results, comparing

RCU implementations to each other and to locking, and finally

Section VI presents conclusions and recommendations.

II. BRIEF OVERVIEW OF RCU

This overview begins with an introduction to RCU concepts

in Section II-A. Section II-B shows how to delete an element

from an RCU-protected linked list in spite of concurrent read-

ers. Appendix A in the Supplementary Material presents a list

of informal RCU desiderata, which details the goals pursued

in this work. Appendix B in the Supplementary Material

walks through an example real-time use of RCU. Finally,

Appendix C in the Supplementary Material gives a semi-

formal description of RCU semantics, including guarantees

that allow RCU to operate correctly on systems that do not

provide sequential consistency.

A. Conceptual View of RCU Algorithms

RCU readers execute within RCU read-side critical sec-

tions. Each such critical section begins with rcu_read_-

lock(), ends with rcu_read_unlock(), and may con-

tain rcu_dereference() or equivalent functions that ac-

cess pointers to RCU-protected data structures. These pointer-

access functions implement the notion of a dependency-

ordered load, also known as a memory_order_consume

load [12], which suppresses aggressive code-motion compiler

optimizations and generates a simple load on any system other

than DEC Alpha, where it generates a load followed by a

memory-barrier instruction. The performance benefits of RCU

are due to the fact that rcu_read_lock() and rcu_-

read_unlock() are exceedingly fast. In fact, Appendix D2

in the Supplementary Material shows how these two primitives

can incur exactly zero overhead, as they do in server-class

Linux-kernel builds [13].

When a thread is not in an RCU read-side critical section,

it is in a quiescent state. A quiescent state that persists for

a significant time period is an extended quiescent state. Any

time period during which every thread has been in at least

one quiescent state is a grace period; this implies that every

RCU read-side critical section that starts before a grace period

must end before that grace period does. Distinct grace periods

may overlap, either partially or completely. Any time period

that includes a grace period is by definition itself a grace

period [13, 14]. Each grace period is guaranteed to complete

as long as all read-side critical sections are finite in duration;

thus even a constant flow of such critical sections is unable to

extend an RCU grace period indefinitely.

Suppose that readers enclose each of their data-structure

traversals in an RCU read-side critical section. If an updater

first removes an element from such a data structure and then

waits for a grace period, there can be no more readers access-

ing that element. The updater can then carry out destructive

operations, for example freeing the element, without disturbing

any readers. A high-level schematic of such an RCU-based

T
h

re
a

d
s Reader 2

Reader 3

Reader 4

Reader 1

Updater

rcu_read_lock()

reads reads

reads reads

reads reads

reads

reclamationremoval

reads

Time

rcu_read_unlock()

rcu_assign_pointer()

synchronize_rcu()

reads

grace period

Pre−existing reads

of pre−existing reads

Grace period

waits for completion

Fig. 2. Schematic of RCU Grace Period and Read-Side Critical Sections

algorithm is shown in Figure 2. Here, each box labeled “reads”

is an RCU read-side critical section.

Each row of read-side critical sections denotes a separate

thread, for a total of four read-side threads. The bottom row of

the figure denotes a fifth thread performing an RCU update.

This RCU update is split into two phases, a removal phase

on the lower left of the figure and a reclamation phase on

the lower right. These two phases must be separated by a

grace period, for example via the synchronize_rcu()

primitive, which initiates a grace period and waits for it to

finish. During the removal phase, the RCU update removes

elements from a shared data structure (possibly inserting

some as well) by calling rcu_assign_pointer() or

an equivalent pointer-replacement function. The rcu_as-

sign_pointer() primitive implements the notion of store

release [12], which on sequentially consistent and total-store-

ordered systems compiles to a simple assignment. Pointers

stored by rcu_assign_pointer() can be fetched from

within read-side critical sections by rcu_dereference().

The removed data elements will only be accessible to read-side

critical sections that ran concurrently with the removal phase

(shown in gray), which are guaranteed to complete before the

grace period ends. Therefore the reclamation phase can safely

free the data elements removed by the removal phase.1

A single grace period can serve multiple removal phases,

even those carried out by multiple updaters. Furthermore, the

overhead of tracking RCU grace periods can be piggybacked

on existing process-scheduling operations, to which RCU adds

a small constant overhead. For some common workloads, the

grace-period-tracking overhead of RCU during a given time

interval may be amortized over an arbitrarily large number of

RCU updates in that same interval [17], resulting in average

per-RCU-update overheads arbitrarily close to zero.

B. RCU Deletion From a Linked List

RCU-protected data structures in the Linux kernel include

linked lists, hash tables, radix trees, and a number of custom-

1Interestingly enough, placing non-blocking-synchronization (NBS) [15]
updates in RCU read-side critical sections admits the same simplifications to
NBS algorithms that are commonly provided by automatic garbage collectors.
In particular, this approach avoids the ABA problem [16].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 3

Updater

Reader initiated
before start of
grace period

Reader initiated
after start of
grace period

synchronize_rcu() free(B)

Grace period

list_del_rcu(B)

A

B

C

A

B

C

A

B

C

C

A

C

A

A

C

A

B

C

A

B

C

A

B

C

Fig. 3. RCU Linked-List Deletion

built data structures. Figure 3 shows how RCU may be used to

delete an element from a linked list that is concurrently being

traversed by RCU readers, as long as each reader conducts its

traversal within the confines of a single RCU read-side critical

section. The first and second rows present the data structure

from the viewpoint of a reader thread that started before (first

row) or after (second row) the grace period began. The last row

of the figure shows the updater’s view of the data structure.

The first column of the figure shows a singly-linked list with

elements A, B, and C. Any reader initiated before the grace

period might hold references to any of these elements.

The list_del_rcu() routine unlinks element B from

the list, but leaves the link from B to C intact, as shown

on the second column of the figure. This permits readers

already referencing B to advance to C, as shown on the

second and third columns of the figure. The transition from the

second to the third column shows element B disappearing from

the reader-thread viewpoint. During this transition, element B

moves from globally visible, where any reader may obtain a

new reference, to locally visible, where only readers already

having a reference can see element B.

The synchronize_rcu() primitive waits for a grace

period, after which all pre-existing read-side critical sections

will have completed, resulting in the state shown in the fourth

column of the figure, where readers no longer hold references

to element B. Element B’s transition from locally visible to

private is denoted by the white background for the B box. It is

then safe to invoke free(), reclaiming element B’s memory,

as shown in the last column of the figure.

Although RCU has many uses, this list-deletion process is

frequently used to replace reader-writer locking [18].

III. USER-SPACE RCU USAGE SCENARIOS

The user-level RCU work described later in this paper was

inspired by the need to reduce the overhead and improve

the scalability of the LTTng userspace tracer (UST), which

carries out performance analysis and monitoring of user-mode

applications [19, 20]. UST imposes important constraints

on the user-level RCU implementation. Firstly, UST cannot

require source-level modifications to the application under

test, which rules out the QSBR approach that is presented in

Appendix D2 in the Supplementary Material. Secondly, UST

must support instrumentation of execution sites selected by the

user at runtime. Because the user is permitted to instrument

signal handlers and library functions, RCU read-side critical

sections must be nestable.

BIND, a major domain-name server used for Internet

domain-name resolution, is facing scalability issues [21]. Since

domain names are read often but rarely updated, using user-

level RCU might be beneficial. Others have mentioned pos-

sibilities in financial applications. Finally, one can also argue

that RCU has seen long use at user level in the guise of user-

mode Linux.

In general, user-level RCU’s area of applicability appears

similar to that in the Linux kernel: to read-mostly data

structures, especially in cases where stale data can be accom-

modated.

IV. CLASSES OF RCU IMPLEMENTATIONS (SUMMARY)

Appendix D in the Supplementary Material describes sev-

eral classes of RCU implementations. Appendix D1 first de-

scribes some primitives that might be unfamiliar to the reader,

and then Appendices D2, D3, and D4 present user-space RCU

implementations that are optimized for different use cases.

The QSBR implementation presented in Appendix D2 offers

the best possible read-side performance, but requires that each

thread periodically calls a function to announce that it is in

a quiescent state, thus strongly constraining the application’s

design. The general-purpose implementation presented in Ap-

pendix D3 places almost no constraints on the application’s

design, thus being appropriate for use within a general-purpose

library, but it has higher read-side overhead. Appendix D4

presents an implementation having low read-side overhead and

requiring only that the application give up one POSIX signal

to RCU update processing, and is called the signal-based

implementation. Finally, Appendix D5 demonstrates how to

create non-blocking RCU update primitives.

V. EXPERIMENTAL RESULTS

This section presents benchmarks comparing the RCU

mechanisms described in this paper to each other, to pthread

mutexes, to pthread reader-writer locks, and to per-thread

mutexes. The per-thread mutex approach uses one mutex per

reader thread so that updater threads take all the mutexes,

always in the same order, to exclude all readers. This approach

ensures reader cache locality at the expense of slower write-

side locking [22]. Section V-A examines read-side scalability,

Section V-B discusses the effect on the read-side primitives

of varying the critical-section duration, Section V-C presents

the impact of updates on read-side performance, and finally

Section V-D compares update-side throughput. The goal is to

identify clearly the situations in which RCU outperforms the

classic locking solutions found in existing applications.

The machines used to run the benchmarks are an 8-core

Intel Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 4

IBM PowerPC POWER5+ clocked at 1.9 GHz. Each core of

the PowerPC machine has 2 hardware threads. To eliminate

hardware-thread-level contention for per-core resources, we

run our benchmarks using only one hardware thread on each

of the 64 cores.

The mutex and reader-writer lock implementations used for

comparison are the standard pthread implementations from the

GNU C Library 2.7 for 64-bit Intel and GNU C Library 2.5

for 64-bit PowerPC.

STM (Software Transactional Memory) is not included

in these comparisons because the jury is still out on STM

practicality [23]. STM treats concurrent reads and writes to

the same variable as conflicts, requiring frequent conflict

checks, in turn degrading reader performance and scalability.

In contrast, Figures 9 and 10 will show that RCU’s non-

conflicting concurrent reads and writes minimize read over-

head while maintaining extremely high read scalability, even

in the presence of heavy write workloads. Researchers have

improved STM’s read-side performance and scalability [24],

albeit in some cases by placing the burden of instrumentation

and privatization on the developer [25]. HTM (Hardware

Transactional Memory) [26, 27, 28] is likely to be more

scalable than STM; unfortunately, no system supporting HTM

was available for this study.

A. Read-Side Scalability

Figure 4 presents a read-side scalability comparison of the

RCU mechanisms and the locking primitives on the PowerPC.

The goal of this test is to measure each synchronization

technique’s performance in read-only scenarios, varying the

number of CPUs. Each test ran on between 1 and 64 readers

for 10 seconds, each taking a read lock, reading one variable,

then releasing the lock in a tight loop with no updater. The

figure shows that RCU and per-thread mutexes achieve linear

scalability, courtesy of the perfect memory locality attained

by these approaches. QSBR is fastest, followed by signal-

based RCU, general-purpose RCU and per-thread mutex, each

adding a constant per-CPU overhead. The Xeon behaves

similarly and is not shown here.

Note that the performance of the QSBR and the signal-

based-RCU implementations are more than an order of mag-

nitude greater than that of the per-thread mutex. Because the

performance of the per-thread mutex corresponds to that of

perfect-locality uncontended locking, these two variants of

RCU are therefore more than an order of magnitude faster than

uncontended locking. Even the slower general-purpose RCU

implementation is more than twice as fast as uncontended

locking, making use of RCU extremely attractive for read-

mostly data structures.

In Figure 4, the traces for pthread mutex and pthread reader-

writer locking cannot be easily distinguished from the x axis.

Figure 5 therefore displays only these two traces, showing

their well-known negative scalability.

B. Read-Side Critical Section Duration

Figure 6 presents the number of reads per second as a

function of the duration in nanoseconds of the read-side critical

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 0 10 20 30 40 50 60 70

N
u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Number of cores

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread mutex
pthread reader-writer lock

Fig. 4. Read-Side Scalability of Various Synchronization Primitives, 64-core
POWER5+

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 10 20 30 40 50 60 70
N

u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Number of cores

pthread mutex
pthread reader-writer lock

Fig. 5. Read-Side Scalability of Mutex and Reader-Writer Lock, 64-core
POWER5+

sections. This benchmark is performed with 8 reader threads

acquiring the read lock, reading the data structure, busy-

waiting for the appropriate delay, and releasing the lock. There

is no active updater.

The number of reads per second is inversely proportional

to the sum of the overheads of the read-side primitives and

the duration of the read-side critical section. As the critical-

section duration increases, the number of reads per second

asymptotically approaches the inverse of this duration. The

logarithmic axes of Figures 6–8 therefore cause the slopes

of the curves to approach −1. The region where each curve

nears its asymptote is closely related to the overhead of the

corresponding read-side mechanism.

Thus on the Xeon, QSBR and signal-based RCU have read-

side locking overheads at least a factor of 5 better than general-

purpose RCU, which in turn is about a factor of 2 better than

per-thread mutexes, which in turn is about a factor of 20 better

than reader-writer locks (the curves near their asymptotes

at 50, 250, 500, and 10,000 nanoseconds respectively). For

read-side critical sections longer than 1000 nanoseconds, the

difference in overhead between RCU and per-thread mutexes

is negligible. The pthread mutex asymptote is lower than the

others, because the single mutex can be held by only one

reader at a time.

Corresponding curves for the POWER5+ machine appear in

Figures 7 and 8. The difference between them is that Figure 8

uses 64 reader threads and 64 cores, whereas Figure 7 uses

only 8 threads bound to 8 cores spaced with a stride of 8.

Cores close to each other share a common L2 and L3 cache on

the POWER5+, which causes reader-writer lock and pthread

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 5

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 6. Impact of Read-Side Critical Section Length on 8-core Xeon,
Logarithmic Scale

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000 10000 100000 1e+06

N
u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 7. Impact of Read-Side Critical Section Length, 8 Reader Threads on
64-core POWER5+, Logarithmic Scale

mutex to be slightly faster at lower stride values (not shown).

This has no significant effect on our results.

Comparing Figures 7 and 8 shows that the read-side over-

heads of both the reader-writer lock and the pthread mutex

schemes are about 10 times larger when running on 64 cores

than on 8 cores (curves near their asymptotes at 10,000 and

2500 nanoseconds instead of 1000 and 250 respectively). This

effect is caused by interprocessor cache-line-exchange delays

and nonlinear scaling of lock-contention times. By contrast,

the read-side overheads of the RCU and per-thread mutex

schemes are independent of the number of CPUs, and on this

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0.1 1 10 100 1000 10000 100000 1e+06

N
u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 8. Impact of Read-Side Critical Section Length, 64 Reader Threads on
64-core POWER5+, Logarithmic Scale

machine, the difference in overhead between these schemes is

negligible for critical sections longer than 250 nanoseconds.

Two interesting features of the pthread reader-writer lock

trace in Figures 6, 7, and 8 deserve explanation. The first

is that the performance of pthread reader-writer locking is

inferior to that of pthread mutex for small read-side critical-

section lengths, which is due to the slightly higher overhead

of reader-writer locking compared to that of pthread mutex’s

exclusive locking. The second is the slight rise in throughput

for reader-writer locking just prior to joining the asymptote,

which is due to decreased memory contention on the data

structure implementing the reader-writer lock.

C. Effects of Updates on Read-Side Performance

The results in Sections V-A and V-B clearly show RCU’s

read-side performance advantages. However, RCU updates can

incur performance penalties due to the overhead of grace

periods and the resulting decreases in locality of reference.

This section therefore measures these performance penalties.

Figure 9 presents the impact of update frequency on read-

side performance for the various locking primitives on the

Intel Xeon. It is performed by running 4 reader and 4 updater

threads and varying the delay between updates. The updaters

for the per-thread mutex, mutex and reader-writer lock ex-

periments store two different integer values successively to

the same variable. Readers accessing the variable twice while

holding a lock are guaranteed to observe a single, unchanged

value. To provide the same effect, the RCU updaters allocate

a new structure, store an integer in this newly allocated

structure, and then atomically exchange the pointer to the

new structure with the old pointer currently being accessed

by readers. The RCU experiments store only a single integer

value in each structure; we verified that successively storing

two values to the same memory location had no significant

impact on performance. Memory reclamation is batched using

an rcu_defer() mechanism; this mechanism uses fixed-

size per-thread queues to hold memory reclamation requests so

that an updater incurs a grace period no more than once every

4096 updates. A grace period is of course required whenever

an updater finds its queue is full. In addition, a separate worker

thread empties the queues every 100 milliseconds to provide an

upper bound for reclamation delay. Figure 10 shows the result

of this same benchmark running on a 64-core POWER5+, with

32 reader and 32 updater threads.

Interestingly, on such a workload with 4 tight-loop readers,

mutexes uniformly outperform reader-writer locking. Further-

more, this particular implementation of reader-writer locking

eventually suffers from reader starvation.

The RCU read-side performance shown in Figures 9 and 10

trails off at high update rates, the causes of which are presented

in Appendix E of the Supplementary Material.

Figures 11 and 12 present the impact of the update-side

critical-section length on read-side performance. These tests

are performed with 4 reader and 4 writer threads on the Xeon,

and with 32 reader and 32 writer threads on the POWER5+.

Readers run as quickly as possible, with no delay between

reads. Writer iterations are separated by an arbitrarily-sized

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 6

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000 100000 1e+06 1e+07

R
e
a
d
s
/s

Updates/s

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 9. Update Overhead, 8-core Intel Xeon, Logarithmic Scale

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000 100000 1e+06

R
e
a
d
s
/s

Updates/s

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 10. Update Overhead, 64-core POWER5+, Logarithmic Scale

delay consisting of 10 iterations of a busy loop, amounting

to 55 nanoseconds for the Intel Xeon (due to the “rep; nop”

instruction recommended for x86 busy-waiting loops) and

2.0 nanoseconds for the POWER5+.

With RCU approaches, the read-side performance is largely

unaffected by updates. Slight variations can be seen on a linear

scale (not shown here), but these are caused primarily by CPU

affinity of readers and writers, which influences the sharing of

caches.

Unlike RCU, per-thread mutex readers are significantly

impacted by long write-side critical sections. Again refer-

ring to Figures 11 and 12, read-side performance degrades

significantly beyond a write-side critical-section length of

5,000 nanoseconds on both the Xeon and the POWER5+. On

the Xeon, the pthread reader-writer lock and pthread mutex

degrade catastrophically starting at 250 to 750 nanoseconds

write-side critical-section length. In addition, these schemes

show signs of starvation in the presence of long write-side

critical sections. We saw instances of both reader starvation

(the dips in Figure 12) and writer starvation (not shown);

apparently the class which owns the lock first (either readers

or writers) tends to keep it for the whole test duration. This

is likely caused by the brevity of the delays between reads

and updates, which favors the previous lock owner due to

unfairness in the pthread implementations.

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Write-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 11. Impact of Update-Side Critical Section Length on Read-Side, 8-core
Intel Xeon, Logarithmic Scale

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0.1 1 10 100 1000 10000 100000 1e+06
N

u
m

b
e
r

o
f
re

a
d
s
 /
 s

e
c
o
n
d

Write-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 12. Impact of Update-Side Critical Section Length on Read-Side, 64-
core POWER5+, Logarithmic Scale

D. Update Throughput

Maximum update rates can be inferred from the X-axis of

Figures 9 and 10 by selecting the rightmost point of a given

trace. For example, Figure 9 shows that RCU attains 2 million

updates per second, while per-thread locks manages but 0.1

million updates per second. A key reason for this result is that

RCU readers do not block RCU writers. Furthermore, although

waiting for an RCU grace period can incur significant latency,

it does not necessarily degrade updater bandwidth because in

production-quality implementations, RCU grace periods can

overlap in time.

In Figure 10, the mutex-based benchmark performance

starts degrading at 30,000 updates per second with 32 up-

dater threads, while RCU easily exceeds 100,000 updates

per second. These results clearly show the need to partition

data in order to attain good performance on larger systems.

Benchmarks running only 4 updater threads on the 64-core

system show similar effects (data not presented). Figure 9

shows that update overhead remains reasonably constant even

at higher update frequency for 4 updater threads on the Xeon.

Therefore, as the number of concurrent updaters increases,

mutex behavior seems to depend on the architecture and on

the specific GNU C Library version.

In Figure 10, the reader-writer lock attains only 175 updates

per second, indicating that updaters are starved by readers.

Per-thread locks attain only 10,000 updates per second. Thus,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 7

locking significantly limits update rate relative to RCU.

These results show that RCU QSBR and general-purpose

RCU attain the highest update rates for partitionable read-

mostly data structures (where “read mostly” means more than

90% of accesses are reads) even compared to uncontended

locking. This is attributed to the lower performance overhead

for exchanging a pointer compared to the multiple atomic

operations and memory barriers implied by acquiring and

releasing a lock. RCU is sometimes used even for update-

heavy workloads, due to the wait-free and deadlock-immune

properties of its read-side primitives. The performance char-

acteristics of RCU for update-heavy workloads have been

presented elsewhere [29].

VI. CONCLUSIONS

We have presented a set of RCU implementations covering a

wide spectrum of application architectures. QSBR shows the

best performance characteristics, but severely constrains the

application architecture by requiring that each reader thread

periodically announce that it is in a quiescent state. Signal-

based RCU does not have this requirement, and performs

almost as well as QSBR, but requires reserving a POSIX

signal. Unlike the other two, general-purpose RCU incurs sig-

nificant read-side overhead. However it minimizes constraints

on application architecture, requiring only that each thread

invokes an initialization function before entering its first RCU

read-side critical section.

Benchmarks demonstrate linear read-side scalability of all

the RCU implementations and of per-thread locking. However,

they also demonstrate that the performance of the RCU im-

plementations can exceed that of per-thread locking (and thus

that of uncontended locking) by up to an order of magnitude,

independent of the number of threads. The benchmarks also

show that there is a read-side critical-section duration beyond

which reader-writer locking, RCU, and per-thread locking per-

form similarly, and that this duration increases with the number

of cores. In addition, performing grace-period detection in

batch allows RCU to attain better update rates than reader-

writer locking, per-thread locking, and exclusive locking on

read-mostly data structures. It is possible to further decrease

RCU update-side overhead by designing data structures so as

to provide good cache locality for updaters.

ACKNOWLEDGMENTS

We owe thanks to Maged Michael, Etienne Bergeron,

Alexandre Desnoyers, Michael Stumm, Balaji Rao, Tom Hart,

Robert Bauer, Dmitriy V’jukov, and the anonymous reviewers

for many helpful suggestions. We are indebted to the Linux

community for their use of and contributions to RCU and

to Linus Torvalds for sharing his kernel with us all. We are

grateful to Kathy Bennett for her support of this effort.

This material is based upon work supported by the National

Science Foundation under Grant No. CNS-0719851. This

work is funded by Google, Natural Sciences and Engineering

Research Council of Canada, Ericsson and Defence Research

and Development Canada.

LEGAL STATEMENT

This work represents the views of the authors and does not

necessarily represent the view of their employers.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trade-

marks or service marks of others.

REFERENCES

[1] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,

“Tornado: Maximizing locality and concurrency in a

shared memory multiprocessor operating system,” in

Proceedings of the 3rd Symposium on Operating System

Design and Implementation, New Orleans, LA, February

1999, pp. 87–100.

[2] J. P. Hennessy, D. L. Osisek, and J. W. Seigh II, “Passive

serialization in a multitasking environment,” US Patent

and Trademark Office, Washington, DC, Tech. Rep. US

Patent 4,809,168 (lapsed), February 1989.

[3] V. Jacobson, “Avoid read-side locking via delayed free,”

September 1993, private communication.

[4] A. John, “Dynamic vnodes – design and implementa-

tion,” in USENIX Winter 1995. New Orleans, LA:

USENIX Association, January 1995, pp. 11–23.

[5] P. E. McKenney and J. D. Slingwine, “Read-copy update:

Using execution history to solve concurrency problems,”

in Parallel and Distributed Computing and Systems, Las

Vegas, NV, October 1998, pp. 509–518.

[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,

M. F. Kaashoek, R. Morris, and N. Zeldovich, “An

analysis of Linux scalability to many cores,” in 9th

USENIX Symposium on Operating System Design and

Implementation. Vancouver, BC, Canada: USENIX,

October 2010, pp. 1–16.

[7] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,

“Performance of memory reclamation for lockless syn-

chronization,” J. Parallel Distrib. Comput., vol. 67,

no. 12, pp. 1270–1285, 2007.

[8] K. A. Fraser, “Practical lock-freedom,” Ph.D. disserta-

tion, King’s College, University of Cambridge, 2003.

[9] K. Fraser and T. Harris, “Concurrent programming with-

out locks,” ACM Trans. Comput. Syst., vol. 25, no. 2, pp.

1–61, 2007.

[10] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N.

Scherer III, and N. Shavit, “A lazy concurrent list-based

set algorithm,” in Principles of Distributed Systems, 9th

International Conference OPODIS 2005. Springer-

Verlag, 2005, pp. 3–16.

[11] H. T. Kung and Q. Lehman, “Concurrent maintenance

of binary search trees,” ACM Transactions on Database

Systems, vol. 5, no. 3, pp. 354–382, September 1980.

[12] P. Becker, “Working draft, standard for programming

language C++,” August 2010, [Online]. Available:

http://open-std.org/jtc1/sc22/wg21/docs/papers/2010/

n3126.pdf.

[13] D. Guniguntala, P. E. McKenney, J. Triplett, and

J. Walpole, “The read-copy-update mechanism for sup-

porting real-time applications on shared-memory multi-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2011 8

processor systems with Linux,” IBM Systems Journal,

vol. 47, no. 2, pp. 221–236, May 2008.

[14] P. E. McKenney and J. Walpole. (2007, December)

What is RCU, fundamentally? [Online]. Available: Linux

Weekly News, http://lwn.net/Articles/262464/.

[15] M. Herlihy, “Implementing highly concurrent data ob-

jects,” ACM Transactions on Programming Languages

and Systems, vol. 15, no. 5, pp. 745–770, Nov. 1993.

[16] R. K. Treiber, “Systems programming: Coping with

parallelism,” April 1986, RJ 5118.

[17] D. Sarma and P. E. McKenney, “Making RCU safe

for deep sub-millisecond response realtime applications,”

in Proceedings of the 2004 USENIX Annual Technical

Conference (FREENIX Track). USENIX Association,

June 2004, pp. 182–191.

[18] P. E. McKenney. (2008, January) What is RCU? part 2:

Usage. [Online]. Available: Linux Weekly News, http:

//lwn.net/Articles/263130/.

[19] M. Desnoyers, “Low-impact operating system tracing,”

Ph.D. dissertation, Ecole Polytechnique de Montréal,

December 2009, [Online]. Available: http://www.lttng.

org/pub/thesis/desnoyers-dissertation-2009-12.pdf.

[20] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais,

“Combined tracing of the kernel and applications with

LTTng,” in Proceedings of the 2009 Linux Symposium,

Jul. 2009.

[21] T. Jinmei and P. Vixie, “Implementation and evaluation

of moderate parallelism in the BIND9 DNS server,” in

Proceedings of the annual conference on USENIX Annual

Technical Conference, Boston, MA, February 2006, pp.

115–128.

[22] W. C. Hsieh and W. E. Weihl, “Scalable reader-writer

locks for parallel systems,” in Proceedings of the 6th

International Parallel Processing Symposium, Beverly

Hills, CA, USA, March 1992, pp. 216–230.

[23] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,

S. Chiras, and S. Chatterjee, “Software transactional

memory: Why is it only a research toy?” ACM Queue,

September 2008.

[24] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:

streamlining STM by abolishing ownership records,” in

PPOPP, 2010, pp. 67–78.

[25] A. Dragovejic, P. Felber, V. Gramoli, and R. Guerraoui,

“Why STM can be more than a research toy,” Febru-

ary 2010, [Online]. Available: http://infoscience.epfl.ch/

record/144052/files/paper.pdf.

[26] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C.

Minh, W. Baek, C. Kozyrakis, and K. Olukotun, “A scal-

able, non-blocking approach to transactional memory,” in

HPCA Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture,

2007, pp. 97–108.

[27] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar,

and R. Balasubramonian, “Scalable and reliable commu-

nication for hardware transactional memory,” in PACT

Proceedings of the 17th International Conference on Par-

allel Architectures and Compilation Techniques, 2008,

pp. 144–154.

[28] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early expe-

rience with a commercial hardware transactional memory

implementation,” in Fourteenth International Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’09), Washington, DC,

USA, March 2009, pp. 157–168.

[29] P. E. McKenney, “RCU vs. locking performance on dif-

ferent CPUs,” in linux.conf.au, Adelaide, Australia, Jan-

uary 2004, [Online]. Available: http://www.rdrop.com/

users/paulmck/RCU/lockperf.2004.01.17a.pdf.

Mathieu Desnoyers is President &

Founder of EfficiOS. He maintains the

LTTng project and the Userspace RCU

library. His research interests are in per-

formance analysis tools, operating sys-

tems, scalability and real-time concerns.

He holds a Ph.D. degree in Computer

Engineering from Ecole Polytechnique de

Montreal (2010).

Paul E. McKenney is an Distin-

guished Engineer at IBM. He main-

tains the Linux-kernel RCU implemen-

tations, and his primary research interest

is shared-memory parallel software. He

holds a Ph.D. in computer science and

engineering from Oregon Health and Sci-

ences University (2004).

Alan S. Stern received a Ph.D. in

Mathematical Logic from the University

of California at Berkeley in 1984. His

current position at the Rowland Insti-

tute at Harvard is Staff Computational

Scientist. He is actively involved with

Linux kernel development, particularly in

the USB and Power Management subsys-

tems.

Michel R. Dagenais is professor at

Ecole Polytechnique de Montreal, in the

Computer and Software Engineering De-

partment. His research interests include

several aspects of multi-core distributed

systems with emphasis on Linux and

open systems. His group has made several

original contributions to Linux.

Jonathan Walpole is a Full Professor

in the Computer Science Department at

Portland State University. His research in-

terests are in operating systems, and scal-

able concurrent programming. He holds

B.Sc. and Ph.D. degrees in Computer

Science from Lancaster University, UK

(1984 and 1987).

