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Abstract

There has been great progress from the tradi-
tional allocation algorithms designed for small
memories to more modern algorithms ex-
emplified by McKusick’s and Karel’s alloca-
tor [MK88]. Nonetheless, none of these algo-
rithms have been designed to meet the needs
of UNIX kernels supporting commercial data-
processing applications in a shared-memory
multiprocessor environment.

On a shared-memory multiprocessor, mem-
ory is a global resource. Therefore, allocator
performance depends on synchronization prim-
itives and manipulation of shared data as well
as on raw CPU speed.

Synchronization primitives and access to
shared data depend on system bus interactions.
The speed of system busses has not kept pace
with that of CPUs, as witnessed by the ever-
larger caches found on recent systems. Thus,
the performance of synchronization primitives
and of memory allocators that use them have
not received the full benefit of increased CPU
performance.

An earlier paper [MS93] describes an alloca-
tor designed to meet this situation. This paper
reviews the motivation for and design of the al-
locator and the presents experience gained dur-
ing the seven years that the allocator has been
in production use.

1 Introduction

Parallel implementations of UNIX have been
quite successful at meeting the the needs of

online transaction-processing (OLTP) applica-
tions. Nonetheless, one weakness of previous
implementations has been the general-purpose
kernel memory allocator.

The old version of the allocator is a straight-
forward global allocator whose critical sections
are protected by spinlocks.  Although this
worked quite well on older platforms, this al-
locator’s performance is less than optimal on
newer platforms, primarily because the speed of
synchronization primitives (such as spinlocks)
has not increased as rapidly as the speed of
other instructions.

There has also been great progress in the
area of multiprocessor synchronization primi-
tives (citations [BK91, Her91, Her93, SSHT93]
give an overview of several areas of recent
progress). However, synchronization requires
global processing. Global processing is very
costly in comparison to local processing and
can be expected to become even more expensive
as technology advances [HJ91, SC91, BGK96].
We therefore decided to abandon the search for
ever-more sophisticated synchronization primi-
tives in favor of a search for an algorithm that
does not depend so heavily on synchronization.
This search bore fruit in the form of an al-
gorithm that runs fifteen times as fast as the
old allocator on a single processor and that ex-
hibits linear speedup on shared-memory mul-
tiprocessors, resulting in more than a three-
orders-of-magnitude increase in performance,
while adding online coalescing.

Section 2 analyzes the behavior of the old
algorithm. Section 3 presents the new algo-
rithm, Section 4 evaluates an implementation,



and Section 5 presents experience gathered dur-
ing three years production use of the new allo-
cator.

2 Analysis

Our investigation into kernel-
memory-allocation performance began when we
found that the STREAMS [Rit84] buffer al-
locator was running four to five times more
slowly than predicted by instruction counts.
We quickly realized that the general-purpose
kernel-memory allocator suffered from the same
problem, which motivated us to develop the al-
gorithm described in this paper.

The remainder of this section presents the re-
sults of the investigation, describing the initial
behavior of alloch (the STREAMS buffer alloca-
tor) and freeb (the STREAMS buffer dealloca-
tor) and showing how the current allocation al-
gorithm’s interaction with the shared-memory
multiprocessor environment leads to this behav-
ior. All measurements presented in this section
were taken on a Sequent $2000/200 with a pair
of 25 MHz 80486 CPUs running DYNIX/ptx, a
parallel variant of UNIX.

2.1 Behavior of alloch

The alloch function returns a pointer to a mes-
sage, which consists of a message block, data
block, and STREAMS buffer. To do this, it
must find a buffer capable of holding the spec-
ified number of bytes, allocate a message block
and data block, and initialize them so that the
message block points to the data block that
points to the STREAMS buffer. The caller
may then link several messages together to form
a segmented message, add the message to a
queue, allocate a new message block to form
a second reference to some data (for example,
in order to retain the data for possible later re-
transmission), or free up the message.

When sufficient memory is available, alloch
executes a nearly fixed code sequence! that
would require 12.5 microseconds in the absence
of cache misses. However, measured times
ranged from 28 to 198 microseconds, with the
average at 64.2 microseconds. We captured
a 64.76 microsecond trace on a logic analyzer

IThere is a small loop that selects the proper freelist
given the block size, but the maximum execution time
for this loop is only a few percent of the total runtime.
There are also variations in the number of TLB misses.

and found that the worst 19 of the 304 off-
chip accesses (6.3%) accounted for 57.6% of the
elapsed time and that the worst 31 (10.2%) ac-
counted for 68.4% of the elapsed time.

2.2 Behavior of freeb

The freeb function typically executes a fixed
code sequence that would require 8.8 microsec-
onds in the absence of cache misses. Measured
times ranged from 16 to 176 microseconds, with
the average at 48.7 microseconds. We captured
a 102.8 microsecond trace on a logic analyzer
representing a back-to-back pair of freebs in-
voked from freemsg, and found that the worst
28 of the 322 off-chip accesses (8.6%) accounted
for 50.6% of the elapsed time, while the worst
74 (23.0%) accounted for 80.3% of the elapsed
time.

In both alloch and freeb the worst accesses
were cache misses, either to main memory, to
the other processor’s cache, or to uncacheable
device registers. Note that this behavior is
not peculiar to alloch or freeb; any allocator
that consisted of a traditional allocator pro-
tected by a simple mutual-exclusion scheme
(such as the general-purpose kernel memory
allocator) would suffer from the same prob-
lem. Other investigators [TGH92] have inde-
pendently demonstrated some of the difficulties
with use of simple mutual exclusion to protect
data structures used by traditional algorithms.

An improved version of alloch is presented
in [MG92]. This paper describes an improved
version of the general-purpose kernel memory
allocator.

3 Memory Allocator Design

This section presents the design goals that we
set out for the new memory allocator, followed
by the design itself.

3.1 Design Goals

The design goals for the new allocator are: (1)
to implement full System V semantics, (2) to
support high allocation/deallocation rates, (3)
to scale well with increasing processor speeds,
(4) to exhibit linear speedup on shared-memory
multiprocessors, (5) to be capable of allocating
all available buffers to any or all CPUs, and (6)
to be capable of coalescing blocks so as to real-
locate the memory to different-sized requests.



Implementing full System V semantics adds
some overhead. A more efficient interface would
allow the caller to request that a given block
size be encoded into a “magic cookie” for use
in subsequent allocation requests for that size,
greatly reducing the number of translations
from block size to freelist address. In addition,
it is permissible to take the address of the Sys-
tem V allocation (kmem-alloc) and deallocation
(kmem_free) functions. A more efficient inter-
face would also provide C preprocessor macros
to perform these functions, thereby avoiding
function-call overhead. This paper reports the
performance of both the standard version and
an optimized version.

An important goal is to exceed the perfor-
mance of simple global mutual-exclusion. An
allocator that meets this goal is faster than
any possible ad-hoc allocator based on mutual
exclusion; thus, it almost entirely eliminates
any motivation to create such ad-hoc alloca-
tors. One situation in which ad-hoc allocators
are still beneficial is when the structures be-
ing allocated are subject to some complex but
reusable initialization. The STREAMS buffer
allocator described earlier provides an exam-
ple of this situation. Three different structures
(the message block, data block, and data buffer)
must be linked together and allocated as a unit.
However, the memory allocator’s code may be
reused for special-purpose allocators such as the
STREAMS buffer allocator. This reuse occurs
at the binary level,2 so that a proliferation of
special-purpose allocators can be accomodated,
if need be, without undue kernel bloat.

A good allocator will scale with the pro-
cessor speeds as opposed to interconnect la-
tencies. This requires that the allocator ex-
hibit good locality of reference in order to avoid
cache-thrashing and that it avoid use of instruc-
tions such as read-modify-write operations and
branches that can result in CPU pipeline stalls.

Read-modify-write instructions can result in
pipeline stalls because they are required to be
executed as if they are atomic. Modern micro-
processors operate in a pipelined fashion, over-
lapping the execution of several instructions.
The execution of atomic operations may be
overlapped with that of other instructions only
under very restricted conditions. Further ad-
vances in the art of CPU design might well ease

2In other words, special-purpose allocators such as
alloch invoke the same functions as does the general-
purpose kmeme_alloc allocator.

these restrictions. However, superscalar tech-
niques (execution of several parallel pipelines
within a single CPU) will increase the penalty
associated with stalling for atomic operations.

Branches can result in pipeline stalls be-
cause it is not always possible to determine the
branch’s outcome early enough to do sufficient
instruction prefetching. Therefore, the pipeline
can stall, waiting for instructions to be fetched
from memory or from cache. This effect can
be clearly seen in logic-analyzer traces; instruc-
tion prefetch will continue along the wrong path
when the outcome of a branch is not correctly
predicted. The exact magnitude of this effect
varies with architecture and with the exact cir-
cumstances of the mispredicted branch. How-
ever, the amount of effort that has been ex-
pended to cause compilers to more accurately
predict branches gives some hint of the impor-
tance of this effect. Further advances in the
arts of compiler and CPU design may make
this issue less important, but algorithms such
as fully-inlined binary search will likely remain
problematic when presented with random in-
put.

Near-linear speedups are needed in order
to support configurations with large numbers
of processors and communications interfaces.
To achieve this goal, the allocator must avoid
operations that require coordination between
CPUs. An analogy drawn from traffic engineer-
ing may be helpful. Within cities, cars must
frequently cross each other’s paths. Drivers
must coordinate their actions (with varying de-
grees of aggression) in order to avoid collision,
and the speed limits are set low to allow for
this coordination. In contrast, on rural free-
ways cars rarely cross each other’s paths, and a
much lower degree of coordination is required,
thereby allowing speed limits to be set higher.
Likewise, multiprocessor allocators that avoid
the need for coordination avoid inconveniently-
low speed limits.

It is clearly important that any given CPU
be able to allocate the last remaining buffer,
although the allocator is permitted to incur
more overhead in this hopefully infrequent low-
memory situation.

It is not uncommon for machines in com-
mercial environments to be presented a cyclic
workload. For example, the machine might be
used for data entry and queries as part of a
distributed database during the day, and for
backups and database reorganization at night.



These different activities often require different
sizes of memory allocations, e.g., the data en-
tries and queries might require huge numbers of
small blocks of memory to track database lock-
ing while the backups and database reorganiza-
tion might require massive amounts of memory
dedicated to user processes.

Consequently, the allocator must be able to
coalesce adjacent free blocks of memory into
larger blocks, allowing memory to be used to
satisfy requests of different sizes or to be re-
turned to the system for use by user processes.
Allocators must recover from problems such as
overallocation of memory to a given blocksize
without a reboot. Coalescing should not inter-
fere with normal system operation, since a one-
minute pause caused by an offline coalescing al-
gorithm can be just as disruptive as a reboot.

3.2 Roads Not Taken

We considered a number of possible allocation
schemes.

Although the McKusick-Karels (MK) algo-
rithm [MK88] is extremely efficient on unipro-
cessors when presented with requests whose
sizes can be determined at compile-time, it does
not meet goals 3 and 4 on multiprocessors. In
particular, its fully-inlined binary search re-
sults in pipeline stalls because no reasonable
instruction prefetch strategy can correctly pre-
dict all of the branches. As presented, the
MK algorithm also fails to meet goal 6, but
could be modified to do the required coalesc-
ing. Nonetheless, the large number of algo-
rithms that are directly and indirectly derived
from the MK algorithm (including the one pre-
sented in this paper) form an impressive testa-
ment to its strengths.

One such algorithm is the watermark-based
lazy buddy system [LB89], which attempts
to combine high-speed allocation with high-
quality coalescing. However, it requires global
synchronization on each operation and fails to
maintain good locality of reference (since each
block is sent singly to be coalesced, rather than
being sent in large groups), thereby failing to
meet goals 3 and 4 on multiprocessors.

Another MK-derived algorithm is Rogue
Wave’s C++ memory allocator [Mye92]. This
allocator also attempts to combine high-speed
allocation with high-quality coalescing, but in-
tentionally degrades its ability to coalesce in
favor of decreasing the resident set size of the

program. This is a laudable goal within a user
process, but is largely irrelevant within a non-
preemptive non-paging operating system ker-
nel. Furthermore, the algorithm is not designed
for use on multiprocessors and so does not meet
goals 3 and 4 in this environment.

Algorithms designed specifically to pro-
mote high-quality coalescing [Knu73] are quite
slow [KV85] and thus fail to meet goal 2. It is
quite difficult to exceed the performance of re-
moving the first element from a simple, singly-
linked, linear list—particularly when that list is
accessed from only one of the CPUs.

3.3 Allocator Design

The requirements for high speed and for coa-
lescing conflict to a large degree. Very little
coalescing can be performed within the 9-VAX-
instruction budget of the McKusick-Karels al-
locator. It is nevertheless possible to do both
high-speed allocation and high-quality, online
coalescing by introducing the concept of layer-
ing to the allocator.

The allocator consists of four layers: (1) a
per-CPU caching layer, (2) a global layer, (3)
a coalesce-to-page layer, and (4) a coalesce-
to-“vmblk” layer. The lower-numbered layers
are optimized for speed, while the the higher-
numbered layers are optimized for coalescing,
as illustrated in Figure 1. The following sec-
tions describe each of these layers in turn. A
final section describes how “cookies” are used
to efficiently encapsulate request-size informa-
tion.

3.3.1 Per-CPU Caching Layer

The only purpose of the per-CPU caching layer
is to support high-speed allocation and deallo-
cation in the common case. Each CPU main-
tains a local cache of buffers for each of a small
fixed set of buffer sizes, much as the McKusick-
Karels algorithm does. Consequently, there is
one instance of a per-CPU cache for each possi-
ble CPU-buffer-size combination. For example,
a four-CPU system that managed the default
set of nine power-of-two block sizes (16, 32,
64, 128, 254, 512, 1024, 2048, and 4096 bytes)
would have 36 per-CPU caches.

The kmem_alloc function first attempts to
satisfy a request for a given size of block from
the appropriate cache on the current CPU. For
example, an interrupt routine running on CPU
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Figure 1: Allocator Layering

Speed

2 needing a 50-byte block would first check CPU
2’s cache of 64-byte blocks. CPUs are pro-
hibited from accessing other CPUs’ per-CPU
caches, thus removing the need for any synchro-
nization primitives (other than the disabling of
interrupts) guarding the per-CPU caches.
When a per-CPU cache is exhausted, it is
replenished from the global layer; when it be-
comes too full (as determined by a kernel
parameter named target), the excess is put
back into the global layer. Blocks are moved
in target-sized groups, preventing unnecessary
linked-list operations. This is accomplished
by maintaining a split freelist in the per-CPU
cache as shown in Figure 2. The maximum size

Main [Auxiliary| Target
Freelist | Freelist | Value=3

Figure 2: Per-CPU Data Structures

of each half of the per-CPU freelist is target, so
that the total number of blocks in a per-CPU
freelist may range up to twice target. Blocks
are normally allocated from and freed to the
main list. If adding another block would cause
the main list to exceed target, main is moved to
auz. If auz is not empty, its contents are first
returned to the global layer. Thus, as shown in
Figure 2, up to two additional blocks may be
freed onto main. Freeing a third block would
cause the contents of aux to be returned to the
global pool, the contents of main to be moved
to auz, and the newly-freed block to be added
to main. At this point, the configuration would
again be as shown in Figure 2.

If main is empty upon allocation, the con-
tents of auz, if any, are moved to main. If quz is
also empty, main is instead replenished from the
global layer. In the situation shown in Figure 2,



one more block may be allocated from main, at
which point main will be empty. A second allo-
cation will result in the contents of main being
moved to euz and one of the blocks being used
to satisfy the allocation request. At this point,
main will contain two more blocks and auz will
be empty, allowing two additional allocations
to be made directly from main. The next al-
location would find both main and auz empty,
causing main to be refilled from the global layer.

Note that the global layer will be accessed
at most one time per target-number of accesses.
This means that the per-allocation overhead in-
curred in the global layer may be reduced to
any desired level simply by increasing the value
of target. The only penalty for increasing tar-
get is the increased amount of memory that
will reside in the per-CPU caches. In prac-
tice, there is no motivation to increase target
beyond the point at which the global-layer over-
head becomes an insignificant portion of the
per-allocation overhead.

3.3.2 Global Layer

The only purpose of the global layer is to sup-
port reasonable performance in cases when one
CPU allocates buffers of a given size, which are
then passed to other CPUs that free them. The
global layer allows the freed buffers to move
back to the allocating CPU without incurring
the overhead of coalescing.

There is a separate instance of the global
layer for each block size. Each instance main-
tains free blocks in lists of target-sized lists, as
shown in Figure 3. This technique allows target-
sized blocks of data to be passed to and from
the per-CPU layers with a minimum number of
linked-list operations. Odd-sized lists of blocks
may be passed into the global layer during low-
memory operation or during per-CPU cache
flushes. These lists are added to the bucket
list, which is used to group the blocks back into
target-sized lists.

When the global layer becomes too full, the
excess buffers are sent up to the coalesce-to-
page layer. When the global layer is empty, it
is replenished from the coalesce-to-page layer.
The number of blocks in the global layer ranges
up to twice a parameter named gbltarget. There
is no reason to maintain a split freelist at the
global layer, since each block must be individu-
ally examined by the coalesce-to-page layer (de-
scribed in the following section) in order to de-
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Figure 3: Global Layer Data Structures




termine which page’s freelist it belongs on.

A schematic view of the data structures im-
plementing the per-CPU and global layers is
shown in Figure 4. Each CPU has a pointer to

CPU 0 ptr
CPU 1 ptr
Per-CPU
CPU 2 ptr Caches
CPU 3 ptr ' '
Y ||
Y ||
Size 0 cache nEn
Size 1 cache [ [
Size 2 cache [ [
Size 3 cache [ ™
Size 4 cache ___
Size 5 cache [—
Global Caches
Y
Y
Y
\ 4
Y
Y
Size 0
Global Pool

Figure 4: Per-CPU and Global Layers

an array of its per-CPU caches, and each per-
CPU cache maintains a pointer to the global
pool serving its blocksize. Request sizes are
converted to indexes into the array of caches
through use of a table indexed by size.

3.3.3 Coalesce-to-Page Layer

The coalesce-to-page layer gathers blocks of a
given size and coalesces them into pages. This
layer maintains an auxiliary data structure for
each page, which contains the per-page freelist
and a count of the number of blocks in the page
that are currently free (this per-page data struc-
ture is described in more detail in the discussion
of the coalesce-to-vmblk layer below). When
the count equals the total number of blocks in
the page, the entire page may be given back
to the system; in other words, the coalesce-to-
page layer can immediately determine when all
of the blocks in a given page have been freed up.
This eliminates the need for a computationally-
expensive mark-and-sweep algorithm or an of-
fline sorting algorithm. Pages that have some
blocks in use are placed on a radix-sorted freel-
ist so that pages with the fewest free blocks will
be allocated from most frequently, as shown
in Figure 5. For example, pages with no free
blocks (such as PD 2 and PD 4) are placed on
list 0, pages with two free blocks (such as PD
5) are placed on list 2, and pages with n—1 free
blocks (such as PD 0 and PD 1) are placed on
list » — 1. Note that pages with n free blocks
are completely freed up, and may therefore be
returned to the VM system. This sorting has
the benefit of allowing pages that have only a
few in-use blocks more time to gather them. In
turn, this allows the page to be used for alloca-
tions of other sizes and for user processes.
Once all of the blocks in a page have been
freed, the physical memory is returned to
the system. The virtual memory is retained
and passed up to the coalesce-to-vmblk layer.
This process illustrates a key difference be-
tween kernel- and user-level memory allocators.
Kernel-level allocators must manage the virtual
address space and physical memory explicitly
and separately. In contrast, user-level alloca-
tors need not and typically cannot easily dis-
tinguish between virtual and physical memory.

3.3.4 Coalesce-to-vmblk Layer

This layer manages large vmblks of virtual
memory (4 megabytes in size for the current im-
plementation). Pages of virtual-address space
are allocated from vmblks as needed and are
mapped onto physical memory. Requests for
blocks of memory larger than one page bypass
layers 1 through 3 and are handled directly by
the coalesce-to-vmblk layer. Adjacent spans of
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free pages in a vmblk are coalesced as they are
freed; a boundary-tag-like scheme uses per-page
auxiliary data structures (called page descrip-
tors) to track the sizes and locations of free
spans of virtual memory.

The system must be able to locate the page
descriptor corresponding to a particular block
given only that block’s address. This is accom-
plished with a two-level scheme using a sparse
array as shown in Figure 6. In the first level the
upper bits of the block’s address are used to in-
dex into a dope vector, which contains the ad-
dress of the vmblk containing that block. The
vmblk consists of a group of page descriptors
followed by the corresponding data pages. In
the second level, the index of the block’s page
descriptor within the vmblk is obtained by sub-
tracting the vmblk’s address from the block’s
address, shifting off the lower bits to get the
page index within the vmblk, and finally sub-
tracting the number of pages occupied by the
page descriptors.

This two-level scheme allows overhead infor-
mation to be kept only for those pages con-
trolled by the allocator. Other pages (such as
those used by processes) require no such over-
head. The performance penalty associated with
this two-level scheme is incurred only at the
coalesce-to-page and coalesce-to-vmblk layers,
and therefore has a minimal effect on overall
system performance.

Page descriptors corresponding to pages that
have been split into blocks contain the block
size, a freelist pointer, and the number of
free blocks. Page descriptors corresponding
to spans contain the boundary-tag information
and free-list pointers needed to allocate and co-
alesce large blocks.

3.3.5 Cookies

As noted earlier, there is significant over-
head associated with inlined binary searches
given widely-varying inputs that defeat branch-
prediction schemes. Hence, the inline binary
search used by the MK algorithm is most ef-
fective when the size is known at compile time.
Otherwise, a subroutine call combined with a
table lookup can be just as efficient.

Explicitly requiring that the request size be
known at compile time allows the overhead
of freeing to be further reduced (cases where
the request size is not known at compile time
may be handled by the standard function inter-
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face). The caller invokes kmem_alloc_get_cookie
to translate a request size into an opaque
“cookie” that is passed to subsequent ex-
pansions of the KMEM_ALLOC_-COOKIFE and
KMEM_FREE_COOKIE macros. The cookie
contains pointers to the proper per-CPU pools,
removing the need for the free operation to de-
termine the block size given only its address.
The use of cookies allows the common case
of the free operation to consume only thirteen
80x86 instructions, as compared to the 16 VAX
instructions consumed by the MK algorithm.

4 Measurements

The following sections present instruction
counts for the allocator, measurements on
a simple benchmark that exhibits best-case
performance, measurements on another sim-
ple benchmark that exhibits worst-case perfor-
mance, and finally measurements taken from a
more sophisticated benchmark that makes more
typical use of the allocator.

All measurements were taken on a Symmetry
2000 system with 50MHz 80486 processors.

4.1 Instruction Counts

The efficient “cookie” version of the allocator
executes thirteen 80x86 instructions each for
the allocation and free operations. Allocation
overhead is comparable to that of MK when dif-
ferences between the VAX and 80x86 instruc-
tion set are taken into account (in particular,
the 80x86 lacks a memory-to-memory move in-
struction). A single additional memory refer-
ence is required in order to handle multiple pro-
cessors. The overhead of freeing is somewhat
less than that of MK even without consider-
ing instruction-set differences. The difference is
due to the use of the cookie-based scheme. MK
must look up the block’s size and use this in-
formation to index into the list of freelist, while
the cookie allows direct access to the proper
per-CPU cache.

Note that the efficient version is nonstandard
and is useful only when the size of the request
is known at compile-time.

The less efficient but standard interface exe-
cutes 35 instructions for allocation and 32 in-
structions for freeing, assuming that the each
of the actual arguments can be evaluated and
stored with a single instruction. The additional
overhead is caused by the function call and by



the need to map from the request size to the
proper per-CPU cache. Currently, all variable-
sized structures have large initialization over-
heads that overwhelm the performance differ-
ence between the standard and cookie-based
interfaces.> Therefore, there is currently lit-
tle motivation to provide a third interface that
provides speedier allocation of variable-length
structures.

4.2 Best-Case Benchmark

We measured best-case performance by con-
structing a system call containing a loop
that is run for a user-specified length of
time. Each pass through the loop invokes
kmem_alloc to allocate a buffer, then invokes
kmem_free to immediately deallocate this same
buffer. When the specified length of time has
passed, the system call returns the number
of kmem_alloc/kmem_free pairs that were ex-
ecuted. Thus, the measurements include the
overhead of the loop which invokes kmem_alloc
and kmem_free; this overhead amounts to as
much as 40% for the faster algorithms. This
system call is invoked from a user program,
which is forced to run on a specified CPU.
Multiple-CPU data is collected by running mul-
tiple instances of the program, each on its own
CPU.

The performance was highly linear as shown
in Figure 7. The x-axis shows the number of
CPUs and the y-axis shows the number of pairs
of allocation and freeing accomplished per sec-
ond. The top trace shows the performance of
the non-standard cookie-based macro, the next
trace shows the performance of the standard
functional interface, and the bottom two traces
show the performance of naive parallelizations
of the MK algorithm and of the “oldkma” algo-
rithm, which resembles “Fast Fits” [Ste83] (al-
gorithm “S” in Korn’s and Vo’s survey [KV85]).

Figure 8 displays the same data on a semilog
plot so that the traces for the two slower algo-
rithms may be more easily distinguished from
the x-axis. The irregularities in the trace of the
naive parallelization of the MK algorithm are
due to second-order effects resulting from the
extreme lock contention exhibited by this algo-
rithm. These effects are largely masked by the

3The only exception to this rule is the communica-
tions subsystem, for which a special-purpose allocator
(alloch and freeb) already exists.

greater overhead of the slower “oldkma” algo-
rithm.

The cookie-based allocator ranges from 15
times the performance of the “oldkma” alloca-
tor on a single CPU to more than 1,000 times
the performance on 25 CPUs.* The standard
interface is roughly half as fast as the cookie-
based allocator, but note that this dramatic-
seeming difference in performance amounts to
only about 20 instructions per operation.

In contrast, the other two schemes simply did
not scale with increasing numbers of CPUs. In
fact, in both cases, the best performance was
observed when running on a single CPU.

Hardware monitors indicate that the com-
mon case of the two fast algorithms are free
from the cache-thrashing that accounted for so
much of the original algorithm’s execution time.
We therefore expect that the allocator will con-
tinue to scale well with increasing processor
speeds.

4.3 Worst-Case Benchmark

The best-case benchmark exercises only the
per-CPU caching layer. The worst-case bench-
mark exercises not only all the layers, but takes
care to exercise the upper layers to the great-
est extent possible, thereby incurring the worst
possible per-allocation overhead. This is ac-
complished by allocating blocks of a given size
until memory is exhausted, freeing them all,
then repeating the process with the next-larger
size.

The benchmark is implemented as a shell
script which uses a set of special-purpose sys-
tem calls which allow the user to explicitly spec-
ify sequences of allocation and free operations.
A syscall_kma() system call causes the system
to allocate a specified number of blocks of a
given size, placing them on a linked list in the
kernel. A companion syscall_kmf() system call
causes the system to free a specified number of
blocks from the linked list.

Note that an allocator that does no coalesc-
ing would fail to complete this benchmark, hav-
ing permanently fragmented all available mem-
ory into the smallest possible blocks. It would
be necessary to reboot the system between runs
of each block size. An allocator that does peri-

4Although the machine we were using had 26 CPUs,
we cannot reliably measure the performance of all 26
CPUs simultaneously because the script that coordi-
nates the tests must use one of the CPUs.
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odic offline coalescing would require that appro-
priate sleep commands be placed in the script
in order to ensure that the newly-freed blocks
of the previous size were fully coalesced before
advancing to the next size. The fact that our
allocator required neither reboots nor delays of
any sort demonstrates the effectiveness of the
coalescing scheme.

The results are shown on Figure 9. Note
that the x-axis is in units of block size rather
than number of CPUs. Large blocks showed de-
creased performance because they require phys-
ical memory to be allocated from the virtual-
memory system more frequently, and the target
value is set by a heuristic that limits the amount
of memory that is tied up in per-CPU caches.
This value ranges from 10 for 16-byte blocks
to just 2 for 4096-byte blocks. Although this
heuristic may be overridden to increase perfor-
mance, there is usually little reason to. The
overhead of initializing large blocks of memory
typically overshadows the virtual-memory sys-
tem’s overhead.

Freeing small blocks is more expensive than
allocating them because of the overhead of
mapping from the block’s address to its per-
page freelist. Normally, this overhead would
be infrequently incurred, but the worst-case
benchmark forces it to occur on each and ev-
ery free.

4.4 Distributed Lock Manager
Benchmark

The best-case benchmark is effectively measur-
ing only the performance of the per-CPU layer,
while the worst-case benchmark overstates the
overhead of the upper layers. Realistically eval-
uating the overall performance requires mea-
suring an application that makes more sophis-
ticated use of the memory allocator than did
the simple benchmarks presented in the previ-
ous sections. The application we selected was
a distributed lock manager, which makes heavy
use of kmem_alloc in order to build data struc-
tures needed to track lock requests and owner-
ship. This lock manager is used by OLTP ap-
plications to maintain a consistent view of data
among a cooperating cluster of machines.
Unfortunately, it is not possible to directly
measure the kmem_alloc overhead in this bench-
mark. The microsecond counters used to mea-
sure the overhead for the two simple bench-
marks do not have enough resolution to accu-

rately measure an isolated invocation of these
allocators. However, the degree by which the
upper layers will degrade performance can be
expressed in terms of miss rates. We define the
miss rate at a given layer as the fraction of ac-
cesses to that layer that require the services of
a higher layer. For the value of 10 used for
target for small blocks, at most one of every
ten allocations will require the services of the
global layer. Hence, the maximum miss rate
from the per-CPU caching layer is 10%. The
value of 15 used for gbltarget for small blocks re-
sults in a maximum miss rate of 6.7% from the
global layer to the coalescing layer. The maxi-
mum combined miss rate from the per-CPU and
global layers is 0.67%. In other words, at most
one out of every 150 allocations will require ser-
vice from the coalescing layer. Real applica-
tions will fall somewhere between the best- and
worst-case benchmarks. Measuring a particular
application’s miss rates allows us to estimate
that application’s allocation overhead without
the need for special-purpose hardware.

The miss rate from the per-CPU layer into
the global layer ranged from 2.1% (for frees of
256-byte blocks) to 7.8% (for allocations of 512-
byte blocks). Note that the 7.8% figure is fairly
close to the worst-case figure of 10%. Again, if
need be, the value of target can be increased to
reduce both the worst-case and the real-world
miss rates.

The miss rate from the global layer to the
coalesce-to-page layer ranged from 1.2% (for
frees of 256-byte blocks) to 3.0% (for allocations
of 512-byte blocks). Both these figures compare
favorably to the worst-case figure of 6.7%.

The combined miss rate of the per-CPU
and global layers to the coalesce-to-page layer
ranged from 0.02% (for frees of 256-byte blocks)
to 0.14% (for allocations of 512-byte blocks),
both of which compare favorably to the worst
case of 0.67%. These combined miss rates en-
sure that the overhead of coalescing is diluted
by a factor ranging from 700 to 5000, thereby
maintaining an acceptable per-block overhead.

5 Experience

This section describes experience gained in
the three years we have been using the new
kmem alloc. The following sections show how
well the new algorithm has scaled with in-
creasing CPU speeds, present per-layer miss
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rates observed under a timesharing code-
development workload, analyze the perfor-
mance of the coalescing layer, describe why
cookies are not used, and present analysis of
expected performance on CC-NUMA architec-
tures.

5.1 Scaling with Faster CPUs

Table 1 shows the overhead of an allocation/free
pair on various configurations of CPU and com-
piler. The Model E uses 50MHz 80486s, the
Model 10 uses 100MHz Pentiums, and the Xeon
uses 450 MHz Xeons. The Pentiums run 1.91
times faster than the 486s, which is close to the
difference in clock rate. Similarly, the Xeons
run about 8 times faster than the 486s, which
again is close to the difference in clock rate.
In principle, it might be possible to get ad-
ditional speedup due to the Pentium’s dual-
pipeline architecture and the Xeon’s multiple-
issue architecture, but we did not take any ex-
treme measures (e.g., hand-coded assembly) to
make kmem alloc take advantage of this fea-
ture.

5.2 Miss Rates Under Timeshar-
ing Code-Development Work-
load

This algorithm relies heavily on low miss rates
at the per-CPU layer to get good performance.

Table 2 displays allocation miss-rate statis-
tics. The “Allocs” column shows the number
of allocations for a given size, the “Global”
column shows the number of references to the
global layer. The “Worst%” column shows the
“worst-case” miss rate to the global layer ex-
pected from the target value for the correspond-
ing block size. The “%” column shows the ac-
tual miss rate. The “Splits” column gives the
number of pages that were split into the blocks,
and the “%” column gives the miss rate to the
coalescing layer (in other words, the percentage
of global-layer allocation requests that resulted
in a page being split). The “Allocs/Split” col-
umn gives then number of per-CPU layer re-
quests for each page split.’

The measured miss rates are excellent, par-
ticularly for the 32-byte requests that make up
well over 50% of the requests. These 32-byte re-

5This is not given as a percentage because the author
did not want to wear out the “0” key on his terminal.



| Configuration | af/s | ps/af | speedup
50 MHz Model E, old comp -O 254,704 | 3.93
50 MHz Model E, new comp 290,653 | 3.44 | 1.14 (comp)
50 MHz Model E, new comp -O 315,062 | 3.17 | 1.09 (opt)
1.24 (opt+comp)
100 MHz Model 10, new comp 541,145 | 1.85 | 1.86 (CPU)
100 MHz Model 10, new comp -O 604,164 | 1.66 | 1.91 (CPU)
1.11 (opt)
2.37 (CPU+comp)
450 MHz Xeon, new comp 2,409,874 | 0.41 | 8.29 (CPU)
450 MHz Xeon, new comp -O 2,486,963 | 0.40 | 7.89 (CPU)
1.03 (opt)
9.76 (CPU+comp)

Table 1: Allocation Miss Rates

| Size | Allocs | Global | Worst% | % | Splits | % | Allocs/Split |
16 5,798,363 68,089 5.00 1.17 75 0.11 77,311.5
32 | 143,785,499 255,802 5.00 0.18 112 0.04 1,283,799.1
64 15,997,147 310,406 5.00 1.94 1,661 0.54 9,631.0
128 7,679,703 279,929 5.00 3.65 479 0.17 16,032.8
256 8,315,199 372,936 5.00 4.49 3,559 0.95 2,336.4
512 1,070,258 117,040 6.25 | 10.94 1,595 1.36 671.0
1024 19,502,765 417,908 12.5 2.14 86,486 | 20.70 225.5
2048 | 1,056,950 | 217.144 | 25.00 | 20.54 | 11811 | 5.44 89.5
4096 1,547,864 353,740 50.00 | 22.85 | 319,141 | 90.22 4.9
Total | 204,753,748 | 2,302,094 | NJA | 1.17 | 424,919 | 17.76 481.9

Table 2: Allocation Miss Rates




quest literally have a one-in-a-million chance of
resulting in an expensive page-split operation.
The unexpectedly-high miss rates for 512-byte
requests are discussed below.

Table 3 shows the analogous free-side miss-
rate statistics. The “Frees” column gives the
number of free requests, the “Global” col-
umn gives the number that reach the global
layer, the “Worst%” column gives the worst-
case miss rate based on the target value, the
“%” column gives the actual measured miss
rate, the “Coalesces” column gives the num-
ber of times that blocks are coalesced back into
pages, the “%” column gives the fraction of
global-layer frees the result in coalescing, and
the “Frees/Coalesce” gives that number of per-
CPU layer requests per page coalesced.

Again, the miss rates are excellent, particu-
larly for the 32-byte requests.

Note that a list of elements is freed to the
global layer, and that a page’s worth of ele-
ments are coalesced. It is therefore possible
for more pages to be coalesced than lists freed
to the global layer, the average list freed to
the global layer contains more than one page’s
worth of memory. This situation actually oc-
curred in the 4096-byte case, where roughly
four pages were “coalesced” for each list freed
to the global layer.

Note also that the actual miss rate to the
global layer exceeded the worst-case for allo-
cation of 512-byte blocks. The reason for this
is that the per-engine caches are periodically
flushed. If the free rate is low enough, this flush-
ing will significantly increase the allocation-side
miss rate to the global layer, while decreasing
the free-side miss rate to the global layer. Nor-
mally, increased miss rate would be cause for
concern. However, Table 4 shows that increased
miss rate is seen only for those sizes that have
low free rates. Therefore, the increased miss
rates cause insignificant degradation of overall
system throughput.

Since a given CPU’s cache is flushed every 72
seconds, at least one target’s worth of blocks
must be freed up on a given CPU in 72 seconds
to have any chance to successfully free to the
global layer rather than flushing. In particular,
the 512-byte case rarely gets a chance to free.

However, simply freeing at least a target’s
worth of memory blocks every 72 seconds is not
enough to ensure that most blocks will be freed
to the global instead of being flushed. In fact
the 512- and 2048-byte pools have identical free

| size [ frees/s | target | %flushes | s/gblfree |

16 9.1 20 99.6 77.8
32 225.7 20 66.1 50.6
64 25.1 20 25.0 19.0
128 12.1 20 72.2 54.2
256 13.0 20 69.6 51.7
512 1.7 16 99.8 89.8
1024 30.6 8 30.7 35.8
2048 1.7 4 68.4 65.6
4096 2.4 2 20.8 21.6
total 3214

Table 4: Per-CPU Cache Flush Rate

rates, but very different flush rates. A very high
hit rate in the per-CPU caches (such as enjoyed
by the 16- and 32-byte sizes) can result in a high
flush rate. The 2048-byte pools has a low target
value, which results in a low hit rate, and thus
a relatively low flush rate.

The best predictor of flush rate is the time re-
quired for a given CPU to free to global, shown
in the “s/gblfree” column of Table 4. The sizes
requiring more than 72 seconds to free to global
have very high flush rates.

Since 32-byte allocations have the highest
per-CPU cache hit rates and account for over
70% of the total allocations, we have best per-
formance where most important.

5.3 Performance of Coalescing
Layer

The coalescing layer splits pages into smaller
blocks, and does not release the page back to
the system until all of its blocks have been freed
up. Knuth concluded long ago [Knu73] that
this type of allocator is not particularly memory
efficient in the general case.

Although, this allocator was not designed for
the general case (it was designed for a cycli-
cal workload with drastic changes in memory
usage), it is interesting to measure its per-
formance for a timesharing code-development
workload.

At first glance, the 34.8% overall memory
waste shown in Table 5 does little to dispute
Knuth’s view. However, this 34.8% wastage is
nowhere near the worst-case 50% wastage for
2048-bytes blocks, to say nothing of the 99.6%
wastage possible with 16-byte blocks. Further,
this data was taken during a period of low load
immediately following a high-load period.



| Size | Frees | Global | Worst% | % | Coalesces | % | Frees/Coalesce |
16 5,784,730 65,134 5.00 | 1.13 19 0.03 304,459.5
32 | 143,777,631 104,939 5.00 | 0.07 10 0.01 14,377,763.1
64 | 15,996,564 269,449 5.00 | 1.68 1,631 0.61 1,631.8
128 7,677,711 93,402 5.00 | 1.22 332 0.36 23,125.6
256 8,309,413 98,731 5.00 | 1.19 3,056 3.10 2,719.0
512 1,069,240 55,987 6.25 | 5.24 1,347 2.41 793.8
1024 19,501,125 143,115 12.5 0.73 85,761 59.92 227.4
2048 1,056,100 75,674 25.00 | T7.17 11,232 14.84 94.0
4096 1,547,833 238,700 50.00 | 15.42 319,105 | 133.68 4.9
Total | 204,720,347 | 1,145,131 | N/A | 056 | 422,493 | 36.89 184.6

Table 3: Free Miss Rates

| size | Kwaste | Kinuse | %waste |

16 104 224 | 4.63867
32 160.1 408 | 39.2387
64 68.2 120 | 56.8229
128 319.4 588 | 54.3155
256 524.8 2012 | 26.081
512 479.5 992 | 48.3367
1024 | 1260.0 2900 | 43.4483
2048 560.0 2316 | 24.1796
4096 0.0 144 0
total | 3382.3 9706 34.8

Table 5: Coalescing Layer Performance-Low
Load

| size | Kwaste | Kinuse | %waste |

16 2.5 336 0.7
32 12.0 452 2.7
64 69.4 136 51.0
128 150.4 744 20.2

256 295.0 2244 13.1
512 58.5 1116 5.2
1024 609.0 3804 16.0
2048 66.0 3908 1.7
4096 0.0 224 0.0
total | 1262.4 | 12,964 9.7

Table 6: Coalescing Layer Performance-Heavy
Load

Data taken during a period of high load,
shown in Table 6, has a much better 9.7%
wastage. Although the amount of memory
wasted increased when the load decreased, over
a megabyte of memory was returned to the sys-
tem.

This data shows that the allocator works
quite well in a traditional timesharing environ-
ment. However, more work will be required to
produce an algorithm suitable for systems that
have insufficient memory.

5.4 Cookies

Although cookie-base allocation is considerably
faster than the standard subroutine-call alloca-
tion, it was never implemented or used in a re-
leased version of PTX. The reasons for this are
quite interesting—it turns out that the measured
speedup for cookie-based allocation comes only
at the price of an overall reduction in system
performance!

The reason for this is that cookie-based al-
location increases the size of the kernel, result-
ing in more cache misses on instruction fetches.
Cookie-based allocation requires 24 bytes of
code, compared to just 9 bytes for a kmem alloc
call,® for a 15-byte increase. Similarly, cookie-
base free requires 20 bytes of code, compared to
just 8 bytes for a kmem free call for a 12-byte
increase.

The most recently-released version of PTX
has 130 calls to kmem alloc and 257 calls
to kmem free. Use of cookie-based allocation
would therefore result in a 5034-byte increase
in kernel size, which in turn results in increase

6This assumes that the size of the block being allo-
cated is 255 bytes or less, larger allocations require an
additional byte up to 65535 bytes. Larger allocations
are extremely rare and require an additional two bytes.



instruction-fetch miss rates that cancel any per-
formance advantage from cookie-based alloca-
tion.

Applications or kernels which do almost all
of their allocation/deallocation through a few
specific allocation/free calls and which spend
much of their time allocating and deallocating
are more likely to benefit from cookie-based al-
location.

5.5 CC-NUMA Analysis

CC-NUMA  (Cache-coherent  non-uniform
memory-access) machines such as the Stanford
FLASH [HKO™"94] use a hierarchical bus struc-
ture that gives a particular CPU low-overhead
access to memory “close” to that CPU. This
suggests that an allocator that attempts to give
CPUs memory that is “close” might boost per-
formance. This section analyzes such an alloca-
tor, showing that any significant improvement
is likely to required that either the deallocator
or the users of the allocator must also be mod-
ifed to promote locality.

A simple mixing model is shown in Figure 10.
Arc “A” represents memory being allocated,
arc “B” represents memory moving from the
global to the per-CPU caches, arc “C” repre-
sents memory moving from the coalescing layer
to the global cache, arc “D” represents memory
being freed, arc “E” represents memory moving
from the per-CPU to the global caches, and arc
“F” represents memory moving from the global
cache to the coalescing layer.

Memory from the coalescing layer is assumed
to consist purely of memory closest to the CPU
making the allocation request. Memory freed
by the callers of kmem free is assumed to have
“purity” py, in other words, py fraction of it is
memory close to the CPU doing the kmem free
and 1—py is from memory close to other CPUs.
The allocation and free rates A are assumed
equal, as they must be over long time peri-
ods. The hit rate at both the per-CPU and
global caches is assumed to be r for both alloca-
tion and free. Then the purity of the per-CPU
caches p, and the purity of the global pool p,
is given by the following system of equations:

Arpg + Apy
— 2Py T APS 1
Pe = 3 A @
Arpe + Ar?
= MPe T AT 2
by Ar + Ar2 (2)

The As cancel:

TPy + Py
= Lo TBS 3
r+1 (3)
Pe +T
= 4
pg T+1 ()
Solving for p. and p,:
_ r? 4+ psr+py 5)
€ r24+r+1
7‘2+T+pf
=Ty ©

An efficiently-configured allocator will have
a low miss rate r, which results in both the
per-engine caches and global pool having puri-
ties roughly equal to that of the memory being
kmem freeed. Therefore, if the memory allo-
cated from the per-CPU caches is to be pure,
the memory freed to these caches must also be
pure.

This motivates maintaining separate pools
for each node in the CC-NUMA system. The
kmem_free primitive must then be able to effi-
ciently identify which pool the to-be-freed block
is to go in. Further exploration of ways to ac-
complish this is beyond the scope of this paper.

6 Conclusions

The new kmem_alloc and kmem_free functions
meet their design goals. These goals are
achieved by avoiding synchronization, by tak-
ing advantage of cache locality (rather than
through use of sophisticated synchronization
schemes), and by maintaining low miss rates at
the per-CPU and global layers so as to dilute
the overhead inherent in coalescing.

These functions are more than capable of
meeting the challenge of commercial data pro-
cessing. They also clearly demonstrate that
the problem of efficient resource allocation
on a shared-memory multiprocessor is quite
tractable.

Experience has shown that these functions
scale reasonably well with increasing processor
generations, and that they work well in a time-
sharing software-development environment.
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