Selecting Locking Primitives for Parallel Programs

Paul E. McKenney (pmckenne@us.ibm.com)
Sequent Computer Systems, Inc.

Abstract

The only reason to parallelize a program is to gain
performance. However, the synchronization primitives
used by parallel programs can consume execessive
memory bandwidths, can be subject to memory laten-
cies, consume excessive memory, and result in unfair
access or even starvation. These problems can over-
whelm the performance benefits of parallel execution.
Therefore, it is necessary to understand these perfor-
mance implications of synchronization primitives in
addition to their correctness, liveness, and safety prop-
erties.

This paper presents a pattern language to assist
you in selecting synchronization primitives for parallel
programs. This pattern language assumes you have
already chosen a locking design, perhaps by using a
locking design pattern language [McK96].

1 Overview

A lock-based parallel program uses synchronization
primitives to define critical sections of code in which
only one CPU or thread may execute concurrently.

For example, Figure 1 presents a fragment of par-
allel code to search and update a linear list. In this
C-code example, the 1t next field links the individ-
ual elements together, the 1t key field contains the
search key, and the 1t_data field contains the data
corresponding to that key.

The section of code between the S_.LOCK() and the
S_UNLOCK() primitives is a critical section. Only one
CPU at a time may be executing in this critical sec-
tion.

A poor choice of locking primitive can result in ex-
cessive overhead and poor performance under heavy
load. The pattern language in this paper will help
you determine what kind of locking primitive to use.
This paper considers a few straightforward test-and-
set, queued, and reader /writer locks, which will handle
most situations.

This paper presents the implementation level coun-
terpart to a locking design pattern language [McK96].

Section 2 therefore gives an overview of locking de-
sign patterns. Section 3 describes the forces common
to all of the patterns. Section 4 overviews contexts
in which these patterns are useful. Section 5 presents
several indexes to the patterns. Section 6 presents the
patterns themselves.

2 Overview of Locking Design
Patterns and Forces

Although design and implementation are often treated
as separate activities, they are almost always deeply
intertwined. Therefore, this section presents a brief
overview of design-level patterns and the forces that
act on them.

2.1 Overview of Locking Design Pat-
terns

This paper refers to the following locking design pat-
terns:

Sequential Program: A design with no parallelism,
offering none of the benefits or problems associ-
ated with parallel programs.

Code Locking: A design where locks are associated
with specific sections of code. In object-oriented
designs, code-locking locks classes rather than in-
stances of classes.

Data Locking: A design where locks are associated
with specific data structures. In object-oriented
designs, data-locking locks instances rather than
classes.

Data Ownership: A design where each CPU or
thread “owns” its share of the data. This means
that a CPU does not need to use any locking
primitives to access its own data, but must use
some special communications mechanism to ac-
cess other CPUs’ or threads’ data.!

IThe Active Object pattern [Sch96] describes an object-

/* Element of list being searched. */

typedef struct looktab {
struct looktab_t *1t_next;

int 1t _key;
int 1t_data;
} looktab_t;

/* List lock, header and pointer. */

slock_t looktab_mutex;
looktab_t *looktab_head = NULL;
looktab_t *p;

/*
* Look up a looktab element and
* examine it.

x/
S_LOCK(&looktab_mutex) ;

p = looktab_head;
while (p != NULL) {
if (p—>1lt_key == key) {
break;
}
P = p->lt_next;

}
if (p != NULL) {
/*
* insert code here to examine or
* update the element.
*/
}

S_UNLOCK (&looktab_mutex) ;

Figure 1: Example of a Critical Section

Parallel Fastpath: A design that uses an aggressive
locking pattern for the majority of its workload
(the fastpath), but that must use a more conser-
vative pattern for the remaining small part of its
workload.

Reader/Writer Locking: A variant of parallel fast-
path allows readers to proceed in parallel (the
fastpath), but that requires writers to exclude
readers and other writers.

Hierarchical Locking: A design that uses a global
lock for global changes, but that also has a per-
element lock for localized changes. In this case,
the localized changes are the fastpath.

Allocator Caches: A design that uses per-CPU or
per-thread caches of memory (or of whatever re-
source is being allocated)[MS93]. Allocating from
or deallocating to the cache is the fastpath. Al-
locations and deallocations that find the cache
empty or full, respectively, must leave the fast-
path in order to use a more conservatively-locked
global allocator.

Critical-Section Fusing: A design that combines
critical sections in order to reduce synchroniza-
tion overhead.

Critical-Section Partitioning: A design that splits
critical sections in order to reduce contention.

These design patterns define much of the context in
which the locking-primitive patterns must be used.

2.2 Overview of Locking Design Forces

The forces acting at the design level are:

Speedup: Getting a program to run faster is usually
the only reason to go to all of the time and trouble
required to parallelize it. Speedup is defined to be
the ratio of the time required to run a sequential
version of the program to the time required to run
a parallel version.

Contention: If more CPUs are applied to a parallel
program than can be kept busy given that pro-
gram, the excess CPUs are prevented from doing
useful work by contention.

oriented approach to this sort of communications mechanism.
More complex operations that atomically update data owned
by many CPUs must use a more complex approach such as
two-phase commit [Tay87].

Overhead: A monoprocessor version of a given paral-
lel program would not need synchronization prim-
itives. Therefore, any time consumed by these
primitives is overhead that does not contribute
directly to the useful work that the program is
intended to accomplish. Note that the important
measure is the relationship between the synchro-
nization overhead and the serial overhead. Crit-
ical sections with greater overhead may tolerate
synchronization primitives with greater overhead.

Read-to-Write Ratio: A data structure that is
rarely updated may often be protected with
lower-overhead synchronization primitives than
may a data structure with a that is frequently
updated.

Economics: Budgetary constraints can limit the
number of CPUs available regardless of the po-
tential speedup.

Complexity: A parallel program is more complex
than an equivalent sequential program because
the parallel program has a much larger state space
than does the sequential program. A parallel
programmer must consider synchronization prim-
itives, locking design, critical-section identifica-
tion, and deadlock in the context of this larger
state space.

This greater complexity often (but not always!)
translates to higher development and mainte-
nance costs. Therefore, budgetary constraints
can limit the number and types of modifications
made to an existing program. A given degree of
speedup is worth only so much time and trouble.

Although the forces acting at the implementation
level are closely related to those acting at the design
level, there are some important differences noted in
Section 3.

3 Forces

When selecting locking primitives, you must consider
resource-consumption forces imposed from below by
the hardware and design forces imposed from above.

3.1 Forces from the Hardware

If your only goal is squeezing the maximum conceiv-
able performance out of the hardware, then you are
faced with size, bandwidth, and latency forces for each
and every hardware resource making up the machine.
This includes memory, caches, data paths, general

registers, ALUs, TLBs, branch-prediction logic, and
speculation hardware. This overabundance of forces
is what makes performance programming so difficult.
Great quantities of time, effort, and cleverness are
needed to balance them optimally.

Fortunately, CPU speed has been increasing
exponentially compared to just about everything
else [HJ91, SC91].? This means that applications are
frequently limited by their memory accesses, which in
turn means that you can usually ignore all but the
following forces:

Memory Latency: The memory-latency force is
analogous to the synchronization-overhead force
that affects selection of locking designs. All
else being equal, you should use more complex
distributed locking primitives on systems whose
memory-access latencies are large compared to
their instruction-execution latencies.

Memory Bandwidth: Some locking primitives con-
sume excessive memory bandwidth under high
contention. You should use more complex prim-
itives that consume little memory bandwidth if
your program is prone to contention.

Memory Size: A program that uses too much mem-
ory for a given machine can thrash the caches,
resulting in high-latency accesses to main mem-
ory. Worse yet, the program’s working set might
exceed the size of main memory, resulting in ex-
tremely slow accesses to secondary storage.

You should make sure that the locking primi-
tives you select don’t consume so much memory
that they actually degrade overall system perfor-
mance. FEven though the lock data structures
are usually quite small, aggressively-parallel pro-
grams can require very large numbers of locks.

Note that the minimum size of lock-primitive data
structures varies from system to system. If you
are concerned about memory consumption, check
the actual sizes on your system.

Balancing these three forces from the machine will al-
most always result in a good implementation. In some

20ne possible to this trend is wide-area-network bandwidth,
particularly in areas of the world undergoing telecommunica-
tions deregulation. However, the small size of the data required
to represent a lock implies that latency, not bandwidth, is the
limiting factor for geographically-distributed programs.

Telecommunications lines whose latencies are within a factor
of three of speed-of-light limits are already commercially avail-
able. So, in absence of some unexpected breakthroughs in the
field of physics, CPU speed increase is expected to dominate
performance of parallel programs.

cases, other forces involving cache structure must be
considered. These forces are sometimes critical to the
implementation of large data structures, but seldom
affect lock-primitive selection. Cache forces are there-
fore not discussed further in this paper.

3.2 Forces from the Design

The design forces acting on the selection of locking
primitives are read-to-write ratio and fairness:

Granularity of Parallelism: As noted earlier,
granularity of parallelism is best defined as the
ratio of the critical-section overhead to that of
the locking primitives. The lower the overhead of
the locking primitive, the larger the granularity
of parallelism. Larger granularities of parallelism
result in faster and better-scaling programs.®

However, design-level choices affect the critical-
section overhead and usually have the larger in-
fluence on granularity.

Therefore, granularity of parallelism can be both
a force and a context at the implementation level.

Fairness: If your design requires some degree of fair
access to critical sections (as would a real-time
system), you should use fair primitives. Other-
wise, scheduling deadlines may be missed when
threads fail to gain timely access to critical sec-
tions.

Note that although the design-level speedup and
economics forces are very important, they are con-
trolled more by the overall design than by the spe-
cific primitives that you select. This is the reason
for the old adage: “Performance must be designed
into the system rather than being added on as an af-
terthought”. Poor selection of primitives can cause a
good design to perform poorly, but good primitives
cannot normally repair a poor design.

The design-level contention force becomes an ele-
ment of the implementation-level context, as does the
design-level read-to-write ratio force. Both low con-
tention and high read-to-write ratio must be designed
into a parallel program.

The design-level synchronization-overhead force
is subsumed by the implementation-level memory-
latency and memory-bandwidth forces.

3But if the granularity of parallelism is too coarse, the pro-
gram will not scale. In the limiting case, the entire program
becomes single-threaded so that only one CPU may execute it
at a time.

The design-level complexity force is a special case.
It is true that locking primitives can be extremely dif-
ficult to implement. However, this difficulty is amor-
tized over many uses. This paper assumes that the
primitives already exist, and therefore considers prob-
lems with their use, not with their implementation.

4 Overview of Context

The major elements of a parallel program’s context
are contention, granularity of parallelism, and read-
to-write ratio:

Contention: The two most useful measures of a par-
ticular critical section’s contention are: (1) the
fraction wall-clock time during which one CPU is
executing in that critical section, and (2) the ratio
of time spent waiting to enter the critical section
to that spent actually executing in the critical
section. Use the first measure at the design level
to predict the load level at which contention will
limit speedup [McK95]. Use the second measure
to help select locking primitives.

Contention is an important part of the context be-
cause the locking primitives that are least affected
by high memory latencies at low levels of con-
tention impose the heaviest memory-bandwidth
load at high levels of contention. You should nor-
mally consider a lock to be highly contended if
the ratio of wait time to critical-section execution
time is more than 10-20%.

Granularity of Parallelism: Granularity of paral-
lelism can be a force due to the different overheads
of the locking primitives. However, since the sizes
of the critical sections themselves are fixed at de-
sign time, granularity of parallelism is also part
of the context.

Granularity of parallelism is an important part of
the context because fine-grained parallel designs
are very sensitive to the overhead of the locking
primitives. You should normally consider a crit-
ical section to be coarse-grained if the lock over-
head is less than 10-20% of the average critical-
section overhead.

Read-to-Write Ratio: Read-to-write ratio is de-
fined to be the ratio of the number of read-only
critical sections to the number of critical sections
that modify data. It is not unusual to encounter
extremely high read-to-write ratios, e.g., in the
routing tables used in networking protocols.

You can protect an infrequently-changed data
structure with lower-overhead locking primitives
than can be used for a data structure that is fre-
quently modified.

As a rule of thumb, a low read-to-write ratio
is unity or less, a moderate read-to-write ratio
ranges from unity to the number of CPUs, and a
high read-to-write ratio is greater than the num-
ber of CPUs. A moderate read-to-write ratio is
required to get any benefit from reader/writer
locking primitives, while a high read-to-write ra-
tio is required to get benefit from primitives
whose write-side cost that increases linearly with
the number of CPUs.

Read-to-write ratio is a force at the design level.
However, once the design is chosen, the read-to-
write ratio is fixed, and therefore becomes a con-
text at the implementation level.

These three elements of the context are usually the
most important. Elements of context that may be im-
portant in more specialized situations include preemp-
tion [WKS94], thread failure [Her93], and the ratio of
memory latency to instruction-execution time.

Although this paper presents locking primitives
that operate reasonably well under high contention,
you should redesign to avoid high contention if
you wish to achieve large speedups. Use the
critical-section-partitioning, data-ownership, parallel-
fastpath, reader/writer-locking, or allocator-caches
design patterns for such redesigns.

Unfortunately, Amdahl’s law states that some part
of the resulting program will be inherently serial. This
portion will limit speedup, and will result in high con-
tention if there are too many CPUs.*

Nonetheless, since real systems have a limited num-
ber of CPUs, your design might never experience high
contention. In this case, the locking primitives are
never under much stress, so you have wide latitude
when balancing forces.

5 Index to Patterns for Select-
ing Locking Primitives

This section contains indexes based on relationships
between the patterns (Section 5.1), forces resolved by

4“Embarrassingly parallel” algorithms allow the number of
CPUs to be increased without bound only if the size of the
problem is also increased without bound. For a fixed problem
size, even embarrassingly parallel algorithms will exhibit high
contention if too many CPUs are applied to them.

the patterns (Section 5.2), and problems commonly
encountered in parallel programs (Section 5.3).
5.1 Pattern Relationships
Section 6 presents the following patterns:
1. Test-and-Set Lock (6.1)
Queued Lock (6.2)
Queued Reader/Writer Lock (6.3)
Counter Reader/Writer Lock (6.4)

AT R e

Distributed Reader/Writer Lock (6.5)

The test-and-set lock and the queued lock provide
simple mutual exclusion.

The two types of queued lock tolerate ex-
treme contention without imposing excessive memory-
bandwidth loads on the system bus.

The three types of reader/writer lock allow readers
to proceed in parallel. The distributed reader/writer
lock operates efficiently in face of high read-side con-
tention and fine-grained parallelism.

5.2 Force Resolution

The context controls which forces are most impor-
tant, as shown in Table 1. The “Innovation” entries
denote problematic contexts where good performance
requires either ad-hoc locking primitives or a redesign
to achieve good performance.

Table 2 shows how each of the patterns resolves each
of the forces. Plus signs indicate that a pattern re-
solves a force well, the more plus signs, the better.
For example, test-and-set lock resolves memory size
perfectly because test-and-set locks can be as small as
one bit in size. This earns test-and-set lock a “+++",
the best possible rating.

Minus signs indicate that a pattern resolves a force
poorly, the more minus signs, the worse. Again, test-
and-set lock provides extreme examples with memory
latency because these locks can thrash under high con-
tention, and fairness because these locks provide no
fairness mechanism. Test-and-set lock earns a “———"
for both of these forces, the worst possible rating.

A zero indicates neither good nor bad resolution.

Slashes indicate that resolution depends strongly on
whether the primitive is being used by a reader or a
writer. The reader’s resolution comes before the slash
and the writer’s resolution comes after it.

The rating for memory latency assumes low con-
tention, while the rating for memory bandwidth as-
sumes high contention.

| Contention | Granularity | R/W | Forces
Low Mem. Latency
High Coarse Fairness, Mem. B/W
Fine Innovation

Low on Write Side,
High on Read Side

Coarse on Read Side,
Don’t Care on Write Side

Moderate to High

Mem. Latency

Fine on Read Side, Moderate Innovation
Don’t Care on Write Side | High Mem. Latency, Mem. B/W
Table 1: Force Prioritization
Mem. Latency Mem. B/W Mem. Size Granularity Fairness Pattern |
+ - == +++ 0 — — — Test-and-Set Lock (6.1)
- + + 0 +++ Queued Lock (6.2)
—— + 0 0 +++ Queued Reader/Writer Lock (6.3)
0 - == ++ 0 +++ Counter Reader/Writer Lock (6.4)
++4+/-— +++4/0 -——— ++4/-— + Distributed Reader/Writer Lock (6.5)

Table 2: Force Resolution

See the individual patterns for more information on
how they resolve the forces.

5.3 Fault Table

Use Table 3 to locate a replacement pattern for a pat-
tern that is causing more problems than it is solving.

6 Patterns for Selecting Lock-
ing Primitives

6.1 Test-and-Set Locks

Problem What locking primitive should you use?

Context A parallel program where contention is
low, where fairness and performance are not crucial,
or where memory size is a limiting factor.

Forces Test-and-set locks resolve Memory Size very
well (+ + +), Memory Latency moderately so (+),
but they resolve Memory Bandwidth and Fairness very
poorly (— — —).

Solution Use a locking primitive based on atomic
test-and-set machine instructions as shown in Fig-
ure 2. The test_and_set() primitive sets the low-
order bit of the byte pointed to by its argument and
returns the initial setting of that bit.

If contention is low, this implementation of
S_LOCK () will execute a single test-and-set instruction.

#define LOCKED 1
#define UNLOCKED 0O

void
S_LOCK(char *lock)
{
while (test_and_set(lock) == LOCKED) {
while (*lock == LOCKED) {
continue;
}
}
}
void
S_UNLOCK (char *lock)
{
*lock = UNLOCKED;
}

Figure 2: Test-and-Set Lock Implementation

0Old Pattern

Problem

| Pattern to use

Test-and-Set Lock (6.1)

Locking primitives consume
excessive memory bandwidths
under heavy load.

Queued Lock (6.2)

Test-and-Set Lock (6.1)
Queued Lock (6.2)

Program suffers from con-
tention under heavy load, its
read-to-write ratio is high,
and the program uses fine-
grained parallelism.

Distributed Reader/Writer Lock (6.5)

Test-and-Set Lock (6.1)
Queued Lock (6.2)

Program suffers from con-
tention under heavy load, its
read-to-write ratio is moder-
ate to high, and program uses
coarse-grained parallelism.

Queued Reader/Writer Lock (6.3)
Counter Reader/Writer Lock (6.4)
Distributed Reader/Writer Lock (6.5)

Queued Lock (6.2)
Queued Reader/Writer Lock (6.3)
Counter Reader/Writer Lock (6.4)

Program’s locking primitives
suffer from memory latency
under low load, but the pro-
gram never suffers from high
contention even under heavy
load.

Test-and-Set Lock (6.1)
Distributed Reader/Writer Lock (6.5)

Distributed Reader/Writer | Program’s write-side locking | Queued Reader/Writer Lock (6.3)
Lock (6.5) primitives are too slow even | Counter Reader/Writer Lock (6.4)
under light load, and the
program uses coarse-grained

parallelism.
Distributed Reader/Writer | Program’s write-side locking | Test-and-Set Lock (6.1)
Lock (6.5) primitives are too slow even | Queued Lock (6.2)

under light load, and the pro-
gram has a low read-to-write
ratio.

Table 3: Lock-Primitive Fault Table

Resulting Context A program with locking prim-
itives that consume little memory and cause little
memory traffic under light load. However, this pro-
gram will be prone to unfairness and excessive mem-
ory bandwidth under heavy load.

Design Rationale The simple implementation
pays off with low memory and CPU overhead when
contention is low. If your design enforces low con-
tention (perhaps via the data locking, data ownership,
parallel fastpath, hierarchical locking, and allocator
caches design patterns), then simple test-and-set locks
can be the primitive of choice.

A number of researchers have worked on variants of
test-and-set locks that better tolerate high contention,
including test-and-test-and-set [SR84] and random-
ized exponential backoff [And90]. Although these can
be useful, you should not add them to your toolbox
until well after you have added a fast and simple test-
and-set lock and a robust queued lock.

Force Resolution Rating Rationale

e Memory Size (+ + +): The size of the lock can
be as small as a single bit.

e Memory Latency (4): Successful acquisition uses
a single memory-reference instruction. On the
other hand, the lock referenced by this instruc-
tion is likely to have been recently modified by
some other CPU. Therefore, this single reference
is likely to miss the current CPU’s cache, and
therefore have high overhead on systems with
many CPUs.

e Memory Bandwidth (— — —): If a large number
of CPUs try to acquire the lock at the same time,
each of the losing CPUs will have issued a mem-
ory transaction whose only effect is to inform the
CPU that it lost. This useless memory traffic can
cause severe performance problems if there are a
large number of CPUs spinning on this lock.

e Fairness (— — —): A simple test-and-set lock has
no provision for fairness. It is quite possible that
an extremely unlucky CPU or thread might per-
petually fail to acquire the lock.

6.2 Queued Locks

Problem What locking primitives should you use?

Context A parallel program where contention is
high and where fair access to critical sections is impor-
tant. This program must run on a machine that has
atomic instructions capable of implementing a queued
lock (either compare_and swap or load linked and
store_conditional will suffice).’

Forces Queued locks resolve Fairness very well (+ +
+), Memory Bandwidth and Memory Size reasonably
well (+), and Memory Latency rather poorly (—).

Solution Use a queued-lock primitive such as the
MCS lock shown in Figure 3 [MCS91a]. The idea be-
hind the queued lock is that each spinning CPU has
its own queue element to spin on, so that only the
CPU that has just been granted the lock will incur
cache misses to access the new lock state. This is
in sharp contrast to the test-and-set lock’s behavior,
where every spinning CPU incurs cache misses in or-
der to examine the new lock state any time any CPU
releases the lock.

The S_LOCK() primitive enqueues the CPU’s ele-
ment onto the lock queue, and spins waiting for the
lock to be granted. The S_UNLOCK() primitive grants
the lock to the next CPU on the queue. The queue
enforces strict FIFO ordering, guaranteeing fair access
to the lock.

The fetch_and _store() atomic primitive stores its
second argument into the location pointed to by its
first, returning the overwritten value.

Researchers have proposed a number of variants to
the queued lock. Lim and Agarwal [LA93] proposed a
reactive lock that switches between a test-and-set and
a queued mode depending on the level of contention.
Wisniewski et al. [WKS94] proposed a lock that allows
limited out-of-order service to prevent active threads
from waiting behind blocked threads.

Resulting Context A program with locking prim-
itives that enforce fairness and limit their memory-
bandwidth load. However, this program will suffer
reduced performance at low loads when compared to
an equivalent program that uses test-and-set locks.

5The compare_and_swap() atomic primitive tests that the lo-
cation pointed to by the first argument is equal to the value
passed in the second argument. If it is, it stores the third argu-
ment into the location pointed to by the first. It returns TRUE
if it in fact does the swap.

The load_linked primitive fetches the value at the speci-
fied address, tracking whether any other CPU modifies this
value before the next store_conditional. If there has been
no such modification, the store_conditional simply stores
the new value at the specified address. Otherwise, the
store_conditional fails.

typedef struct gnode *lock_t;
typedef struct gqnode_s {
lock_t *next;
bool_t locked;
} gnode_t;

void
S_LOCK(lock_t *1, gnode_t *i) {
qnode_t *pred;

/* Add self to queue. */

i->next = NULL;
pred = fetch_and_store(*1l, i);
if (pred !'= NULL) {

/*
* Someone precedes us, wait
* for them to finish.

*/

i->locked = TRUE;

pred->next = 1ij;

while (i->locked) {
continue;

}

void
S_UNLOCK(lock_t *1, gnode_t *i) {
if (i->next == NULL) {
if (compare_and_swap(*1, i,
NULL)) {

/* We are last. */

return;
}
while (i->next == NULL) {
continue;
}
}
/*

* Someone follows us, grant the
* lock to them.
*/

i->next->locked = FALSE;

Figure 3: Queued-Lock Implementation

Design Rationale The key to perfect fairness is to
use a queue. This queue allows each CPU waiting on
the lock to spin on a separate memory location, elim-
inating useless consumption of memory bandwidth at
high levels of contention.

Force Resolution Rating Rationale

e Fairness (+ + +): The queue guarantees that
CPUs will be admitted to the critical section in
strict FIFO order.

e Memory Bandwidth (+): Use of a queue allows
each CPU waiting on the lock to spin on a sepa-
rate location of memory. This separate spinning
avoids the bad behavior that test-and-set primi-
tives are prone to at high contention.

e Memory Size (+): Queued locks carry more state
and thus require more memory than do sim-
ple test-and-set locks. Test-and-set locks require
O(L) memory, where L is the number of locks in
the system, while queued locks require O(L+N)
memory, where N is the number of CPUs. The
memory required is still modest, with only a few
bytes required for each lock and for each queue
element.

e Memory Latency (—): Queued locks must access
several disjoint memory locations that are shared
by multiple threads. These additional memory
references cause queued locks to be slower than
simple test-and-set locks.

6.3 Queued Reader/Writer Locks

Problem What locking primitives should you use?

Context A parallel program where contention is
high, read-to-write ratio is moderate or high, and
where fair access to critical sections is important.
This program must run on a machine that has
atomic instructions capable of implementing a queued
lock (either compare and _swap or load linked and
store_conditional will suffice).

Forces Queued reader/writer locks resolve Fairness
very well (+++), Memory Bandwidth reasonably well
(+), Memory Size neither well nor poorly (0), and
Memory Latency rather poorly (——).

Solution Use a queued-reader/writer-lock primitive
such Algorithm 4 presented by Mellor-Crummey and
Scott [MCS91b]. This algorithm is rather long, so it
is not shown here.

The basic idea is that when a reader is granted the
lock, it first checks to see if the next element on the
queue also corresponds to a reader. If so, it immedi-
ately grants the lock to this next reader.

When the last reader leaves the critical section, the
lock is granted to the writer at the head of the queue.

Resulting Context A program with locking prim-
itives that enforce fairness and limit their memory-
bandwidth load, while allowing reads to proceed in
parallel. However, this program will suffer reduced
performance at low loads compared to an equivalent
program that uses test-and-set locks.

Design Rationale The key to perfect fairness is to
use a queue. This queue allows each CPU waiting on
the lock to spin on a separate memory location, greatly
reducing useless consumption of memory bandwidth
at high levels of contention.

Force Resolution Rating Rationale

e Fairness (+ + +): The queue guarantees that
CPUs will be admitted to the critical section in
strict FIFO order.

e Memory Bandwidth (+): Use of a queue allows
each CPU waiting on the lock to spin on a sepa-
rate location of memory. This separate spinning
avoids the bad behavior that test-and-set primi-
tives are prone to at high contention.

e Memory Size (0): Queued reader/writer locks
carry even more state than simple queued locks
and thus require more memory.

e Memory Latency (——): Queued reader/writer
locks must access several disjoint memory loca-
tions that are shared by multiple threads. These
additional memory references cause queued locks
to be even slower than simple queued locks.

6.4 Counter Reader/Writer Lock

Problem What locking primitive should you use?

Context A parallel program with a moderate-to-
high read-to-write ratio, high contention, and coarse-
grained parallelism.

10

Forces Counter reader/writer locks resolve Fairness
very well (+ + +), Memory Size and Read-to-Write
Ratio reasonably well (++), Memory Latency nei-
ther well nor poorly (0), and Memory Bandwidth very

poorly (— — —).

Solution Use a counter-reader/writer-lock primi-
tive such as that shown in Figures 4, 5, and 6, adapted
from Algorithm 3 of [MCS91b].

typedef struct {
lock_t srw_lock;

int srw_rdrq; /* Read requests. */
int srw_wrrq; /* Write requests. */
int srw_rdcp; /* Read completions.
int srw_wrcp; /* Write completions.

} srwlock_t;

Figure 4: Counter R/W Lock Data

This implementation is based on a “ticket lock” lay-
ered on a simple test-and-set lock. The idea is that the
lock maintains the cumulative number of requests and
completions for readers and writers. Each requester
takes a snapshot of the number of requests so far, in-
crements the appropriate request counter, then waits
for all prior conflicting requests to complete.

Note that if the machine hardware implements
either compare_and swap() or both load linked()
and store_conditional(), the underlying test-and-
set lock can be eliminated and all of the primitives
can be based on atomic instructions.

This implementation is also batched fair, in other
words, readers that request access after a given
writer will not be allowed to proceed in parallel
with readers that requested access before that reader.
Batched-fair implementations avoid starvation of writ-
ers by readers and vice versa. Reader-preference
and writer-preference implementations are also avail-
able. Reader-preference implementations are some-
times useful because they allow more readers to pro-
ceed in parallel.

Mellor-Crummey and Scott [MCS91b] present a
good overview of alternative implementations of
counter-reader /writer locks.

Resulting Context A program with locking prim-
itives that allow readers to proceed in parallel. This
program will work well if it has coarse-grained paral-
lelism and a high read-to-write ratio.

*/
*/

void

S_RDLOCK (srwlock_t *1)

{

void

int rdrq, wrrq;

/*
* Record new reader request and
* capture writer request number.

*/

S_LOCK(&(1->srw_lock));
(1->srw_rdrq)++;

wrrq = l->srw_wrrq;
S_UNLOCK(&(1->srw_lock));

/*
* Wait for any preceding writers
* to finish.

*/

while (1->srw_wrcp != wrrq) {
continue;

}

S_RDUNLOCK (srwlock_t *1)

{

/* Record another read completion.

S_LOCK(&(1->srw_lock));
(1->srw_rdcp)++;
S_UNLOCK(&(1->srw_lock)) ;

Figure 5: Counter R/W Lock Read Side

*/

11

void

S_WRLOCK(srwlock_t *1)

{

void

int rdrq, wrrq;

/*
* Record new writer request and
* capture both reader and writer
* request number.

*/

S_LOCK(&(1->srw_lock));
rdrq = 1->srw_rdrq;

wrrq = (l->srw_wrrq)++;
S_UNLOCK(&(1->srw_lock));

/*
* Wait for any preceding readers
* and writers to finish.
*/
while ((1->srw_rdcp != rdrq) ||
(1->srw_wrcp != wrrq)) {
continue;

S_WRUNLOCK (srwlock_t *1)

{

/* Record another write completion.

S_LOCK(&(1->srw_lock));
(1->srw_wrcp)++;
S_UNLOCK(&(1->srw_lock));

Figure 6: Counter R/W Lock Write Side

*/

Design Rationale Explicitly tracking the number
of readers and writers provides a simple reader-writer
locking mechanism. The heavy use of shared variables
results in memory-latency overhead. This overhead
sets a lower bound on the granularity of parallelism
for which the counter-reader/writer lock is effective.

Force Resolution Rating Rationale

e Fairness (+ + +): The counters guarantee that
CPUs will be admitted to the critical section in
strict FIFO order.

e Memory Size (++): Counter reader/writer locks
carry more state than do simple test-and-set
locks, and thus require more memory. However,
the memory usage for each counter reader/writer
lock is typically much less than twenty bytes.

e Memory Latency (0): Counter reader/writer
locks must update several counters, which results
in greater sensitivity to memory latency than that
of the simpler test-and-set lock.

e Memory Bandwidth (— — —): If a large number
of CPUs try to acquire the lock at the same time,
each of the losing CPUs will have issued a mem-
ory transaction whose only effect is to inform the
CPU that it lost. This useless memory traffic can
cause severe performance problems if there are a
large number of CPUs.

6.5 Distributed Reader/Writer Lock

Problem What locking primitive should you use?

Context A parallel program with a high read-to-
write ratio and high read-side contention.

Forces

Distributed reader/writer locks resolve Granularity of
Parallelism very well on the read side, but very poorly
on the write side (+++/———), Memory Latency very
well on the read side but very poorly on the write side
(+++/— —=), Memory Bandwidth very well on the
read side but neither well nor poorly on the write side
(++ +/0), Fairness reasonably well (+), and Memory
Size very poorly (— — —).

Solution Use a distributed-reader /writer-lock prim-
itive such as that shown in Figure 7 [Tay87, And91].

This implementation uses a per-CPU lock for read-
ers and an additional lock to gate writers. A reader

12

typedef struct {

lock_t srw_wlock;

lock_t srw_rlock[NCPUS];
} srwlock_t;

void
S_RDLOCK(srwlock_t *1)
{
S_LOCK(&(1->srw_rlock[ME]));
}
void
S_RDUNLOCK (srwlock_t *1)
{
S_UNLOCK(&(1->srw_rlock[ME]));
}
void
S_WRLOCK(srwlock_t *1)
{
int i;
S_LOCK(&(1->srw_wlock));
for (i = 0; i < NCPUS; i++) {
S_LOCK(&(1->srw_rlock[i]));
}
}
void
S_WRUNLOCK (srwlock_t *1)
{
int i;
for (i = 0; i < NCPUS; i++) {
S_UNLOCK(&(1->srw_rlock[i]));
}
S_UNLOCK (& (1->srw_wlock));
}
Figure 7: Distributed Reader/Writer Lock Implemen-
tation

acquires only its CPU’s lock, while a writer must ac-
quire the writer-gate lock as well as each of the reader-
side per-CPU locks.® This results in extremely effi-
cient reader-acquisition at the expense of very slow
writer-acquisition, particularly for large numbers of
CPUs. Therefore, use distributed reader/writer locks
only when the read-to-write ratio is high.

Since the distributed reader/writer lock is itself
based on locking primitives, it is reasonable to ask how
these underlying primitives should be implemented.
There is no reason to use anything other than test-
and-set locks for the per-CPU srw_rlocks, since at
most two CPUs will contend for any one of these locks
at a given time. However, high write-side contention
might force use of a queued lock for srw_wlock.

Resulting Context A program with locking prim-
itives that allow readers to proceed in parallel. This
program will work well even in face of fine-grained
reader-side parallelism, but requires a very high read-
to-write ratio.

Design Rationale The key to high speedups is
to avoid unnecessary interactions between threads or
CPUs. The distributed reader/writer locking primi-
tives avoid all interactions between readers, thereby al-
lowing very high speedups. However, there is a price to
be paid on the writer side. Distributed reader/writer
locks can be very efficient, but only if the read-to-write
ratio is very high.

Force Resolution Rating Rationale

e Memory Bandwidth (+ + +/0): The read-side
primitives do not update shared variables, and
thus make no demands on memory bandwidth.
Similarly, write-side acquisition can put a very
heavy memory-bandwidth load on the system.

e Memory Latency (+ + +/ — ——): Distributed
reader/writer locks do not update shared vari-
ables for read-side locking. If almost all locks are
read-acquired, each CPU or thread will retain its
state in its own cache, and there will be no mem-
ory latency overhead.

On the other hand, write-side acquisition imposes
a severe memory latency overhead.

e Granularity of Parallelism (+ + +/ — ——): The
low memory latency enjoyed by the read-side

6 A implementation designed to run on a particular machine
would pad the locks out to the size of that machine’s cachelines
in order to avoid false sharing.

13

locking operations results in very low read-side
overhead, which increases the granularity of par-
allelism.

Similarly, the high memory latency experienced
by the write-side operations reduces the granu-
larity of parallelism.

e Fairness (+): Typical implementations approxi-
mate batch fairness (where a batch of readers is
allowed to proceed in parallel between each pair
of writers). However, the distributed nature of
the lock makes it impossible to strictly enforce
fairness.

e Memory Size (— — —): Distributed reader/writer
locks require O(N) memory for each and every
lock, where N is the number of CPUs or threads
in the system.

7 Acknowledgments

I owe thanks to Ward Cunningham, Steve Peterson,
and Douglas Schmidt for encouraging me to set these
ideas down and for many valuable conversations, and
to Dale Goebel for his consistent support.

References

[And90] T. E. Anderson. The performance of spin
lock alternatives for shared-memory multi-
processors. IEEE Transactions on Parallel
and Distributed Systems, 1(1):6-16, Jan-

uary 1990.

[And91] Gregory R. Andrews. Paradigms for pro-
cess interaction in distributed programs.

ACM Computing Surveys:, 1991.

[Her93] Maurice Herlihy. Implementing highly con-
current data objects. ACM Transactions
on Programming Languages and Systems,

15(5):745-770, November 1993.

[HJ91] John L. Hennessy and Norman P. Jouppi.
Computer technology and architecture: An
evolving interaction. IEEE Computer,

pages 18-28, September 1991.

[LA93] Beng-Hong Lim and Anant Agarwal. Wait-
ing algorithms for synchronization in large-
scale multiprocessors. Transactions on
Computer Systems, 11(3):253-294, August

1993.

[McK95]

[McK96]

[MCS91a]

[MCS91b]

[MS93)]

[SCo1]

[Sch96]

[SR84]

[Tay87]

[WKS94]

Paul E. McKenney. Differential profiling.
In MASCOTS’95, Toronto, Canada, Jan-
uary 1995.

Paul E. McKenney. Selecting locking de-
signs for parallel programs. In Pattern Lan-
guages of Program Design, volume 2, pages
501-531, June 1996.

John M. Mellor-Crummey and Michael L.
Scott. Algorithms for scalable synchro-
nization on shared-memory multiproces-
sors. Transactions of Computer Systems,
9(1):21-65, February 1991.

John M. Mellor-Crummey and Michael L.
Scott. Scalable reader-writer synchroniza-
tion for shared-memory multiprocessors. In
Proceedings of the Third PPOPP, pages
106-113, Williamsburg, VA, April 1991.

Paul E. McKenney and Jack Slingwine. Ef-
ficient kernel memory allocation on shared-
memory multiprocessors. In USENIX Con-
ference Proceedings, Berkeley CA, Febru-
ary 1993.

Harold S. Stone and John Cocke. Com-
puter architecture in the 1990s. IFEFE
Computer, pages 30-38, September 1991.

Douglas C. Schmidt. Active object. In
Pattern Languages of Program Design, vol-
ume 2, pages 483-499, June 1996.

Z. Segall and L. Rudolf. Dynamic decen-
tralized cache schemes for MIMD paral-
lel processors. In 11th Annual Interna-
tional Symposium on Computer Architec-
ture, pages 340-347, June 1984.

Y. C. Tay. Locking Performance in Cen-
tralized Databases. Academic Press, 1987.

Robert W. Wisniewski, Leonidas Kon-
tothanassis, and Michael L. Scott. Scalable
spin locks for multiprogrammed systems.
In 8th IEEFE Int’l. Parallel Processing Sym-
posium, Cancun, Mexico, April 1994.

14

