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1 ABSTRACT1

Synchronization overhead, contention, and deadlock
can pose severe challenges to designers and implementers
of parallel programs.  Therefore, many researchers have
proposed update disciplines that solve these problems in
restricted but commonly occurring situations.  However,
these proposals rely either on garbage collectors [7, 8],
termination of all processes currently using the data
structure [10], or expensive explicit tracking of all
processes accessing the data structure [5, 15].  These
mechanisms are inappropriate in many cases, such as
within many operating-system kernels and server
applications.  This paper proposes a novel and extremely
efficient mechanism, called read-copy update, and
compares its performance to that of conventional locking
primitives.
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2 INTRODUCTION
Increases in CPU-core instruction-execution rate are

expected to continue to outstrip reductions in global
latency for large-scale multiprocessors [3, 4, 18].  This
trend will cause global lock and synchronization
operations to continue becoming more costly relative to
instructions that manipulate local data.  This situation will
continue to motivate the use of more specialized but less
expensive locking designs.

For read-mostly data structures, performance can be
greatly improved by using asymmetric locking primitives
that provide reduced overhead for read-side accesses in
exchange for more expensive write-side accesses.  One
example of such a primitive is the distributed reader-
writer spinlock, which allows read-side lock acquisition to
take place with no expensive references to globally shared
state in the common case [11].

This paper takes asymmetric locking to its logical
extreme, permitting read-side access with no locking or
synchronization operations whatsoever.  Of course, this
means that updates do not block reads, so that a read-side
access that completes shortly after an update could return
old data.  However, any reading thread that starts its
access after an update completes is guaranteed to see the

                                                          
1 Work performed at Sequent.

new data.  This guarantee is sufficient in many cases.  In
addition, data structures that track state of components
external to the computer system (e.g., network
connectivity or positions and velocities of physical
objects) must tolerate old data because of communication
delays.  In other cases, old data may be flagged so that the
reading threads may detect it and take explicit steps to
obtain up-to-date data, if required [10, 15].

Section 3 introduces concepts underlying read-copy
update.  Section 4 presents an implementation of read-
copy update.  Section 5 compares measured read-copy
update performance to that of a simple spinlock.  Section
6 analytically compares read-copy update to other locking
primitives.  Section 7 discusses related work, and Section
8 presents summary and conclusions.

3 CONCEPTS
Section 3.1 gives a brief intuitive introduction to

read-copy update.  Section 3.2 gives rigorous definitions
of several important terms.  Section 3.3 expands on these
definitions with examples.  Section 3.4 presents examples
of how read-copy update might be applied to a number of
different programming environments.  Section 3.5
describes several different read-copy update architectures.

3.1 APPROACH
Data structures in a parallel environment generally

cannot be assumed to be stable unless the corresponding
update disciplines are followed, for example that
particular locks are held.  Once these locks are released,
no prior-knowledge assumptions can be made about the
state of any data structures protected by those locks.
Therefore, if a given thread currently holds no locks, it
cannot make any prior-knowledge assumptions about any
data structure that is protected by any lock.  A thread that
is holding no locks is said to be in a quiescent state with
respect to any lock-protected data structure.  Such a
thread cannot actively reference or modify any data
structure guarded by a lock.

The keystone of read-copy update is the ability to
determine when all threads have passed through a
quiescent state since a particular point in time.  This
information is valuable—if all threads have passed
through a quiescent state during a particular time interval,
they are all guaranteed to see the effects of any change
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made prior to the start of that interval.  This guarantee
allows many algorithms to be constructed using fewer
locks, and, in some specialized but commonly occurring
cases, using no locks whatsoever.  Reducing the number
of locks simplifies deadlock avoidance, reduces lock and
memory contention, and decreases synchronization
overhead, all of which in turn result in simpler and faster
programs.

3.2 DEFINITIONS
Guarded data structure: A data structure that cannot

safely be accessed and/or updated without possessing the
proper token, lock, or identity.

Quiescent state: A state beyond which a thread
makes no assumptions based on prior knowledge of any
guarded data structures.  Although it is possible to
consider quiescent states with respect to particular data
structures, this paper will use “quiescent state” in the
universal sense unless otherwise stated.

Quiescent period: A time interval during which each
thread passes through at least one quiescent state.  Note
that any time interval that encloses a quiescent period is
itself a quiescent period.

Summary of thread activity: A set of data structures
that are used to identify quiescent periods.

3.3 QUIESCENT STATES AND
PERIODS

Figure 1 shows the relationship between quiescent
states and quiescent periods.  Each row in the figure
represents the sequence of states that the corresponding
thread passes through, with time progressing from left to
right.  The double vertical bars represent quiescent states.

Thread 0

Thread 1

Thread 2

Thread 3

Quiescent State Quiescent Period

Figure 1: QUIESCENT STATES AND PERIODS

The area between the pair of dotted vertical lines is a
quiescent period, since each thread passes through at least
one quiescent state during this time.  The horizontal
arrows show the maximum length of time that each thread
can legitimately make assumptions based on prior
knowledge of state preceding the start of the quiescent
period.  Any prior knowledge of the state of any guarded
data structure held by any of the threads at the beginning
of the quiescent period must be forgotten by the end of
that quiescent period.

This property of quiescent periods guarantees that
any change made before the beginning of a quiescent
period will be observed by all threads by the end of that
quiescent period.  This guarantee can be used to construct
extremely low-overhead update disciplines.  Furthermore,
since locks are not needed on the read side, deadlock
issues are in some cases avoided.  The following two
sections show example update disciplines based on
quiescent periods.

3.3.1 LOCK-FREE LINKED-LIST ACCESS
If a thread removes all references to a given data

structure, it may safely free up the memory comprising
that data structure after the end of the next quiescent
period.  Note that threads traversing the data structure
need not acquire any locks.  The required synchronization
is achieved implicitly through the quiescent states—the
quiescent period guarantees that no threads reference the
data structure.  Eliminating read-side locking can greatly
increase speedups in the many cases where updates are
rare.  This same effect can be achieved using a garbage
collector (in environments possessing them), but at
greater cost.  This greater cost stems from the need to
modify otherwise-read-only data to indicate that a
reference is held.

For a concrete example, consider a singly linked list
with Thread 0 updating Element B while Thread 1 is
doing a lock-free traversal.

A B C

Thread 0 Thread 1

Figure 2: LIST INITIAL STATE

Suppose that Thread 0 needs to make a change to
Element B that cannot be done atomically.  Thread 0
cannot simply modify Element B in place, as this would
interfere with Thread 1.  Thread 0 instead copies Element
B into a new Element B', modifies B', issues a memory-
barrier operation, then points A’s next pointer to B'.  This
does not harm Thread 1 as long as B still points to C, and
as long as Thread 0 waits until Thread 1 stops referencing
B before freeing it.2

                                                          
2 A pointer from B to B’ may be used to allow Thread 1 to
avoid stale data. Explicit locking may be used [15] to
guarantee forward progress in cases where many updates
are running concurrently with the reader.
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Figure 3: LIST DEFERRED DELETION

Thread 1 can no longer obtain a reference to B, so
Thread 0 waits for a quiescent period (see Figure 4)
before deleting it.  After the quiescent period, Thread 0
deletes B, as shown in Figure 5.

A

B

C

Thread 0 Thread 1

B'

Figure 4: LIST AFTER QUIESCENT PERIOD

A C

Thread 0 Thread 1

B'

Figure 5: LIST AFTER DELETION

This idiom of updating a copy of an element while
allowing concurrent reads gives “read-copy update” its
name.  This idiom may be easily extended to handle
arbitrarily linked multi-lists.

Note that Thread 0 must use some sort of update
discipline to handle concurrent updates.  This update
discipline can be of any sort, including explicit locking,
atomic instructions, or techniques taken from wait-free
synchronization [5].  However, if only one thread is
allowed to update the data, all locking may be eliminated.

3.3.2 LOCK-FREE BUFFER FLUSHING
For another example, suppose that a parallel

program creates log buffers that must be flushed to disk,
but only after all log records have been completed.  One
approach is to maintain a global lock so that only one
process at a time could create log records.  However, this
could result in a bottleneck under heavy load.  Another
approach is to use a global lock only to allocate space for
the log records, and then create the actual records
themselves in parallel. If the creation of a log record does
not involve quiescent states, a flush may be safely

initiated after a quiescent period starting after the last log
record has been allocated.

Consider an initially empty two-entry log buffer:

next

Figure 6: LOG BUFFER INITIAL STATE

If Threads 0 and 1 reserve both available slots, the
situation will be as shown in Figure 7.

Both slots are occupied, and the “next” pointer is
NULL.  Therefore, Thread 2 must wait until Threads 0
and 1 have completed their entries, flush the log buffer,
and only then reserve its slot.

Thread 0 Thread 1

next

Figure 7: LOG BUFFER FULLY RESERVED

Threads 0 and 1 could use explicit synchronization
operations to inform Thread 2 when they have completed
their log entries.  However, this would result in needless
synchronization operations for log buffers with large
numbers of entries.  Instead, Thread 2 waits to flush the
buffer until the end of the next synchronization period.
This guarantees that Threads 0 and 1 have completed their
entries without requiring synchronization operations.

Note that a garbage collector is not an appropriate
solution for this second example, because we need to
write out the log buffer instead of freeing it.3

3.4 QUIESCENT STATE EXAMPLES
A thread is said to be in a quiescent state any time

that it is not keeping prior state for any data structure.
Many applications and systems have natural universal
quiescent states, which are quiescent states that apply to
all data structures in the application or system.

For example, within an operating system (OS) with
non-preemptive kernel threads, there is a direct mapping
from “thread” to CPU.  Any CPU that is in the idle loop,
executing in user mode, offline (halted), or performing a
context switch4 cannot be holding any references to any

                                                          
3 In some languages, it is possible to define finalization
functions that are invoked at garbage-collection time.
However, there is no guarantee that garbage collection
will be performed in a timely manner.
4 Operating systems with preemptive kernels must take
explicit action to suppress context switches.  However,
this is usually simply setting a bit in a register, which, on
most CPUs, is much cheaper than locking primitives.



kernel data structure.  Therefore, each of these four states
is a universal quiescent state.

Similarly, many parallel user applications drop all
references to guarded data structures while waiting for
user input.  Many transaction-processing systems drop all
references to guarded data structures at the completion of
a transaction.  Interrupt-driven real-time control systems
often drop all references to guarded data when running at
base priority level.  Reactive systems often drop all
references to application-level guarded data structures
upon completion of processing for a given event.
Discrete-event simulation systems often drop all
references to guarded simulation data structures at the end
of processing for each discrete event.  These applications
therefore also possess natural universal quiescent states.

Such systems will normally maintain statistics that
track the number of times that they pass through their
natural quiescent states.  For example, most OSs will
maintain counts of context switches and most transaction-
processing systems maintain counts of the number of
transactions complete.  These counts, kept for
performance-monitoring purposes, can be used to greatly
reduce the cost of tracking quiescent periods, as will be
shown in later sections.

3.5 SUMMARY OF THREAD ACTIVITY
Tracking quiescent periods is useful only if done

very efficiently, otherwise, it is cheaper just to use locks.
The mechanism that tracks quiescent periods is called a
summary of thread activity.  An efficient summary of
thread activity is relatively complex, therefore, this
section moves from simpler (but slower) implementations
to more complex implementations suitable for large-scale
shared-memory processing (SMP) and cache-coherent
non-uniform memory-access (CC-NUMA) architectures.

For concreteness, we focus on a parallel non-
preemptive OS.  Therefore, the in-kernel threads map
directly to CPUs, and the implementations focus on CPUs
rather than threads.

The following sections describe the following
implementations: (1) locking-primitive summary, (2)
enforced quiescent states, (3) quiescent-state bitmask, and
(4) quiescent-state counters.

3.5.1 LOCKING-PRIMITIVE SUMMARY
Perhaps the most straightforward way of identifying

quiescent states is to maintain count of the number of
locks held by each CPU.  When this number drops to zero
on a given CPU, that CPU records the fact that it has
entered a quiescent state by clearing a its bit in a global
bitmask.  When the value of the bitmask becomes zero,
the end of a quiescent period has been reached.  Any
subsystem wishing to wait for a quiescent period sets each
CPU’s bit in the global bitmask.

Although this approach is simple, it is fatally flawed.
First, it is slow, needing to update a global variable each

time that a CPU releases its last lock.5  Second, update
disciplines not using locks would have their critical
sections violated by this sort of summary of thread
activity.  Finally, a CPU that ran for an extended period
without acquiring any locks (e.g., a CPU in the idle loop)
would never clear its bit, despite being in an extended
quiescent state.

Therefore, a different approach is required.

3.5.2 ENFORCED QUIESCENT STATES
Another simple approach is to force quiescent states,

for example, via a daemon that handles quiescent-period
requests.  The daemon responds to a request by running
on each CPU in turn, then announcing the end of the
quiescent period, as shown in Figure 8.

Done With
Quiescent Period

Quiescent Period

CPU 0

CPU 1

CPU 2

CPU 3

Request for
Quiescent Period

Figure 8: ENFORCED QUIESCENT STATES

Each CPU that the daemon runs on must do two
context switches, one to switch to the daemon, and the
other to switch away.  A context switch is a quiescent
state, so this set of context switches is a quiescent period,
as desired.  In this case, the summary of thread activity is
maintained as part of the local state of the daemon itself.

This approach works well, and entered production
on Sequent machines in 1993.  Context switches are
usually from one to three orders of magnitude more
expensive than locking primitives, but for read-intensive
data structures, the expense is justified.  In addition,
eliminating locks can greatly simplify deadlock
avoidance.  Furthermore, batching allows a single
quiescent period to satisfy many requests.

Nevertheless, it is possible to do much better.

3.5.3 QUIESCENT-STATE BITMASK
Another approach is to instrument the quiescent

states themselves.  Each time a given CPU reaches a
quiescent state, it clears its bit in a global bitmask.  When
the bitmask becomes zero, the quiescent state has ended.
Any subsystem wishing to wait for a quiescent period sets
each CPU’s bit in the global bitmask.  A quiescent period

                                                          
5 Updates to shared global variables are much more
expensive than are updates to local per-CPU variables.



measured in this manner is shown in Figure 8, with colons
for zeros and vertical bars for ones.

CPU 0

CPU 1

CPU 2

CPU 3

Request

:::: ::::

:::: |||| ||||

|||| |:|| |:||

|:|| |:|: |:|:

|:|: ::|: ::|:

::|: ::::

DoneQuiescent Period

Figure 9: QUIESCENT-STATE BITMASK

CPU 1 has requested a quiescent period.  The
bitmask initially resides only in CPU 2's cache, so CPU 1
must first obtain a copy, as shown by the arrow.  CPU 1
then writes all one-bits to the bitmask, invalidating the
copy in CPU 2's cache, as shown by the line ending in a
circle.  CPU 2 is the first to pass through a quiescent
period (shown by the double vertical line), so it gets a
copy from CPU 1 in order to clear its bit, which
invalidates the copy in CPU 1's cache. CPU 0 and CPU 3
pass through their quiescent states in a similar manner.
Finally, when CPU 1 clears its bit, the bitmask becomes
zero, indicating the end of the quiescent period.

To prevent long-running user-level processes and
idle CPUs from indefinitely extending a quiescent period,
the scheduling-clock interrupt handler records a quiescent
state any time that it interrupts either user-mode execution
or the idle loop.

This approach can be faster than enforced quiescent
states, but the frequent accesses to the shared global
bitmask can be quite expensive, as shown in Figure 10.

CPU 0

CPU 1

CPU 2

CPU 3

:::: ::::

::::

:::: :::: :::: :::: ::::

::::

:::: :::: :::: :::: ::::

:::: :::: ::::

:::: :::: ::::

Figure 10: BITMASK CACHE THRASHING

CPU 2 is frequently forcing the bitmask out of its
cache, thereby incurring expensive cache misses each
time it passes through a quiescent state.

3.5.4 QUIESCENT-STATE COUNTERS
More-efficient implementations isolate measurement

from callback processing.  Quiescent states are counted
per-CPU and subsystems wait for quiescent periods by
registering callbacks on per-CPU callback lists.

An OS kernel's quiescent states either are counted
anyway or occur when the CPU is not doing anything
useful.  Examples of the former include system calls,
traps, and context switches.  Examples of the latter
include the idle loop and removal of CPUs from service.
The pre-existing counts of these events are used to

implement a quiescent-period-detection algorithm that
incurs little added cost.

The basic outline of this algorithm is as follows:

1. An entity needing to wait for a quiescent period
enqueues a callback onto a per-CPU list.

2. Some time later, this CPU informs all other CPUs of
the beginning of a quiescent period.

3. As each CPU learns of the new quiescent period, it
takes a snapshot of its quiescent-state counters.

4. Each CPU periodically compares its snapshot against
the current values of its quiescent-state counters.  As
soon as any of the counters differ from the snapshot,
the CPU records the fact that it has passed through a
quiescent state.

5. The last CPU to record that it has passed through a
quiescent state also records the fact that the quiescent
period has ended.

6. As each CPU learns that a quiescent period has ended,
it executes any of its callbacks that were waiting for
the end that quiescent period.

Steps 2, 3, 4, and 6 all involve time delays that must
be tuned to balance CPU consumption against the wall-
clock time required to identify a quiescent period.  This is
a classic CPU-memory tradeoff: decreasing the quiescent-
period-identification interval increases CPU consumption,
while increasing it increases the amount of memory
queued up waiting for a quiescent period.

An actual implementation faces these issues:

1. Proper handling of callbacks that are enqueued while a
quiescent period is in progress.  These callbacks must
wait for a subsequent quiescent period to complete.

2. Efficient notification of the beginning and ending of a
quiescent period.

3. Efficient placement and use of state variables in a CC-
NUMA environment.

4. Batching of callbacks in order to make best use of
each quiescent period.

4 IMPLEMENTATION
Our implementation of read-copy update uses

quiescent-state counters.  An SMP version has been in
production in Sequent Dynix/ptx since 1994.  The CC-
NUMA version went into production in 1996 on a
hierarchical-bus architecture with four CPUs per local
bus.  Each local unit is called a quad.

The four issues listed in the previous section are
handled as follows:

1. Each CPU maintains a separate queue of callbacks
awaiting the end of a later quiescent period (nxtlist) as
well as the queue of callbacks awaiting the end of the
current quiescent period (curlist).  Each quiescent
period is identified by a generation number.  Each
CPU tracks the generation number corresponding to
the callbacks in its curlist.  Since one CPU can start a
new quiescent period before another CPU is aware that



the previous period has ended, different CPUs can be
tracking different generation numbers.

2. The implementation checks for new quiescent states
from within an existing scheduling-interrupt handler,
and uses software interrupts to dispatch callbacks
whose quiescent period has ended.  This incurs
minimal overhead and acceptably small delays.

3. In order to promote locality in a CC-NUMA
environment, certain state variables are replicated on a
per-CPU and a per-quad basis.  These variables are
combined in a manner similar to Scott's and Mellor-
Crummey's combining-tree barriers [16].

4. Callbacks are accumulated in nxtlist while the current
quiescent period is in progress.  The heavier the read-
copy update load, the larger the batches and the
smaller the per-callback overhead.

The following sections describe the quiescent-
periods algorithm.  More details are available [12, 17].

4.1 STATE VARIABLES
The state variables for the quad-aware

implementation of read-copy update are grouped into
generation numbers, bitmasks, statistics, statistics
snapshots, and callback lists.

Each quiescent period is identified by a generation
number.  Since the algorithm maintains loosely coupled
state, there are several state variables tracking different
generation numbers.  The highest generation requested
thus far is tracked by rcc_maxgen.  The generation
currently being serviced is tracked by rcc_curgen, which
is replicated per-quad in pq_rcc_curgen.  The earliest
generation that a particular CPU needs to be completed is
tracked by the per-CPU variable rclockgen.

The bitmasks track which CPUs and quads need to
pass through a quiescent state in order for the current
generation to complete.  The set of quads that contain
CPUs needing to pass through a quiescent state is tracked
by rcc_needctxtmask, and the set of CPUs on a given
quad needing to pass through a quiescent state is tracked
by the per-quad variable pq_rcc_needctxtmask.

Each CPU tracks the number of context switches in
the per-CPU variable cswtchctr.  Each CPU tracks the
number of system calls and traps from user mode in the
per-CPU variables v_syscall and usertrap, respectively.
Each CPU tracks the sum of the number of passes through
the idle loop and the number of times a process to yielded
that CPU in the per-CPU variable syncpoint.

As soon as a given CPU notes the start of a new
generation, it snapshots its statistics:  cswtchctr into
rclockcswtchctr, v_syscall into rclocksyscall, usertrap into
rclockusertrap, and syncpoint into rclocksyncpoint.

Read-copy callbacks advance through per-CPU
callback lists nxtlist, curlist, and intrlist when quiescent
periods are detected, as shown in Figure 11.

4.2 PSEUDO-CODE OVERVIEW
The pseudo-code call tree and function descriptions

are as follows:

• hardclock()
• rc_chk_callbacks()

• rc_adv_callbacks()
• rc_intr() (via software interrupt)
• rc_reg_gen()

• rc_cleanup()
• rc_reg_gen()
• rc_adv_callbacks()

• rc_intr() (via software interrupt)
• rc_reg_gen()

1. hardclock():  This scheduling interrupt is invoked by a
per-CPU clock.  It invokes rc_chk_callbacks() when
there is a possibility that callbacks could advance.
This is indicated by pq_rcc_needctxtmask indicating
that this CPU needs to pass through a quiescent state,
by pq_rcc_curgen indicating that the quiescent period
for any callbacks in this CPU's curlist has ended, or by
its curlist being empty and its nxtlist being nonempty.

2. rc_adv_callbacks():  Advances callbacks from this
CPU's nxtlist to its curlist and from its curlist to its
intrlist as quiescent periods complete. Also calls
rc_intr() via software interrupt to invoke callbacks
placed into its intrlist and calls rc_reg_gen() to register
the presence of a new set of callbacks in its curlist.

3. rc_callback():  Registers a new read-copy callback by
adding it to this CPU's nxtlist. Callbacks arriving
during a given quiescent period are thus batched,
greatly improving performance, as shown in Section 5.

4. rc_chk_callbacks():  Calls rc_adv_callbacks() in order
to advance callbacks.  Snapshots the statistics
variables when it notes that a new quiescent period has
started.  Checks the current statistics against the
snapshot in order to determine if this CPU has passed
through a quiescent state, and, if so, calls rc_cleanup().

5. rc_cleanup():  At quiescent-period end, rc_cleanup()
updates the generation numbers, and calls
rc_reg_gen() and rc_adv_callbacks() to start the next
quiescent period (but only if there are callbacks
waiting for another quiescent period).

6. rc_intr():  Dispatches the callbacks in intrlist, which
have progressed through a full quiescent period.

7. rc_reg_gen():  Tells the read-copy subsystem of a
request for a quiescent period.  If this is the first
request for a given quiescent period, and if there is not
currently a quiescent period in progress, initiate one by
setting up rcc_maxgen and initializing the bitmasks.

4.3 FLOW OF CALLBACKS
New callbacks are injected into the system by

rc_callback().  While the callbacks are awaiting
invocation by rc_intr(), they are kept on per-CPU linked
lists, and flow through the system as shown in Figure 11.



A rc_onoff() function (not shown) moves callbacks to a
global list when a CPU is taken out of service.

rc_adv_callbacks()

curlist intrlistnxtlist

rc_callback() rc_intr()

Figure 11: FLOW OF CALLBACKS

The actual implementation also includes functions to
check for CPUs taking too long to reach a quiescent state.
This pinpoints areas that are impacting real-time response.

5 MEASURED PERFORMANCE
Read-copy update performance depends on the

fraction f of data-structure accesses that modify that data
structure, and on the degree to which read-copy callbacks
may be batched.  Note that batching occurs naturally if
several callbacks are registered during a single quiescent
period.  The ratio of read-copy update overhead to that of
an uncontended simple spinlock is shown in Figure 12 for
various batch sizes and for several relatively large values
of f.  These measurements were made on a Sequent
NUMA-Q system [9] with 32 Intel Pentium Pro
processors.

Note that all measurements taken with f=0.01 or less
show that use of read-copy update results in large
speedups compared to an uncontended simple spinlock.
This low-contention case is the worst case for read-copy
update.  Under heavy contention, the overhead of simple
spinlock rises dramatically, whereas heavy contention
actually reduces the overhead of read-copy update due to
batching.  Further, as noted below, smaller values of f
improve read-copy update performance.  Finally, this data
assumes multiple updating threads.  A single updating
thread would not need an update-side spinlock.

Figure 12: OVERHEAD OF READ-COPY UPDATE

Two examples will help to put the value of f in
better perspective.  The first example is a routing table for
a system connected to the Internet.  Many Internet routing
protocols process routing changes at most every minute or
so.  Therefore, a system transmitting at the low rate of

100 packets per second would need to perform a routing-
table update at most once per 6,000 packets, for f<10-3.
The second example is a system with 100 mirrored disks,
each of which has an MTBF of 100,000 hours.6  A
transaction-processing system performing 10,000 disk
I/Os per second would perform in excess of 1010 I/Os on
the average before having to update the internal tables
tracking which disk contains which data.  This yields a
value below 10-10 for f.  In these cases, read-copy update
vastly outperforms simpler locking schemes, since read-
copy update overhead goes to zero as f approaches zero.

6 COMPARISON TO OTHER LOCKS
There are four components to read-copy-update

overhead:

1. per-hardclock() costs.  These are incurred on every
execution of the per-CPU scheduling-clock interrupt.

2. per-generation costs.  These are incurred during each
read-copy generation.

3. per-batch costs.  These are incurred during each read-
copy batch. Per-batch costs are incurred only by CPUs
that have a batch during a given generation. These
costs are amortized over callbacks making up that
batch.

4. per-callback costs.  These are incurred for every read-
copy callback.

Details of the derivations may be found in
companion technical reports [12, 13].  The symbols are
defined as follows: f is the fraction of lock acquisitions
that do updates; m is the number of CPUs per quad; n is
the number of quads, tc is the time required to access the
fine-grained hardware clock; tf is the latency of a fast
access that hits the CPU's cache; tm is the latency of a
medium-speed access that hits memory or cache shared
among a subset of the CPUs; ts is the latency of a slow
access that misses all caches, and r is the ratio of ts to tf.

Equation 1, Equation 2, Equation 3, and Equation 4
give the read-copy overhead incurred for each of these
four components: per hardclock(), per generation, per
batch, and per callback, respectively:

Equation 1

Equation 2

Equation 3

Equation 4

                                                          
6 For purposes of comparison, disks with rated MTBFs of
450,000 hours are readily available.
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The best-case incremental cost of a read-copy
callback, given that at least one other callback is a
member of the same batch, is just Cc, or 7tf.

The worst-case cost of an isolated callback is m
times the per-hardclock() cost plus the sum of the rest of
the costs, as shown in Equation 5:

Equation 5

Note that this worst case assumes that at most one
CPU per quad passes through its first quiescent state for
the current generation during a given period between
hardclock() invocations.  In typical commercial
workloads, CPUs will pass through several quiescent
states per period.

Typical costs may be computed assuming a system-
wide Poisson-distributed inter-arrival rate of λ per
generation, as shown in Equation 6.

Equation 6

Here (λke-λ)/k! is the Poisson-distributed probability
that k callbacks are registered during a given generation if
on average λ of them arrive per generation.  Note that the
0th term of the Poisson distribution is omitted, since there
is no read-copy overhead if there are no read-copy
arrivals.  The division by 1-e-λ corrects for this omission.
The quantity Ck is defined as shown in Equation 7.

Equation 7

This definition states that we pay the per-hardclock()
and per-generation overhead unconditionally, that we pay
the per-batch overhead for each of Nb(k) batches, and that
we pay per-callback overhead for each callback.

The expected number of batches Nb(k) is given by
the well-known solution to the occupancy problem:

Equation 8

This is just the number of CPUs expected to have
batches given nm CPUs and k read-copy updates.

Substituting Equation 7 and Equation 8 into
Equation 6 and substituting Equation 1, Equation 2,
Equation 3, and Equation 4 into the result yields the
desired expression for the typical cost:

Equation 9

These results are displayed in the following figures.
The traces are labeled as follows:  "drw" is per-CPU
distributed reader-writer spinlock; "qrw" is per-quad
distributed reader-writer spinlock; "sl" is simple
spinlock; "rcb" is best-case read-copy update; "rcp",
"rcz", and "rcn" are read-copy update with Poisson-
distributed arrivals with λ equal to 10, 1, and 0.1,
respectively; and "rcw" is worst-case read-copy update.

Figure 13: OVERHEAD VS. NUMBER OF CPUs

Figure 13 displays read-copy update overhead as a
function of the number of CPUs.  At these typical latency
ratios and moderate-to-high update fractions, read-copy
update outperforms the other locking primitives.  Note
particularly that the overhead of the non-worst-case read-
copy overheads do not increase with increasing numbers
of CPUs, due to the batching capability of read-copy
update.  Although simple spinlock also shows good
scaling, this good behavior is restricted to low contention.

Figure 14: OVERHEAD VS. UPDATE FRACTION

Figure 14 shows read-copy overhead as a function of
the update fraction f.  As expected, read-copy update
performs best when the update fraction is low.  Update
fractions as low as 10-10 are not uncommon [13].

Figure 15 shows read-copy overhead as a function of
the memory-latency ratio r.  The distributed reader-writer
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primitives have some performance benefit at high latency
ratios, but this performance benefit is offset in many cases
by high contention, by larger numbers of CPUs, or by
lower update fractions, as shown in Figure 15.

Figure 15: OVERHEAD VS. LATENCY RATIO

The situation shown in Figure 15 is far from
extreme.  As noted earlier, common situations can result
in update fractions below 10-10.

Note finally that all of these costs assume that the
update-side processing for read-copy update is guarded by
a simple spinlock.  In cases where the update-side
processing may use a more aggressive locking design (for
example, if only one thread does updates), read-copy
update will have an even greater performance advantage.

Figure 16: OVERHEAD VS. LATENCY RATIO FOR
LOW f

7 RELATED WORK
Reader-writer spinlocks [14] allow reading

processes to proceed concurrently.  However, updating
processes may not run concurrently with each other or
with reading processes.  In addition, reader-writer
spinlocks exact significant synchronization overhead from
reading processes.  On the other hand, reader-writer
spinlocks allow writers to block readers and vice versa,

thereby avoiding stale data.  This tradeoff is shown in
Figure 17—exclusion between readers and writers
imposes lock-contention costs and increases the time
required to become aware of an external event.

Reader-Writer Spinlock Latency to New Data

Read-Copy Update Latency to New Data

UpdateSpin

Read NewSpin

Read NewSpin

External
Event

Update

Read NewRead Old

Read Old

Read Old

Figure 17:  LATENCY OF READ-COPY UPDATE
COMPARED TO READER-WRITER SPINLOCK

Wait-free synchronization [5] allows reading and
updating processes to run concurrently, but again exacts
significant synchronization overhead.  It also requires that
memory used for a given type of data structure never be
subsequently used for any other type of data structure, and
that reading threads write to shared storage.  On parallel
computers, these writes will result in high-latency cache
misses.  On the other hand, wait-free synchronization
provides wait-free processing to updates as well as to
reads, and also avoids stale data.

Timestamping and versioning concurrency-control is
in some ways similar to read-copy update, but imposes
synchronization overhead on reading processes [2].
Chaotic relaxation [1] accepts stale data to reduce locking
overhead, but requires highly structured data.

Manber and Ladner [10] describe an algorithm that
defers freeing a given node until all processes running at
the time the node was removed have terminated.  This
allows reading processes to run concurrently with
updating processes, but does not handle non-terminating
processes such as those found in OSs and server
applications.  In addition, they do not describe an efficient
mechanism for tracking blocks awaiting deferred free.

Pugh [15] uses a technique similar to that of Manber
and Ladner, but notes that (expensive) read-side state
update can handle non-terminating processes.  However,
Pugh leaves to the reader the mechanism for efficiently
tracking blocks awaiting deferred free.

Kung and Lea [7, 8] describe use of a garbage
collector to manage the list of blocks awaiting deferred
free.  However, garbage collectors are often not available,
and their overhead renders them infeasible in many
situations.  In particular, the traditional reference-counting
approach incurs expensive memory writes for reading
threads.  Even when garbage collectors are available and
when their overhead is acceptable, they do not address



situations where some operation other than freeing
memory is to be performed in a timely manner at the end
of the quiescent period.

Jacobson [6] describes perhaps the simplest possible
deferred-free technique: simply waiting a fixed amount of
time before freeing blocks awaiting deferred free.  This
works if there is a well-defined upper bound on the length
of quiescent periods.  However, longer-than-expected
quiescent periods (perhaps due to greater-than-expected
load or data-structure size) can result in memory-
corruption failures, with no feasible means of diagnosis.

8 SUMMARY AND CONCLUSIONS
We have presented a novel update discipline, named

read-copy update, that provides great reductions in
synchronization overhead, tolerates non-terminating
threads and reduces deadlock-avoidance complexity.
Read-copy update generally gives the best performance
improvement for read-mostly algorithms or under high
contention.  In some cases, the need for synchronization
operations is completely eliminated.

We have delineated read-copy update’s area of
applicability:  Data structures that are often accessed and
seldom updated, where a modest amount of memory may
be spared for structures waiting on a quiescent period, and
where stale data may be tolerated or can be suppressed.

We have provided a firm theoretical basis for read-
copy update, along with a very efficient implementation.
This implementation, which uses a summary of thread
activity, fills an important gap in earlier work with
concurrent update algorithms.  The implementation has
run in production on Sequent machines since 1994.

We have presented measurements that demonstrate
order-of-magnitude reductions in overhead compared to
simple spinlock.  These comparisons are quite
conservative: even greater savings would be realized if
the simple spinlock were heavily contended.
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