
1

Two-Phase Update for Scalable Concurrent Data Structures

Paul E. McKenney

IBM NUMA-Q & Oregon Graduate Institute

pmckenne@us.ibm.com

Abstract
Parallel shared-memory software must control concurrent

access to shared resources. This is typically accomplished

via locking designs that result in low concurrency or that

are highly complex.

This paper presents two-phase update, which is an

alternative method of updating concurrent data structures,

and demonstrates that it is both simple and highly scalable

in restricted but commonly occurring situations. Example

uses are taken from Sequent’s (now IBM’s) DYNIX/ptx

operating system and from the Tornado and K42 research

projects. Two-phase update techniques have been used in

production by DYNIX/ptx since 1993, and were

independently developed by Tornado and K42.

1 Introduction

Control of concurrent access to shared resources is a

central issue in shared-memory software. Higher levels of

concurrency usually require higher levels of complexity.

For example, searching for and deleting items from a

circular singly linked list is trivial in a non-parallel

environment. Use of code locking (Hoare monitors)

increases complexity only slightly, since locks must be

acquired and released. However, since only one CPU at a

time may be manipulating the list, concurrency remains

low. There are many algorithms that allow concurrent

searches, but that are substantially more complex, as

exemplified by Manber’s and Ladner’s search tree

[Manber84].

Thus, traditional implementations of large-scale parallel

systems are forced to trade off simplicity against

scalability. Three important situations necessitating such

tradeoffs are deadlock avoidance, access to read-mostly

data structures, and access to data structures that must be

modified or deleted while the access proceeds. The

common thread through these three situations is the need to

destructively modify a data structure in face of concurrent

access to that data structure. Traditional approaches,

exemplified by locking, take a pessimistic approach to

consistency, prohibiting any access from seeing stale data.

But this pessimistic approach can restrict scalability—or

force increasingly complex workarounds to be adopted in

order to retain scalability.

Two-phase update addresses this problem by taking a more

optimistic approach, allowing the user of two-phase update

to decide how much consistency he or she is willing to pay

for. In some important cases, two-phase update leads to

designs that are both simple and highly scalable. Two-

phase update accomplishes this by splitting updates into

two phases: 1) carrying out the update so that new

operations see the new state, while retaining the old state

so that already-executing operations may continue using it,

then: 2) cleaning up the old state after a “grace period” that

is long enough to allow all executing operations to

complete. Common-case accesses can then proceed fully

concurrently, without disabling interrupts or acquiring any

locks to protect against the less-common modifications.

This simplifies locking protocols, improves both single-

and multi-processor performance, and increases scalability.

2

The operations that were already executing at the

beginning of the update will see the old state, i.e., stale

data. In many situations, this is acceptable. For example,

any algorithm that tracks state external to the computer

(e.g., routing tables or physical position data) must tolerate

stale data in any case due to communications delays. Any

access that begins after the first phase of the update has

completed is guaranteed to see the new state, and this

guarantee is often sufficient. In other cases, there are well-

known techniques for insulating algorithms from stale data

that are both efficient and highly scalable [Pugh90].

If two-phase update is to work well, the “grace period”

during which old operations are allowed to complete must

be acceptably small. Therefore, two-phase update may not

be the method of choice for applications with long-duration

operations. However, two-phase update does work well in

many event-driven systems, such as operating-system

kernels, where operations complete quickly. Example uses

of two-phase update are shown in Section 7.

If two-phase update is to be practical, there must be an

efficient algorithm that determines the duration of the

grace period. A simple algorithm is presented in Section 4.

Extremely efficient algorithms are readily available

[Sarma01].

Section 2 describes existing solutions to the problem of

rare destructive updates in face of frequent concurrent

access and Section 3 lists the conditions and assumptions

for two-phase update. Section 4 gives details of two-phase

update’s implementation. Section 5 carries out an

analytical comparison of two-phase update and traditional

locking techniques, and Section 6 presents measured

comparisons for both performance and complexity.

Section 7 covers existing uses of two-phase update in both

research and production operating systems, Section 8

covers future work, and Section 9 presents conclusions.

2 Existing Solutions

Unlike more traditional synchronization methods, two-

phase update is incomplete: it resolves the read-update

conflicts, but it is necessary to use conventional

synchronization to resolve any concurrent updates. As

such, the benefits of two-phase update usually accrue to

reads rather than updates. It is nevertheless instructive to

compare two-phase update with conventional

synchronization methods. The following sections presents

such a comparison and surveys work touching on two-

phase update.

2.1 Traditional Solutions

Table 1 compares two-phase update to a number of other

methodologies.

C
om

pl
et

e
W

ai
t F

re
e

Z
er

o-
C

os
t

R
ea

ds
R

ol
lb

ac
k/

R
ed

o
St

al
e

D
at

a
M

em
or

y
R

eu
se

R
ac

e
A

vo
id

an
ce

Locking Y N N N N Y N
Wait-Free Synchronization Y Y N Y n N N

Optimistic Locking Y N N Y n Y N
Timestamp-Based Locking N N N Y Y Y N

Two-phase update N * Y * Y Y Y

Table 1: Synchronization Comparison

A methodology is complete if it can solve general

concurrency problems, and wait free if no process will be

indefinitely delayed, even in face of process failure. It

provides zero-cost reads if reading threads can execute the

same sequence of code that would be sufficient in a single-

threaded environment. Rollback/redo is possible if threads

must discard or redo work they have done in response to

concurrent accesses or updates. Stale data can be observed

when reading threads are permitted to access data that is

concurrently updated. Some methodologies ensure that

reading threads never see stale data (indicated by “N”),

3

others allow stale data to be accessed, but prevent it from

affecting the final state of the computation (indicated by

“n”), and still others allow stale data to affect the final state

of the computation (indicated by “Y”). Memory reuse

means that the memory used for a given data structure can

potentially be reused for any other data structure. Race

avoidance prevents races from happening, as opposed to

correctly handling them once they occur.

Locking is well represented in the literature; we include

token schemes and slotted protocols in this category. The

common theme throughout locking is that ownership of

some resource, such as a lock, a token, or a timeslot,

permits the owner to access or modify the corresponding

guarded entity. Locking is complete, not wait free, does

not permit zero-overhead reading, is not subject to rollback

or stale data, and does allow arbitrary reuse of memory.

This holds true for both exclusive locking and reader-

writer locking [Court71, MC91, Hsieh91].

Wait-free synchronization [Herlihy93, Ander95] uses

atomic instructions (load linked and store conditional on

RISC machines, compare-and-swap on CISC machines) to

ensure forward progress and to ensure that readers see

consistent data. Wait-free synchronization is complete,

and, as its name implies, wait free.

However, reading threads must perform validation

operations in order to see a consistent snapshot of the data,

and these operations include modifications to shared data

that can result in expensive cache-miss or broadcast-update

operations in the underlying hardware.

Furthermore, concurrent accesses and modifications to a

given data structure can result in expensive rollback/redo

operations (though these can be avoided in a few specific

situations). In addition, in the absence of a garbage

collector, any memory used for a particular data structure

must not subsequently be used for some other data

structure, thus making it harder to recover from memory-

exhaustion-based denial-of-service attacks. However,

wait-free synchronization does prevent any stale data from

affecting the state of subsequent computations.

Optimistic locking is reviewed by Barghouti and Kaiser

[Bargh91]. It is not normally used in operating systems or

to guard memory-based structures in applications, but is

presented here because of its handling of stale data.

Optimistic locking uses a combination of timestamps and

conventional locking to begin updates before it is known to

be safe to do so. Optimistic locking is complete, but

because of the locks, neither wait free nor zero-overhead to

readers. Potentially unsafe situations result in rollbacks,

thus preventing any stale data from affecting the state of

subsequent computations. Finally, optimistic locking

permits arbitrary reuse of memory.

Timestamp-based concurrency control is also reviewed by

Barghouti and Kaiser [Bargh91], and is also not typically

used in operating systems or general applications.

Timestamp-based locking provides a versioning capability

so that a reader may see a particular version of the guarded

data despite subsequent updates. This versioning

capability allows stale data to affect subsequent

computation if desired, but requires additional storage, and

operations may need to be aborted or rolled back if storage

is exhausted. Furthermore, control of the versioning

normally uses locking. Unlike the preceding

synchronization methodologies, timestamp-based locking

is not complete. It cannot be used to resolve concurrent

conflicting updates, because giving each writer its own

version of the data is usually not appropriate.

Two-phase update is similarly incomplete: normally, either

traditional locking or wait-free synchronization is used to

resolve concurrent updates. In the former case, two-phase

4

update is immune from rollback/redo,1 while in the latter

case, it is itself wait free. In either case, it does allow zero-

overhead access to reading processes and allows memory

to be reused independent of prior uses, even when wait-

free synchronization is used to guard updates. However,

two-phase update does expose readers to stale data, so they

must be capable either of detecting and rejecting it, or of

tolerating it.

2.2 Two-Phase Update Algorithms

This section discusses published concurrency control

algorithms related to two-phase update.

Manber and Ladner [Manber84] describe a search tree that

defers freeing a given node until all processes running at

the time that the node was removed have terminated. This

allows reading processes to run concurrently with updating

processes, but does not handle non-terminating processes

such as those found in operating systems and server

applications. In addition, they do not describe an efficient

mechanism for tracking blocks awaiting deferred free or

for determining when the relevant processes have

terminated. Nonetheless, this is an example of two-phase

update, where the end of the grace period is detected upon

termination of all processes running during the first phase

of the update.

Pugh’s skiplist search structures [Pugh90] use a technique

similar to that of Manber and Ladner, but accommodate

non-terminating processes by requiring that reading threads

explicitly record the fact that they are accessing the data

structure. This explicit recording requires writes to shared

1 There are some wait-free algorithms that are immune

from rollback/redo [Michael98], and if these are used to

handle updates, then the enclosing two-phase update

algorithm is also immune from rollback/redo.

memory, resulting in expensive cache misses or global

broadcasts at the hardware level. However, Pugh does not

discuss a mechanism for efficiently tracking blocks

awaiting deferred free in absence of a garbage collector.

Nevertheless, this is an example of two-phase update,

where the end of the grace period is detected when all

processes that were accessing the data structure during the

first phase of the update complete their accesses.

Kung [Kung80] describes use of a garbage collector to

manage the list of blocks awaiting deferred free, allowing

reading processes to run concurrently with updating

processes. However, garbage collectors are not always

available, and their overhead renders them infeasible in

some situations. Even when garbage collectors are

available and acceptable, they do not address situations

where some operation other than freeing memory is to be

performed soon after all reading processes have dropped

references to the blocks awaiting deferred free. For

example, a thread might wish to use two-phase update to

determine when a log buffer was completely filled in, in

order to flush it to disk. Again, this is another example of

two-phase update, with the grace period ending when the

memory becomes reclaimable by the garbage collector.

Jacobson [Jacob93] describes perhaps the simplest possible

two-phase update technique: executing the first phase of

the update, then simply waiting a fixed amount of time

before executing the second phase. This works if there is a

well-defined upper bound on the length of time that

reading threads can hold references. However, if threads

hold their references longer than expected (perhaps due to

greater-than-expected load or data-structure size), memory

corruption can ensue, with no reasonable means of

diagnosis. Once again, this is another example of two-

phase update, with the second phase being entered after the

passage of a given amount of time.

5

McKenney and Slingwine [McK98a] describe an efficient

algorithm for detecting states during which no operation

can be in progress on a given CPU (called “quiescent

states”) within an operating system or server application.

Any time a CPU passes through such a state, all ongoing

operations running on that CPU must have completed.

They describe use of this algorithm for an two-phase

update algorithm named read-copy update, along with a

few analytical and measured comparisons between read-

copy update and its traditional lock-based equivalents.

Gamsa et al. [Gamsa99] describe a two-phase update

algorithm that is used to make existence guarantees.

Generation counters and tokens are used to guarantee that

data structures are not returned to free storage while they

are still being referenced. This algorithm differs from

read-copy update in that the system maintains a count of

busy threads rather than directly counting quiescent states

(states that indicate that no operation is in progress on the

current CPU or thread).

2.3 Directory-of-Services Example

Since locking is the oldest and perhaps most commonly

used of the existing solutions, it is worthwhile to look at an

example applying it to a singly linked list. This example

ilustrates the problem of correctly handling requests for a

service that arrive just as that service is torn down. If this

race condition is not correctly handled, a particularly

unlucky request will acquire a reference to the data

structure representing the service just as this structure is

deleted. The request will then find itself referencing an

outdated structure, or, worse yet, an element on the freelist.

Either possibility can result in failure, or even in a crash.

The simplest way to handle concurrent uses and teardowns

of a service is to prohibit concurrency entirely through use

of a global lock: either a service is present when requested

or it is not. Unfortunately, this design is also incapable of

making good use of more than a single CPU.

Introducing separate locks for each service can increase

concurrency, so that multiple services can execute in

parallel. Although this design has the advantage of being

able to make good use of multiple CPUs, it also raises the

specter of deadlock, since an additional lock will be

required to guard the list itself. In addition, since the list

lock will still be a global lock, Amdahl’s law dictates that

concurrency will be poor if the units of work performed by

the services tend to be of short duration. For example, if

the units of work take three times as long as the list search,

then this design will be able to make good use of at most

four CPUs.

If the linked list’s search key allows hashing, then the

singly linked list may be replaced by a hash table of list

headers, each with its own list lock. The concurrency of

this design is excellent, being limited only by the number

of hash buckets, the quality of the hash function, and the

number of list elements. However, it is still plagued by

deadlock issues.

As will be shown in Section 4, two-phase update provides

a simple and scalable solution to this problem.

3 Conditions and Assumptions

Use of two-phase update is most likely to be helpful with

read-intensive data structures, where a modest amount of

memory may be spared for a list of deferred actions, where

stale data may be either tolerated or suppressed, and where

there are frequently occurring natural or artificial quiescent

states.

“Read intensive” means that the update fraction (ratio of

updates to total accesses) f is much smaller than the

reciprocal of the number of CPUs. However, in some

special cases, two-phase update can provide performance

6

benefits even though f exceeds 0.9. It is possible for f to be

as small as 10-10, for example, in storage-area network

routing tables (consider 100 disks, each with 100,000-hour

mean time between failure, connected to a system doing

3,000 I/Os per second).

Ever-increasing memory sizes tend to make any space

required to retain state across the grace period a non-

problem, but the need for tolerance of stale data cannot

always be so easily dismissed. However, any reading

thread that starts its access after an update completes is

guaranteed to see the new data. This guarantee is

sufficient in many cases. In addition, data structures that

track state of components external to the computer system

(e.g., network connectivity or positions and velocities of

physical objects) must tolerate old data because of

communication delays. In other cases, old data may be

flagged so that the reading threads may detect it and take

explicit steps to obtain up-to-date data, if required

[Pugh90].

Two-phase update requires that the modification be

compatible with lock-free access. For example, linked-list

insertion, deletion, and replacement are compatible: a

reading access will see either the old or new state of the

list. However, if a list is reordered in place, the reading

thread can be forced into an infinite loop if the last element

is consistently moved to the front of the list each time a

reading thread reaches it. It is possible to perform an

arbitrary two-phase-update modification of any data

structure by making a copy of the entire structure, but this

is inefficient for large structures. More work is needed to

better understand how more general modifications can be

efficiently cast into two-phase update form.

Finally, two-phase update is less applicable to non-event-

driven software, such as some CPU-bound scientific

applications, although similar techniques have been used,

as reviewed by Adams [Adams91].

4 Details of Solution

Two-phase update exploits the fact that many software

systems (such as most operating systems) continually

perform many small and quickly completed operations.

4.1 Illustrative Example

Consider once again the singly linked list example from

Section 2.3, as shown in Figure 1.

A B C

Updater ReaderHeader

Figure 1: List Initial State

To delete element B, the updater thread may simply link

A’s pointer to C, as shown in Figure 2. This action

constitutes the first phase of the update.

At this point, any subsequent searches of the list will find

that B has been deleted. However, ongoing searches, such

as that of the reader thread, may still find element B: these

threads see stale data.

A B C

Updater ReaderHeader

Figure 2: Service B Unlinked From List

The question answered by two-phase update is “when is it

safe to return element B to the freelist?” The updating

thread need wait only until all ongoing searches complete

before returning B to the freelist, as shown in Figure 3.

Again, any new searches will be unable to acquire a

reference to B.

7

A B C

Updater ReaderHeader

Figure 3: List After Ongoing Operations Complete

At this point, the updater thread can safely return B to the

freelist, as shown in Figure 4. This constitutes the second

phase of the update.

A C

Updater ReaderHeader

Figure 4: List After Service B Returned to Freelist

For this return to freelist to be safe, the reader thread must

be prohibited from retaining a reference to element B

across operations. This is equivalent to the prohibition

against maintaining similar references outside of the

corresponding critical sections in traditional locking. In

either case, the data structure might be arbitrarily modified

in the meantime, possibly rendering the reference invalid.

4.2 Implementation of Solution

Figure 5 shows how two-phase update progresses in an

event-based system. The boxes represent individual

operations, and each numbered arrow represents an active

entity, for example, a CPU or a thread, with time

progressing to the right. The dotted line labeled φ1

indicates the time of the first phase of the update. The

second phase of the update may proceed as soon as all

operations that were in progress during the first phase have

completed, namely, operations A, E, and L. The earliest

time the second phase can safely be initiated is indicated

by the dotted line labeled φ2 .

A0 B C D

F1 E G

K2 H I J

N3 L M

φ1 φ2

Figure 5: Two-Phase Update in Event-Based Systems

A simple but inefficient procedure to determine when the

second phase may safely be initiated in a non-preemptive

operating-system kernel is depicted in Figure 6. The

updater simply forces itself to execute on each CPU or

thread in turn. The boxes labeled “u” represent this

updater’s execution. Once it has run on each CPU or

thread, then the non-preemptive nature of the environment

guarantees that all operations that were in progress during

phase one must have completed.

A0 B C D

F1 E G

K2 H I J

N3 L M

φ1 φ2

u

u

u

u

φ2 detected

Figure 6: Simple Phase-Two Detection

Pseudo-code for two-phase update based on this approach

is shown in Figure 7. Line 1 does the phase-one operation

(in the example above, removing service B from the list).

Lines 2 and 3 force execution onto each CPU in turn,

potentially blocking until that CPU becomes available.

8

The key point is that a given CPU cannot possibly become

available until after the completion of any operation that

was in progress concurrently with the phase-one operation.

Line 5 performs the phase-two operation (in the example in

Section 4.1, freeing up the structure representing service

B).

This procedure may be adapted to preemptive

environments by requiring that preemption be suppressed

during searches of the services directory, perhaps by

suppressing interrupts or by setting a per-thread or per-

CPU flag that suppresses preemption. Any “operations”

that did not suppress preemption would be executed as

multiple operations if preempted.

1 /* Perform phase-one modifications */
2 for (i = 0; i < n; i++) {
3 run_on(i);
4 }
5 /* Perform phase-two modifications */

Figure 7: Pseudocode to Wait for End of Grace Period

This procedure, shown in Figure 7, is quite

straightforward, but has a number of shortcomings. The

first is that switching from CPU to CPU (or from thread to

thread) is quite expensive. The second is that there is no

attempt to share grace periods among multiple concurrent

updates, so that each update incurs the full cost of

switching among all CPUs. The last shortcoming is that

this style of use of two-phase update is too verbose.

Much more efficient procedures exist. These operate by

counting quiescent states that are guaranteed not to occur

within an operation. A useful set of quiescent states for a

non-preemptive operating-system kernel includes context

switch, execution of user code, system calls, traps from

user code, and execution in the idle loop. Once each CPU

has passed through a quiescent state, the system has passed

through a grace period, at which point, any operations in

progress at the start of the grace period are guaranteed to

have completed.

Counting and combining-tree techniques are used to

efficiently detect grace periods. In addition, detection of a

single grace period can allow any number of two-phase

updates to enter their second phase, so that the overhead of

detecting a grace period may be amortized over a large

number of requests. An efficient callback-based

implementation of two-phase update has been produced for

the Linux kernel [Sarma01] as well as for DYNIX/ptx

[McK98a]. These callback-based implementations allow a

callback to be registered, so that the specified callback

function will be invoked at the end of the grace period.

In addition, many uses of two-phase update simply free

memory in phase two. These uses can be greatly

simplified via a deferred-free primitive such as

DYNIX/ptx’s kmem_deferred_free(). This primitive

places memory to be freed on a list, and the items on this

list are freed only after a grace period has passed. This

means that many algorithms may be transformed to use

two-phase update simply by using kmem_deferred_free()

to free memory. See Section 6.2 for an example.

5 Analytical Comparison

This section presents analytical results comparing an

efficient callback-based implementation of a two-phase

update algorithm [Sarma01] to traditional locking methods.

The analysis assumes low levels of contention, and further

assumes that memory latency dominates the cost of

computation. These assumptions allow performance to be

estimated by simply counting memory references and

estimating the latencies based on the probable prior state of

the corresponding cache line [McK99]. This section

compares the overhead of the concurrency-control

primitives only. Real systems would also consider the

overhead of the critical sections guarded by the locking

primitives, but the locking-primitive-only comparisons in

this section allow the locking design to be evaluated

9

independently of the data structure being manipulated by

the critical section.

Details of the derivations may be found in Appendix A and

in a companion paper and technical report [McK98a,

McK98b].

5.1 Nomenclature

The symbols used in the analysis are defined in Table 2.

This analysis assumes a four-level memory hierarchy that

has a small L1 cache with negligible latency, a larger L2

cache, local memory (or an L3 cache shared by a quad’s

CPUs for repeated references to remote memory), and

remote memory.

Definition

f Fraction of data-structure accesses that do updates.

This is called the update fraction.

m Number of CPUs per quad. A “quad” is a unit of

hardware containing CPUs and memory that is

combined with other quads to obtain a CC-NUMA

system. The results presented here have m=4.

n Number of quads.

tc Time required to access the fine-grained hardware

clock.

tf Latency of a memory access that hits the CPU's L2

cache.

tm Latency of a memory access that hits local

memory or the L3 cache.

ts Latency of a memory access that misses all caches.

r ts/tf = (tm/tf)
2, also called the latency ratio .

λ Expected number of updates per grace period.

Table 2: Analysis Nomenclature

The graphs shown in Figure 8 through Figure 17 label

traces and regions between traces with the corresponding

locking algorithm, as shown in Table 3.

Figure 8 through Figure 11 display memory latency,

normalized by tf, on the y-axis. Memory latency is an

appropriate cost measure for today’s computer systems

because several decades governed by Moore’s law have

increased CPU performance to such an extent that CPU

overhead is usually insignificant when compared to

memory latency. Although it is possible to analyze

performance using memory latencies of a specific

computer system, this section instead uses latency ratio r.

This normalization of the latencies with respect to tf allows

the analysis to be easily applied to many types of computer

systems.

Label Description

sl Simple spinlock

drw Distributed reader-writer spinlock [Hsieh91]

qrw Per-quad distributed reader-writer spinlock

2pb Best-case two-phase update

2pn Two-phase update with λ equal to 0.1

2pz Two-phase update with λ equal to 1

2pp Two-phase update with λ equal to 10

2pw Worst-case two-phase update

Table 3: Key for Figure 8 Through Figure 17

5.2 Costs

Figure 8: Cost vs. Number of CPUs (Key: Section 5.1)

10

Figure 8 displays two-phase update overhead as a function

of the number of CPUs, with a latency ratio r of 250 and an

update fraction of 0.001. At these typical latency ratios

and moderate-to-high values of λ, two-phase update

outperforms the other locking primitives. Note particularly

that overhead of non-worst-case two-phase update does not

increase with increasing numbers of CPUs, due to the

batching capability of two-phase update. Although simple

spinlock also shows good scaling, this good behavior is

restricted to low contention. The poor behavior of simple

spinlock under high contention is well documented.

Figure 9 shows two-phase overhead as a function of the

update fraction f given a latency ratio r of 250 and 30

CPUs. As expected, two-phase update performs best when

the update fraction is low.

Figure 9: Cost vs. Update Fraction (Key: Section 5.1)

Figure 10: Cost vs. Latency Ratio (Key: Section 5.1)

Figure 10 shows two-phase overhead as a function of the

latency ratio r, for 30 CPUs and with an update ratio of

0.001. The distributed reader-writer primitives perform

well at high latency ratios, but this performance is offset in

many cases by high contention, larger numbers of CPUs,

or by lower update fractions. This last is illustrated in

Figure 11, which shows the effects of an update fraction of

10-6.

The situation shown in Figure 11 is far from extreme. As

noted earlier, common situations can result in update

fractions below 10-10. Two-phase update will remain

optimal for these situations for the foreseeable future,

despite the likelihood that latency ratios will increase over

time [Hennes91, Stone91, Burger96].

11

Figure 11: Overhead vs. Latency Ratio for Low f (Key:

Section 5.1)

5.3 Breakevens and Optimal Regions

Since different techniques have the lowest costs under

different conditions, this section presents plots showing the

regions in which each technique is best. Table 3 shows the

key for Figure 12 through Figure 17.

Section 5.3.1 presents breakeven update fractions for

varying numbers of CPUs with the latency ratio r fixed at

250. Section 5.3.2 presents breakeven update fractions as r

varies, with the number of CPUs fixed at 32.

5.3.1 Update Fraction vs. Number of CPUs

This section shows how well each of simple spinlock,

Hsieh and Weihl reader-writer spinlock, and two-phase

update scale with the number of CPUs.

Figure 12: Worst-Case Two-phase Update Breakevens

(Key: Section 5.1)

Figure 13: λ=1 Two-phase Update Breakevens (Key:

Section 5.1)

Figure 12 shows breakevens for small λ, so that each

update bears the full cost of detecting a grace period.

There are three distinct regimes where each of simple

spinlock, reader-writer spinlock, and two-phase update are

optimal. As expected, given sufficiently low values of the

update fraction, two-phase update is optimal. However,

the larger the number of CPUs, the smaller the update

fraction must be for two-phase update to be optimal.

Similarly, a larger number of CPUs requires a smaller

12

update fraction in order for reader-writer spinlock to

perform better than simple spinlock.

Figure 13 shows breakevens for λ=1, so that on average

one update occurs per grace period. Here, reader-writer

spinlock (“drw”) is optimal only in a small area with

fewer than 10 CPUs. This is due to reader-writer lock’s

inability to amortize write-acquisition overhead over

multiple updates. The breakeven between simple spinlock

and reader-writer spinlock has not changed, but the

breakeven between simple spinlock and two-phase update

has moved up substantially due to the amortization of

grace-period detection over multiple updates.

Figure 14: Best-Case Two-phase Update Breakevens

(Key: Section 5.1)

Figure 14 shows breakevens for large λ, so that per-update

costs of detecting grace periods approaches zero. Again,

reader-writer spinlock is never optimal. Two-phase update

is optimal almost everywhere, even for very update-

intensive workloads. Note that this figure has a linear-

scale y-axis so that the breakeven between simple spinlock

and two-phase update may be distinguished from the y=1

axis.

5.3.2 Update Fraction vs. Latency Ratio r

The previous section showed how two-phase update scales

with numbers of CPUs. However, changes in computer

architecture have resulted in large changes in latency

ratios. This section shows how such changes affect the

locking-primitive breakevens. Table 3 shows the key for

the figures in this section.

Figure 15: Worst-Case Two-phase Update Breakevens

(Key: Section 5.1)

Figure 15 shows breakevens for small λ, so that each

update bears the full cost of detecting a grace period.

There are three distinct regimes where each of simple

spinlock, reader-writer spinlock, and two-phase update are

optimal. Again, given sufficiently low values of the update

fraction, two-phase update is optimal. However, the larger

the latency ratio r, the smaller the update fraction must be

for two-phase update to be optimal. Given the historically

increasing latency-ratio trends, Figure 15 seems to indicate

that use of two-phase update will become less

advantageous as time goes on. But this conclusion is

unwarranted, because: (1) the movement towards placing

multiple CPUs on a single silicon die will likely slow the

increase of latency ratios, (2) as noted previously, there are

many situations with extremely low update fractions, and

13

(3) this is the worst case for two-phase update: more

advantageous situations are shown below.

Figure 16: λ=1 Two-phase Update Breakevens (Key:

Section 5.1)

Figure 17: Best-Case Two-phase Update Breakevens

(Key: Section 5.1)

Figure 16 shows breakevens for λ=1, for which there is

some amortization of the cost of grace-period detection

over multiple updates. This amortization results in reader-

writer spinlock never being optimal, since, unlike two-

phase update, reader-writer spinlock cannot amortize the

cost of write-acquisition over multiple updates. The

breakeven update fraction for simple spinlock and two-

phase update actually increases with increasing latency

ratio. This is because simple spinlock pays a large

memory-latency penalty for both reading and updating,

while two-phase update pays the penalty only for updating.

Therefore, increasing the latency ratio puts simple spinlock

at a comparative disadvantage.

Figure 17 shows breakevens for large λ, so that the per-

update cost of detecting grace periods is minimized (note

the linear y-axis). Again, reader-writer spinlock’s inability

to amortize write-side lock acquisition over multiple

updates means that it is never optimal. Again, the

breakeven between simple spinlock and two-phase update

increases with increasing latency ratio, but this time quite

sharply. This results in two-phase update being optimal

almost everywhere.

5.4 Update-Side Locking

Note finally that all of these costs and breakevens assume

that the update-side processing for two-phase update is

guarded by a simple spinlock. In cases where the update-

side processing may use a more aggressive locking design

(for example, if only one thread does updates), two-phase

update will have a greater performance advantage.

6 Measured Comparison

The following sections present measurements of two-phase

update’s performance and complexity, and compare them

to those of traditional locking.

6.1 Performance

Data shown in this section was collected on a Sequent

NUMA-Q machine with 32 Xeon CPUs, each running at

450 MHz [Lovett96].

The results for simple spin-lock shown in Figure 18 show

good agreement between the analytic model and

measurements taken on real hardware. Note that there are

14

small but measurable deviations both for smaller and for

larger numbers of quads. The deviations at the low end are

due in part to hardware optimizations and speculative

execution, neither of which are accounted for in the model.

The deviations at the high end are due in part to the

increased cost of invalidation operations on the hardware

under test for larger numbers of CPUs. Although it is

possible to design more complex locking primitives that do

not suffer from these deviations, such designs are beyond

the scope of this paper.

Figure 18: Measured vs. Analytic Latencies for Simple

Spin-Lock

The results for distributed reader-writer spin-lock shown in

Figure 19 also show good agreement between the analytic

model and real hardware. Deviations are less apparent

than for simple spin-lock because of the log-scale latency

axis used to accommodate the wide range of latencies

measured for reader-writer spin-lock.

Measured and analytic results for two-phase update also

show good agreement, but only for older Pentium CPUs

that do not feature speculative and out-of-order execution.

The very short and low-overhead code segments

implementing two-phase update make it impossible to

accurately measure the overhead of individual two-phase

update operations at low levels of contention on modern

speculative multi-issue CPUs.

Instead, we measured the aggregate overhead of large

numbers of operations at high levels of contention for

simple spin-lock, reader-writer spin-lock, and two-phase

update. This approach allows accurate bulk-measurement

techniques to be applied. However, since the analytic

results assume low contention, these measurements can

only be compared to each other, not to the analytic results.

The good agreement of individual-operation measurements

on older CPUs indicates that the analytic results are a

reliable guide for locking design.

Figure 19: Measured vs. Analytic Latencies for Reader-

Writer Spin-Lock

Figure 20 shows the expected results for simple spin-lock

at high contention. The sharp drop in system-wide critical

sections per microsecond between four and eight CPUs is

due to the greater latency of remote-memory accesses. It is

possible to create spin-locks that behave much better under

high contention, but these are beyond the scope of this

paper.

15

Figure 20: Simple Spin-Lock at High Contention

Figure 21 shows that distributed reader-writer spin-locks

produce much greater levels of critical-section throughput

under high contention, but only if read-side acquisitions

dominate. The uppermost trace in this figure corresponds

to f=10-6, and each lower trace corresponds to an order-of-

magnitude increase in f, up to f=0.1 in the lowermost trace.

Note that the traces for 10-6 and 10-5 are almost

overlapping. The erratic nature of the f=0.1 and f=0.01

traces is due to extreme write-side contention, which

results in “beating” interactions between the locking

algorithm and the cache-coherence protocol.

Figure 21: Reader-Writer Spin-Lock at High Contention

Figure 22 shows that two-phase update enjoys linear

scaling with increasing numbers of CPUs even under high

contention, independent of the value of f. Again, the

lowermost trace corresponds to f=0.1, with each higher

trace corresponding to an order-of-magnitude decrease in f.

The traces for f=10-4 through f=10-6 are overlapping in the

figure. Even at moderately low values of f, two-phase

update achieves more than an order of magnitude more

critical sections per second than does reader-writer spin-

lock, and many orders of magnitude greater than does

simple spin-lock.

Figure 22: Two-phase Update at High Contention

However, it must be noted that high levels of contention

result in high values of l, which allows the overhead of

grace-period detection to be amortized over many requests.

6.2 Complexity

This section compares the complexity of hierarchical-lock

and two-phase-update algorithms for search and deletion in

a doubly linked list. The requirements are as follows: 1)

allow parallel operation on different elements of the list, 2)

prevent readers from seeing stale data.

Figure 23 shows the data-structure layout of a list element.

The last two fields are used only by the two-phase-update

algorithms. The “kd” field is used by the

16

kmem_deferred_free() primitive that keeps a list of blocks

of memory awaiting a deferred free. Each element on this

list of blocks will be freed after all ongoing operations

complete.

1 struct element {
2 struct element *next;
3 struct element *prev;
4 spinlock_t element_lock;
5 int key;
6 int data;
7 int deleted; /* 2-phase only... */
8 struct kmem_defer_item kd; /* “ ” */
9 };

Figure 23: List Element Data Structure

Figure 24 shows a traditional hierarchical-locking search

algorithm. The global “list_lock” lock is used to protect

the list while searching it, and is acquired on line 4 and

released on lines 9 and 14. The loop covering lines 6

through 13 searches the list, and if line 7 finds a match, it

acquires the per-element lock on line 8, releases the global

lock on line 9 (after which operations on different elements

in the list may be processed in parallel), and returns a

pointer to the element located on line 10. If no matching

element is found, line 14 releases the global lock and line

15 returns a NULL pointer.

1 struct element *search(int key)
2 {
3 struct element *p;
4 spin_lock(&list_lock);
5 p = head->next;
6 while (p != head) {
7 if (p->key == key) {
8 spin_lock(&p->element_lock);
9 spin_unlock(&list_lock);
10 return (p);
11 }
12 p = p->next;
13 }
14 spin_unlock(&list_lock);
15 return ((struct element *)NULL);
16 }

Figure 24: Traditional Hierarchical-Lock Search

Figure 25 shows a traditional hierarchical-locking deletion

algorithm. Again, the global “list_lock” lock is used to

protect the list. However, the per-element lock is already

held, so line 4 cannot unconditionally acquire the lock,

since this could deadlock with the search algorithm.

Instead, line 4 conditionally acquires the lock. If the

attempted lock acquisition fails, then lines 5 through 9

record the address, release the lock, and redo the search in

order to acquire the locks in the correct order. Note that

the address must be captured before releasing the lock,

since it is not safe to dereference pointer “p” after the lock

has been released.

Once both locks have been acquired, lines 11 and 12

unlink the element from the list, lines 13 and 14 release the

locks, and line 15 frees up the deleted element.

1 void delete(struct element *p)
2 {
3 int key;
4 if (!spin_trylock(&list_lock)) {
5 key = p->key;
6 spin_unlock(&p->element_lock);
7 if ((p = search(key, 0)) == NULL) {
8 return;
9 }
10 }
11 p->next->prev = p->prev;
12 p->prev->next = p->next;
13 spin_unlock(&p->element_lock);
14 spin_unlock(&list_lock);
15 kfree(p);
16 }

Figure 25: Traditional Hierarchical-Lock Deletion

Figure 26 shows a two-phase-update search algorithm.

This algorithm is very similar to its hierarchically locked

counterpart. One difference is that the “list_lock”

acquisitions and releases have been deleted (these would

have to be replaced with operations to suppress preemption

in preemptive environments). Another difference is that

the “if” statement on line 8 must check the “deleted” flag

in order to prevent access to stale data.

17

1 struct element *search(int key)
2 {
3 struct element *p;
4 p = head->next;
5 while (p != head) {
6 if (p->key == key) {
7 spin_lock(&p->element_lock);
8 if (!p->deleted) {
9 return (p);
10 }
11 spin_unlock(&p->element_lock);
12 }
13 p = p->next;
14 }
15 return ((struct element *)NULL);
16 }

Figure 26: Two-Phase Update Search

Figure 27 shows a two-phase-update deletion algorithm.

Since the search algorithm need only acquire the per-

element lock, the delete algorithm is free to acquire the

“list_lock” lock while holding the per-element lock. Thus,

there is no need for the conditional locking and deadlock-

avoidance code that is in the hierarchical locking deletion

algorithm. A key change is the replacement of “kfree()”by

“kmem_deferred_free()”. The “kmem_deferred_free()”

primitive adds the specified block of memory to a list. The

elements of this list are freed only after all ongoing

operations complete. This prevents any races with the

search algorithm: the element is actually freed only after

all ongoing searches complete.

1 void delete(struct element *p)
2 {
3 int addr;
4 spin_lock(&list_lock);
5 p->deleted = 1;
6 p->next->prev = p->prev;
7 p->prev->next = p->next;
8 spin_unlock(&p->element_lock);
9 spin_unlock(&list_lock);
10 kmem_deferred_free(p);
11 }

Figure 27: Two-Phase-Update Deletion

The search algorithms are both the same size: 16 lines.

However, two-phase-update deletion is only 11 lines

compared to 16 lines for hierarchical-locking deletion.

This illustrates the reductions in complexity that two-phase

update can provide.

Use of two-phase also reduces testing effort. To see this,

compare the traditional and two-phase deletion algorithms.

Testing lines 5 through 9 of the traditional algorithm is

difficult, because this code is reached only in response to a

low-probability race between deletion and search. Testing

line 8 is even more difficult, because a second race

between a pair of deletions is required on top of the

original race.

In contrast, the two-phase-update version of deletion is

straight-line code, which is easily tested. Any test that

reaches any part of this code will reach it all.

7 Use of Two-Phase Update

A form of two-phase update named read-copy update has

been in production use within Sequent’s DYNIX/ptx

kernel since 1993. DYNIX/ptx is a highly scalable non-

preemptive Unix kernel supporting up to 64 CPUs that is

primarily used for high-end database servers.

Two-phase update is used as shown below. The most

common use is maintaining linked data structures as

described in Section 4.

1. Distributed lock manager: recovery, lists of callbacks

used to report completions and error conditions to user

processes, and lists of server and client lock data

structures. This subsystem inspired two-phase update.

2. TCP/IP: routing tables, interface tables, and protocol-

control-block lists.

3. Storage-area network (SAN): routing tables and error-

injection tables (used for stress testing).

4. Clustered journaling file system: in-core inode lists

and distributed-locking data structures.

18

5. Lock-contention measurement: B* tree used to map

from spinlock addresses to the corresponding

measurement data (since the spinlocks are only one

byte in size, it is not possible to maintain a pointer

within each spinlock to the corresponding

measurement data).

6. Application regions manager (a workload-

management subsystem): maintains lists of regions

into which processes may be confined.

7. Process management: per-process system-call tables as

well as the multi-processor trace data structures used

to support user-level debugging of multi-threaded

processes.

8. LAN drivers: resolve races between shutting down a

LAN device and packets being received by that

device.

The Tornado [Gamsa99] and K42 research operating

systems independently developed a form of two-phase

update, which is used to provide existence guarantees

throughout these operating system. These existence

guarantees simplify handling of races between use of a

data structure and its deletion.

8 Future Work

Two-phase update has been used extensively on a variety

of data structures. However, more work is needed to

determine the set of modifications that can efficiently be

cast into two-phase-update form.

Two-phase update has seen production use primarily in

non-preemptive kernel environments. Future work

includes use in preemptive environments, such as user-

level applications. Additional work is also required to

determine whether two-phase update is useful in a

distributed computing environment.

9 Conclusions

In restricted but commonly occurring situations, two-phase

update can significantly reduce complexity while

simultaneously improving performance and scaling. It

accomplishes this feat by exploiting the event-driven

nature of many parallel software systems, such as

operating system kernels, which continually perform many

small, quickly completed operations.

The key concept of two-phase update is splitting

destructive modifications into two phases: (1) performing

updates that prevent new operations from seeing old state,

while allowing old operations to proceed on the old state,

then (2) completing the modification. The second phase is

initiated only after all operations that might be accessing

old state have completed. This deferred initiation of the

second phase eliminates the possibility of races with

ongoing operations, since any operations that can access

the old state have been allowed to complete. The benefits

of two-phase update stem directly from the elimination of

these races.

Traditional techniques (such as locking or wait-free

synchronization) are used to coordinate concurrent two-

phase-update modifications, but read-only do not need to

use any sort of synchronization mechanism. These read-

only operations may instead be coded as if they were

executing in a single-threaded environment, without even

the possibility of interrupts. Dispensing with

synchronization primitives can greatly increase

performance in read-mostly situations, and can greatly

simplify deadlock avoidance and recovery. In addition,

two-phase update may be used in conjunction with wait-

free synchronization to remove the latter’s restrictions on

reuse of memory.

Both analytical and measured comparisons demonstrate the

performance and complexity-reduction benefits of two-

phase update in the restricted, but commonly occurring,

19

situations to which it is applicable. Two-phase update has

been in production use since 1993.

10 Acknowledgements

I owe thanks to Stuart Friedberg, Doug Miller, Jan-Simon

Pendry, Chandrasekhar Pulamarasetti, Jay Vosburgh, Dave

Wolfe, and Peter Strazdins for their willingness to try out

two-phase update, to Dipankar Sarma, Andi Kleen, Keith

Owens, and Maneesh Soni for looking at two-phase update

from a Linux perspective, to Ken Dove, Brent Kingsbury,

John Walpole, James Hook, and to Phil Krueger and his

Base-OS Reading Group for many helpful discussions, to

Dylan McNamee and Andrew Black for noting the

connection between two-phase update and wait-free

synchronization, and to Chris Lattner for discussions on

the relation between compile-time dependency analysis

and two-phase update. I owe special thanks to Orran

Kreiger for many valuable discussions that helped clarify

the relation between two-phase update and event-driven

software systems, and to Jack Slingwine for the

collaboration that lead to the first implementation of read-

copy update [McK98a]. I am indebted to Kevin Closson

for machine time used to collect measured data. I am

grateful to Leslie Swanson, Daniel Frye, and Dale Goebel

for their support of this work.

This work was done with the aid of Macsyma, a large

symbolic manipulation program developed at the MIT

Laboratory for Computer Science and supported from 1975

to 1983 by the National Aeronautics and Space

Administration under grant NSG 1323, by the Office of

Naval Research under grant N00014-77-C-0641, by the U.

S. Department of Energy under grant ET-78-C-02-4687,

and by the U. S. Air Force under grant F49620-79-C-020,

between 1982 and 1992 by Symbolics, Inc. of Burlington

Mass., and since 1992 by Macsyma, Inc. of Arlington,

Mass. Macsyma is a registered trademark of Macsyma,

Inc.

11 References

[Adams91] G. R. Adams. Concurrent Programming,

Principles, and Practices, Benjamin

Cummins, 1991.

[Ander95] J. H. Anderson and Mark Moir. “Universal

constructions for large objects”, International

Workshop on Distributed Algorithms, 1995

[Bargh91] N. S. Barghouti and G. E. Kaiser.

“Concurrency control in advanced database

applications”, ACM Computing Surveys,

23(3), pp. 269-318, September, 1991.

[Burger96] D. Burger, J. R. Goodman, and A. Kägi.

“Memory bandwidth limitations of future

microprocessors”, Proceedings of the 23rd

International Symposium on Computer

Architecture, pp. 78-89, May, 1996.

[Court71] P. J. Courtois, F. Heymans, and D. L. Parnas.

“Concurrent control with ‘readers’ and

‘writers’”. Communications of the ACM,

14(10), pages 667-8, Oct. 1971.

[Gamsa99] B. Gamsa, O. Krieger, J. Appavoo, and M.

Stumm. “Tornado: Maximizing Locality and

Concurrency in a Shared Memory

Multiprocessor Operating System”,

Proceedings of the 3rd Symposium on

Operating Systems Design and

Implementation, New Orleans, LA, February

1999.

[Hennes91] J. L. Hennessy and Norman P. Jouppi.

Computer technology and architecture: An

evolving interaction. IEEE Computer, 24(9),

pp. 18-28, September, 1991.

[Herlihy93] M. Herlihy. Implementing highly concurrent

data objects, ACM Transactions on

20

Programming Languages and Systems, 15(5),

pp. 745-770, November, 1993.

[Hsieh91] W. C. Hsieh & W. E. Weihl, "Scalable

Reader-Writer Locks for Parallel Systems",

Tech report MIT/LCS/TR-521, November,

1991

[Jacob93] V. Jacobson. “Avoid read-side locking via

delayed free”, private communication,

September, 1993.

[Kung80] H. T. Kung and Q. Lehman. “Concurrent

manipulation of binary search trees”, ACM

Trans. on Database Systems, 5(3), pp. 354-

382, September, 1980.

[Lovett96] T. Lovett and R. Clapp. “STiNG: A CC-

NUMA computer system for the commercial

marketplace” Proceedings of the 23rd

International Symposium on Computer

Architecture, pp. 308-317, May 1996.

[Manber84] U. Manber and R. E. Ladner. “Concurrency

control in a dynamic search structure”, ACM

Trans. on Database Systems, 9(3), pp. 439-

455, September, 1984.

[McK98a] P. E. McKenney and J. D. Slingwine. “Read-

copy update: using execution history to solve

concurrency problems”, Parallel and

Distributed Computing and Systems, October

1998.

[McK98b] P. E. McKenney. “Implementation and

performance of read-copy update”, Sequent

TR-SQNT-98-PEM-4.0, March 1998.

[McK99] P. E. McKenney. “Practical performance

estimation on shared-memory

multiprocessors”, Parallel and Distributed

Computing and Systems, November 1999.

[Michael98] M. M. Michael and M. L. Scott. “Non-

Blocking Algorithms and Preemption-Safe

Locking on Multiprogrammed Shared

Memory Multiprocessors”, JDPC, May 1998.

[JMC91] J. M. Mellor-Crummey and M. L. Scott.

“Scalable reader-writer synchronization for

shared-memory multiprocessors”,

Proceedings of the Third PPOPP,

Williamsburg, VA, pp. 106-113, April, 1991.

[Pugh90] W. Pugh. “Concurrent Maintenance of Skip

Lists”, Department of Computer Science,

University of Maryland, CS-TR-2222.1,

June, 1990.

[Russell01] R. Russell. “synchronize_kernel()”,

www.uwsg.indiana.edu/hypermail/linux/kern

el/0103.2/0424.html, March 2001.

[Stone91] H. S. Stone and J. Cocke. “Computer

architecture in the 1990s”. IEEE Computer,

24(9), pages 30-38, September 1991.

[Sarma01] D. Sarma. “Read-copy update mutual

exclusion for Linux”, linux-kernel list,

http://lse.sourceforge.net/locking/rclock.html,

February 2001.

21

A Derivation of Analytic Results

This section derives the analytical results for two-phase

update presented in Section 5, using the symbols shown in

Table 2. It also presents results for other locking

primitives derived elsewhere [McK99]. The analysis

assumes low levels of contention and high memory

latencies. These assumptions allow performance to be

estimated by counting memory references and estimating

latencies based on the probable prior state of the

corresponding cache lines [McK99].

A.1 Derivation for Two-phase Update

There are four components to the overhead of an efficient

callback-based implementation of two-phase update

[McK98b, Sarma01]:

1. per-hardclock() costs. These are incurred on every

execution of the per-CPU scheduling-clock interrupt.

2. per-grace-period costs.

3. per-batch costs. These are incurred during each two-

phase batch. Per-batch costs are incurred only by

CPUs that have a batch of updates during a given

grace period. These costs are amortized over callbacks

making up that batch.

4. per-callback costs. These are incurred for every two-

phase callback.

Details of the derivations may be found in a companion

paper and technical report [McK98b, McK99]. See

Section 5.1 for an overview of the nomenclature and

methodology.

(1), (2), The cost of (2) is due to accessing the time at

which the grace period started by multiple CPUs, taking a

snapshot of and checking the per-CPU counters, end-of-

grace-period cleanup, and registering each CPU’s passage

through a quiescent state.

(3), and (4) give the two-phase overhead incurred for each

of these four components: per hardclock(), per grace

period, per batch, and per callback, respectively.

(1)

The first term of (1) stems from the fact that each CPU

must read a clock on each hardclock() invocation, and the

second term from the fact that each CPU must check a pair

of per-CPU queues and a bitmask on each hardclock()

invocation in order to determine that there is nothing for it

to do.

(2)

The cost of (2) is due to accessing the time at which the

grace period started by multiple CPUs, taking a snapshot of

and checking the per-CPU counters, end-of-grace-period

cleanup, and registering each CPU’s passage through a

quiescent state.

(3)

The cost of (3) is due to acquiring a lock to guard the

global state, initiating processing of the callbacks, and

checking a global count of the number of grace periods.

Once this global count has increased by two, the grace

period will have ended. The overhead of advancing the

callbacks from the “next grace period” to the “current

grace period” and finally to the “finished with grace

period” lists would be included in this cost, but the

3h c fC nmt nmt= +

()
()

()

3 2
2 1

7 1

s

g m

f

n nm m t
C nm m t

nm t

 + − +

= + − +
 +

3b sC t=

22

cachelines represented by these operations are loaded into

the CPU’s L1 cache by the hardclock() invocations, so that

this overhead is insignificant.

(4)

The cost of (4) is due to initializing the callback structure,

counting the fact that a callback was registered, adding the

callback to the per-CPU “next grace period” list (two

accesses required), checking to see if the current CPU is in

the process of going offline, removing the callback from

the “finished with grace period” list, and counting the fact

that a callback was invoked.

The best-case incremental cost of a two-phase callback,

given that at least one other callback is a member of the

same batch, is just Cc, or 7tf. Note that this time period is

shorter than may be measured accurately on modern

speculative and multi-issue CPUs.

The worst-case cost of an isolated callback is m times the

per-hardclock() cost plus the sum of the rest of the costs, as

shown in (5):

(5)

Note that this worst case assumes that at most one CPU per

quad passes through its first quiescent state for the current

grace period during a given period between hardclock()

invocations. In typical commercial workloads, CPUs will

pass through several quiescent states between hardclock()

invocations, so that the m2 factors in (5) would be replaced

by m, significantly reducing the cost.

Typical costs may be computed assuming a system-wide

Poisson-distributed inter-arrival rate of λ per grace period,

as shown in (6).

(6)

Here (λke-λ)/k! is the Poisson-distributed probability that k

callbacks are registered during a given grace period if on

average λ of them arrive per grace period. Note that the 0th

term of the Poisson distribution is omitted, since there is no

two-phase overhead if there are no two-phase arrivals. The

division by 1-e-λ normalizes for this omission. The

quantity Ck is defined as follows:

(7)

This definition states that we pay the per-hardclock() and

per-grace period overhead unconditionally, that we pay the

per-batch overhead for each of Nb(k) batches, and that we

pay per-callback overhead for each callback.

The expected number of batches Nb(k) is given by the well-

known solution to the occupancy problem:

7c fC t=

()
()

()2

2

3 2 3
2 1

3 7 8

s

m

wc
f

c

n nm m t
nm m t

C
nm nm t

nm t

+ − + +
 + − + = + + +

1 !
1

k

k
k

typ

e
C

kC
e

λ

λ

λ −∞

=
−=

−

∑

()h g b b c
k

C C N k C kC
C

k
+ + +

=

23

(8)

This is just the number of CPUs expected to have batches

given nm CPUs and k two-phase updates.

Substituting (7) and (8) into (6) and substituting (1), (2),

The cost of (2) is due to accessing the time at which the

grace period started by multiple CPUs, taking a snapshot of

and checking the per-CPU counters, end-of-grace-period

cleanup, and registering each CPU’s passage through a

quiescent state.

(3), and (4) into the result, normalizing ts, tm, and tf in terms

of r, then multiplying by the update fraction f yields the

desired expression for the typical cost:

(9)

A.2 Equation for Simple Spinlock

The overhead for simple spinlock [McK99] is as follows:

() () ()1 1 1n mr m r nm

nm

− + − + +
(10)

A.3 Equation for Reader-Writer

Spinlock

The overhead for Hsieh and Weihl reader-writer spinlock

[Hsieh91, McK99] is as follows:

(11)`

1
() 1 1

k

bN k nm
nm

 = − −

()

()

()
1

3 5

1
3 1 2 1

10 7 1

1 !

k
k

c

k

n nm m r

nm r nm m r
nm

nm k nmtf
e k kλ

λ

∞

=

+ − −

 − + + − +
+ + +

− ∑

()
()

()()
()

()
()()

()
()

()

3 3 2 2
2

2 2

2 2
2

3 3 2

2 2

1
1

2 2 1

1
1 1

2 1 1

1

2 1 2

1

n m m n m
f

m nm m r

n m m nm m f

m n m
f

m nm m r

m nm m f

n m f

n m nm f nm

nm nmf nm

 − + +
+

− + +

− − −

 − −
+ − − + +

 − + −
 − +
 − + +

− +

