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Abstract—The problems of synchronization overhead, contention, and deadlock can pose serious

challenges to those designing and implementing parallel programs.  Therefore, many researchers

have proposed parallel update disciplines that greatly reduce these problems in restricted but

commonly occurring situations, for example, read-mostly data structures [7, 10, 11, 13, 18].

However, these proposals rely either on garbage collectors [10, 11], termination of all processes

currently using the data structure [13], or expensive explicit tracking of all processes accessing the

data structure [7, 18].  These mechanisms are inappropriate in many cases, such as within many

operating-system kernels and server applications.  This paper proposes a novel and extremely

efficient mechanism, called read-copy update, and compares its performance to that of conventional

locking primitives under conditions of both low and high contention in read-intensive data structures.

Index Terms—Shared memory, mutual exclusion, reader-writer locking, performance, contention.

1 Introduction

Reducing lock contention and

synchronization overhead will continue to be

important in parallel design and

implementation because increases in CPU-

core instruction-execution rate are expected

to continue to outstrip reductions in global

latency for large-scale multiprocessors [3, 6,

22].  This trend will cause global lock and

synchronization operations to continue

becoming more costly relative to instructions

that manipulate local data.  Expensive global

lock operations are particularly troublesome

when the locks are used to guard read-mostly

data structures.  In this common special case,

reading processes pay a heavy penalty to

guard against very rare events.  To see how

rare these events can be, consider the

following two examples.

The first example is a routing table for a

system connected to the Internet.  Many

Internet routing protocols process routing

changes at most every minute or so.

Therefore, a system transmitting at the low

rate of 100 packets per second would need to

perform a routing-table update at most once

per 6,000 packets, for an update fraction f of

less than 10-3.

The second example is a system with 100

mirrored disks, each of which has an MTBF
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of 100,000 hours.1  A transaction-processing

system performing 10,000 disk I/Os per

second would perform in excess of 1010 I/Os

on the average before having to update the

internal tables tracking which disk contains

which data.  This yields a value below 10-10

for f.

Both these examples demonstrate the

performance benefits to be gained by

decreasing the overhead incurred by reading

threads and CPUs, even at the cost of great

increases in that incurred by writing CPUs

and threads.  These examples motivate

specialized locking designs that make fewer

read-side references to globally shared, often-

updated variables.

Deadlock avoidance will also continue to be

increasingly important in parallel design and

implementation.  To see this, consider

queuing models in which the locks act as

servers and the CPUs or threads act as

arrivals.  As the number of CPUs or threads

increases, one or more of the locks will

saturate, so that adding CPUs or threads will

fail to increase system performance.  An

effective remedy to this problem of limited

system performance is to partition algorithms

                                                

1 For purposes of comparison, disks with

rated MTBFs in excess of 450,000 hours are

readily available.

and data structures so that many CPUs or

threads may be operating on different

partitions in parallel.  However, this remedy

brings its own problem—more locks can

render the system more prone to deadlock.

This paper describes a novel approach that

addresses the lock-contention,

synchronization-overhead, and deadlock

problems for a specialized but commonly

occurring set of situations.

2 Existing Solutions

The problems outlined in the previous section

have been attacked by many researchers over

a period spanning several decades.  This

section outlines representative solutions.

Reader-writer spinlocks [14] allow reading

processes to proceed concurrently.  However,

updating processes may not run concurrently

with each other or with reading processes.  In

addition, reader-writer spin-locks exact

significant synchronization overhead from

reading processes, although this overhead can

be reduced in exchanged for greatly increased

overhead exacted from writing processes [8].

On the other hand, reader-writer spin-locks

allow writers to block readers and vice versa,

thereby avoiding stale data.  This tradeoff is

shown in Figure 1—exclusion between

readers and writers imposes lock-contention
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costs and increases the time required to

become aware of an external event.

Figure 1:  Latency Of Non-Blocking Update
Compared To Reader-Writer Spin-Lock

Wait-free synchronization [7] allows reading

and updating processes to run concurrently,

but again exacts significant synchronization

overhead.  It also requires that memory used

for a given type of data structure never be

subsequently used for any other type of data

structure, and that reading threads write to

shared storage.  On parallel computers, these

writes will result in high-latency cache

misses.  On the other hand, wait-free

synchronization provides wait-free

processing to updates as well as to reads, and

in addition avoids stale data.

Timestamping and versioning concurrency-

control allow reading and updating processes

to proceed concurrently, but impose

synchronization overhead on reading

processes [2].  Chaotic relaxation [1] accepts

stale data to reduce locking overhead, but

requires highly structured data.

Manber and Ladner [13] describe an

algorithm that defers freeing a given node

until all processes running at the time the

node was removed have terminated.  This

allows reading processes to run concurrently

with updating processes, but does not handle

non-terminating processes such as those

found in OSs and server applications.  In

addition, they do not describe an efficient

mechanism for tracking blocks awaiting

deferred free or for determining when the

relevant processes have terminated.

Pugh [18] uses a technique similar to that of

Manber and Ladner, but notes that

(expensive) read-side state updates permit

non-terminating processes.  However, Pugh

leaves to the reader the mechanism for

efficiently tracking blocks awaiting deferred

free.

Kung and Lea [10, 11] describe use of a

garbage collector to manage the list of blocks

awaiting deferred free, again, allowing

reading processes to run concurrently with

updating processes.  However, garbage

collectors are often not available, and their

overhead renders them infeasible in many

situations.  In particular, the traditional

reference-counting approach incurs expensive

memory writes for reading threads.  Even

when garbage collectors are available and

when their overhead is acceptable, they do
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not address situations where some operation

other than freeing memory is to be performed

in a timely manner after all reading processes

have dropped references to the blocks

awaiting deferred free.

Jacobson [9] describes perhaps the simplest

possible deferred-free technique: simply

waiting a fixed amount of time before freeing

blocks awaiting deferred free.  This works if

there is a well-defined upper bound on the

length of time that reading processes can hold

references.  However, if processes hold their

references longer than expected (perhaps due

to greater-than-expected load or data-

structure size), memory corruption can ensue,

with no reasonable means of diagnosis.

3 Suggested Solution

This paper describes a novel approach in

which updating CPUs and threads refer to a

summary of thread activity in order to

determine when update operations may be

safely carried out.  In many cases, this

summary may be derived from counters and

statistics that must be maintained for other

purposes.  In these cases, the summary of

thread activity imposes zero net overhead on

reading processes and CPUs, which in turn

provides dramatic speedups for access to

read-intensive data structures.

The form, implementation, and use of a

summary of thread activity are described in

later sections.  Summaries of thread activities

may be constructed for both tightly coupled

and distributed systems.

4 Conditions and Assumptions

Use of read-copy update is most likely to be

helpful with read-intensive data structures,

where a modest amount of memory may be

spared for a list of deferred actions, where

stale data may be either tolerated or

suppressed, and where there are frequently

occurring natural or artificial quiescent states.

By “read intensive”, we mean that the update

fraction f is much smaller than the reciprocal

of the number of CPUs.  In some special

cases, read-copy update can provide

performance benefits even though f exceeds

0.9.  As noted in the introduction, f can be as

small as 10-10.

Ever-increasing memory sizes tend to make

the space needed for the list of deferred

actions a non-problem, but the need for

tolerance of stale data cannot always be so

easily dismissed.  However, any reading

thread that starts its access after an update

completes is guaranteed to see the new data.

This guarantee is sufficient in many cases.  In

addition, data structures that track state of

components external to the computer system
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(e.g., network connectivity or positions and

velocities of physical objects) must tolerate

old data because of communication delays.

In other cases, old data may be flagged so

that the reading threads may detect it and take

explicit steps to obtain up-to-date data, if

required [13, 18].

Quiescent states and periods are the basis of

read-copy update, and are discussed in detail

in the next section.

5 Details of Solution

The following sections give definitions of

terms, an outline of how read and update

algorithms use read-copy update, examples of

quiescent states, example uses of read-copy

update, several possible designs for the

summary of thread activity, an outline of an

implementation of the summary of thread

activity, and considerations for CPUs that

cannot deterministically invalidate variables

from other CPUs’ caches.

5.1 Definitions

Temporary variable: A short-life-span data

item used to cache intermediate results, such

as results of searches of a particular data

structure.  Note that “variable” is used in a

general sense that includes elements of arrays

and fields of structures.

Permanent variable: A long-life-span data

item used to hold persistent state, such as list

headers.  Note that the difference between a

temporary and permanent variable is a design

decision rather than a fundamental

algorithmic property.  Again, “variable” is

used in a general sense.

Live variable: A variable that will be

referenced before being overwritten.

Dead variable: A variable that either will

never again be referenced or will be

overwritten before being referenced.

Quiescent state: A state at which all

temporary variables belonging to the CPU or

thread passing through the quiescent state are

dead.  A quiescent state may be defined to be

with respect to a particular data structure or

with respect to all data structures in the

system.  Unless otherwise specified, the

paper will use “quiescent state” in this latter

universal sense.  Examples of quiescent states

in various software systems appear in a later

section.

Quiescent period: A time interval during

which each thread passes through at least one

quiescent state.  Note that any time interval

that encloses a quiescent period is itself a

quiescent period.

Summary of thread activity: A set of data

structures that are used to identify quiescent

periods.
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5.2 Read Algorithm

Reading threads may access the read-copy

updated data structure as if there was only

one CPU with no possibility of preemption or

interrupts of any sort (though there may be

restrictions on how data is traversed).

Reading threads therefore enjoy complete

freedom from synchronization overhead.

5.3 Update Algorithm

Updating CPUs or threads perform a read-

copy update as follows:

1. Perform any synchronization operations

needed to guard against other updating

CPUs or threads.

2. Perform the update so that any reading

CPUs or threads are guaranteed to see

consistent (though possibly stale) data.

This includes any special operations

required to enforce memory-access

ordering.

3. Modify any permanent variables to reflect

the update.

4. Wait for a quiescent period to elapse.

5. Perform any needed cleanup operations

(for example, freeing up memory

occupied by the old versions of the data).

6. Perform any synchronization operations

needed to allow other updating CPUs or

threads to proceed.

Any sort of update discipline may be used to

accomplish the synchronization in steps 1 and

6, including explicit locking, atomic

instructions, or techniques taken from wait-

free synchronization [7].  However, if only

one CPU or thread is allowed to update the

data, all locking may be omitted.

In many cases, it is possible for step 6 to

precede step 5 and even step 4.  When step 6

uses explicit locking, this decreases lock

contention.

Note that only step 4 is novel.  Algorithms

incorporating the other five steps have

appeared previously [7, 10, 11, 13, 18].

5.4 Quiescent State Examples

Many applications and systems have natural

universal quiescent states, which, as noted

earlier, are quiescent states that apply to all

data structures in the application or system.

For example, within an operating system

(OS) with non-preemptive kernel threads,

there is a direct mapping from “thread” to

CPU.  Any CPU that is in the idle loop,

executing in user mode, offline (halted), or

performing a context switch2 cannot be

                                                

2 Operating systems with preemptive kernels

either must take explicit action to suppress

context switches or must restrict use of the

read algorithm to code in which context
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holding any references to any kernel data

structure.  Therefore, each of these four states

is a universal quiescent state.

Similarly, many parallel user applications

drop all references to data structures while

waiting for user input.  Many transaction-

processing systems drop all references to data

structures at the completion of a transaction.

Interrupt-driven real-time control systems

often drop all references to data when

running at base priority level.  Reactive

systems [23] often drop all references to

application-level data structures upon

completion of processing for a given event.

Discrete-event simulation systems often drop

all references to simulation data structures at

the end of processing for each discrete event.

These applications can therefore also possess

natural universal quiescent states.

Such systems will normally maintain

statistics that track the number of times that

they pass through their natural quiescent

states.  For example, most OSs will maintain

counts of context switches and most

transaction-processing systems maintain

counts of the number of transactions

complete.  These counts, kept for

performance-monitoring purposes, can be

                                                                          

switches have already been disabled (e.g.,

interrupt handlers).

used to greatly reduce the cost of tracking

quiescent periods, as will be shown in later

sections.

Note that a distributed system can be said to

complete a quiescent period once each of its

components has completed a quiescent

period.

Systems without naturally occurring

quiescent states can often accommodate the

insertion of artificial quiescent states.

5.5 Relation to Other Locking

Primitives

Locking primitives generally indicate

ownership of a lock by possession of some

resource.  For example, any thread that has

read-acquired a given lock, but not yet read-

released it, can be said to read-hold that lock.

Read-copy update is analogous to reader-

writer locks.  The read-side algorithm in

read-copy update can be thought of as

owning a CPU or thread that is not currently

passing through a quiescent state.  This

accounts for the low overhead of read-side

read-copy update.  The CPU or thread must

be acquired in any case, so the read-side

algorithm imposes no incremental cost or

added risk of deadlock.
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5.6 Usage Examples

The following two examples show how read-

copy update may be used to modify a linked

list and to flush a log buffer.

5.6.1 Lock-Free Linked-List Access

If a thread removes all references to a given

data structure, it may safely free up the

memory comprising that data structure after

the end of the next quiescent period.  Note

that threads traversing the data structure need

not acquire any locks.  The required

synchronization is achieved implicitly

through the quiescent states—the quiescent

period guarantees that no threads reference

the data structure.  Eliminating read-side

locking can greatly increase speedups in the

many cases where updates are rare.  This

same effect can be achieved using a garbage

collector (in environments possessing them),

but at greater cost.  This greater cost stems

from the need to modify otherwise-read-only

data to indicate that a reference is held.

For a concrete example, consider a singly

linked list with Thread 0 updating Element B

while Thread 1 is doing a lock-free traversal.

Figure 2: List Initial State

Suppose that Thread 0 needs to make a

change to Element B that cannot be done

atomically.  Thread 0 cannot simply modify

Element B in place, as this would interfere

with Thread 1.  Thread 0 instead copies

Element B into a new Element B', modifies

B', issues a memory-barrier operation, then

points A’s next pointer to B', as shown in

Figure 3.  This does not harm Thread 1 as

long as B still points to C, and as long as

Thread 0 waits until Thread 1 stops

referencing B before freeing it.3

Figure 3: List Deferred Deletion

Thread 1 can no longer obtain a reference to

B, so Thread 0 waits for a quiescent period

(see Figure 1) before deleting it.  After the

quiescent period, all of Thread 1’s temporary

variables, including the pointer to B, are

                                                

3 A pointer from B to B’ may be used to

allow Thread 1 to avoid stale data. Explicit

locking may be used [15] to guarantee

forward progress in cases where many

updates are running concurrently with the

reader.

A B C

Thread 0 Thread 1

A

B

C

Thread 0 Thread 1

B'
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dead.  Thread 0 can then safely delete B, as

shown in Figure 5.

This idiom of updating a copy of an element

while allowing concurrent reads gives “read-

copy update” its name.  This idiom may be

easily extended to handle arbitrarily linked

multi-lists, although some care is required.

For example a CPU or thread cannot expect

to traverse back-pointers and find exactly the

same elements it previously encountered.

Figure 4: List After Quiescent Period

Figure 5: List After Deletion

5.6.2 Lock-Free Buffer Flushing

For another example, suppose that a parallel

program creates log buffers that must be

flushed to disk, but only after all log records

have been completed.  One approach is to

maintain a global lock so that only one

process at a time could create log records.

However, this could result in a bottleneck

under heavy load.  Another approach is to use

a global lock only to allocate space for the

log records, and then create the actual records

themselves in parallel. If the creation of a log

record does not involve quiescent states, a

flush may be safely initiated upon completion

of a quiescent period starting after the last log

record has been allocated.

Consider an initially empty two-entry log

buffer:

Figure 6: Log Buffer Initial State

If Threads 0 and 1 reserve both available

slots, the situation will be as shown in Figure

7.

Figure 7: Log Buffer Fully Reserved

Both slots are occupied, and the “next”

pointer is NULL.  Therefore, Thread 2 must

wait until Threads 0 and 1 have completed

their entries, flush the log buffer, and only

then reserve its slot.

Threads 0 and 1 could use explicit

synchronization operations to inform Thread

2 when they have completed their log entries.

However, this would result in needless

synchronization operations for log buffers

with large numbers of entries.  Instead,

Thread 2 waits to flush the buffer until the

end of the next synchronization period.  This

next

Thread 0 Thread 1

nextA

Thread 0 Thread 1

B' C

A

B

C

Thread 0 Thread 1

B'
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guarantees that Threads 0 and 1 have

completed their entries (their temporary

variables referencing the buffer are dead)

without requiring synchronization operations.

Note that a garbage collector is not an

appropriate solution for this second example,

because we need to write out the log buffer

instead of freeing it.4

5.7 SUMMARY OF THREAD

ACTIVITY

Using a summary of thread activity to

identify quiescent periods is beneficial only if

it is coded very efficiently, otherwise, it is

cheaper just to use locks.  An efficient

summary of thread activity is relatively

complex, therefore, this section moves from

simpler (but slower) implementations to more

complex implementations suitable for large-

scale shared-memory processing (SMP) and

cache-coherent non-uniform memory-access

(CC-NUMA) architectures.

For concreteness, we focus on a parallel non-

preemptive OS kernel.  In this case, the in-

kernel threads map directly to CPUs, and the

                                                

4 In some languages, it is possible to define

finalization functions that are invoked at

garbage-collection time.  However, there is

no guarantee that garbage collection will be

performed in a timely manner.

implementations focus on CPUs rather than

threads.

The following sections describe the following

implementations: (1) locking-primitive

summary, (2) enforced quiescent states, (3)

quiescent-state bitmask, and (4) quiescent-

state counters.

5.7.1 Locking-Primitive Summary

Perhaps the most straightforward way of

identifying quiescent states is to maintain

count of the number of locks held by each

CPU.  When this number drops to zero on a

given CPU, that CPU records the fact that it

has entered a quiescent state by clearing a its

bit in a global bitmask.  When the value of

the bitmask becomes zero, the end of a

quiescent period has been reached.  Any

subsystem wishing to wait for a quiescent

period sets each CPU’s bit in the global

bitmask.

Although this approach is simple, it is fatally

flawed.  First, it is slow, needing to update a

global variable each time that a CPU releases

its last lock.5  Second, update disciplines not

using locks would have their critical sections

violated by this sort of summary of thread

                                                

5 Updates to shared global variables are much

more expensive than are updates to local per-

CPU variables.
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activity.  Finally, a CPU that ran for an

extended period without acquiring any locks

(e.g., a CPU in the idle loop) would never

clear its bit, despite being in an extended

quiescent state.

Therefore, a different approach is required.

5.7.2 Enforced Quiescent States

Another simple approach is to force quiescent

states, for example, via a daemon that handles

quiescent-period requests.  The daemon

responds to a request by running on each

CPU in turn, then announcing the end of the

quiescent period, as shown in Figure 8.

Figure 8: Enforced Quiescent States

Each CPU that the daemon runs on must do

two context switches, one to switch to the

daemon, and the other to switch away.  A

context switch is a quiescent state, so this set

of context switches is a quiescent period, as

desired.  In this case, the summary of thread

activity is maintained as part of the local state

of the daemon itself.

This approach works well, and entered

production on Sequent machines in 1993.

Context switches are usually from one to

three orders of magnitude more expensive

than locking primitives, but for read-intensive

data structures, the expense is justified.  In

addition, eliminating locks can greatly

simplify deadlock avoidance.  Furthermore,

batching allows a single quiescent period to

satisfy many requests.

Nevertheless, it is possible to do much better.

5.7.3 Quiescent-State Bitmask

Another approach is to instrument the

quiescent states themselves.  Each time a

given CPU reaches a quiescent state, it clears

its bit in a global bitmask.  When the bitmask

becomes zero, the quiescent state has ended.

Any subsystem wishing to wait for a

quiescent period sets each CPU’s bit in the

global bitmask.

A quiescent period measured in this manner

is shown in Figure 9, with the rightmost bit in

the four-bit mask corresponding to CPU 0.

The individual memory transactions are

shown because they dominate the

performance characteristics of the summary

of thread activity.

In Figure 9, CPU 1 requests a quiescent

period.  The bitmask initially resides only in

CPU 2’s cache, so CPU 1 must first obtain a

Done With
Quiescent Period

Quiescent Period

CPU 0

CPU 1

CPU 2

CPU 3

Request for
Quiescent Period
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copy, as shown by the “Req” and “Rsp”

arrows.

Figure 9: Quiescent-State Bitmask

CPU 1 then writes all one-bits to the bitmask,

invalidating the copy in CPU 2’s cache, as

shown by the “Inv” line ending in a circle.

CPU 0 is the first to pass through a quiescent

state, so it gets a copy from CPU 1 in order to

clear its bit, which invalidates the copy in

CPU 1’s cache. CPU 2 and CPU 3 pass

through their quiescent states in a similar

manner.  Finally, when CPU 1 clears its bit,

the bitmask becomes zero, indicating the end

of the quiescent period.

Figure 10: Bitmask Cache Thrashing

To prevent long-running user-level processes

and idle CPUs from indefinitely extending a

quiescent period, the scheduling-clock

interrupt handler records a quiescent state any

time that it interrupts either user-mode

execution or the idle loop.
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This approach can be faster than enforced

quiescent states, but the frequent accesses to

the shared global bitmask can be quite

expensive, as shown in Figure 10.

CPU 2 is frequently rolling the bitmask out of

its cache in order to make room for other

data, thereby incurring expensive cache

misses each time it passes through a

quiescent state.

5.7.4 Quiescent-State Counters

More-efficient implementations isolate

measurement from callback processing.

Quiescent states are counted per-CPU and

subsystems wait for quiescent periods by

registering callbacks on per-CPU callback

lists.

An OS kernel's quiescent states either are

counted anyway or occur when the CPU is

not doing anything useful.  Examples of the

former include system calls, traps, and

context switches.  Examples of the latter

include the idle loop and removal of CPUs

from service.  The pre-existing counts of

these events are used to implement a

quiescent-period-detection algorithm that

incurs almost no added cost.

The basic outline of this algorithm is as

follows:

1. An entity needing to wait for a quiescent

period enqueues a callback onto a per-

CPU list.

2. Some time later, this CPU informs all

other CPUs of the beginning of a quiescent

period.

3. As each CPU learns of the new quiescent

period, it takes a snapshot of its quiescent-

state counters.

4. Each CPU periodically compares its

snapshot against the current values of its

quiescent-state counters.  As soon as any

of the counters differ from the snapshot,

the CPU records the fact that it has passed

through a quiescent state.

5. The last CPU to record that it has passed

through a quiescent state also records the

fact that the quiescent period has ended.

6. As each CPU learns that a quiescent

period has ended, it executes any of its

callbacks that were waiting for the end of

that quiescent period.

Steps 2, 3, 4, and 6 all involve time delays

that must be tuned to balance CPU

consumption against the wall-clock time

required to identify a quiescent period.  This

is a classic CPU-memory tradeoff: decreasing

the quiescent-period-identification interval

increases CPU consumption, while increasing
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it increases the number of callbacks queued

up waiting for a quiescent period.

An actual implementation faces these issues:

1. Proper handling of callbacks that are

enqueued while a quiescent period is in

progress.  These callbacks must wait for a

subsequent quiescent period to complete.

2. Efficient notification of the beginning and

ending of a quiescent period.

3. Efficient placement and use of state

variables in a CC-NUMA environment.

4. Batching of callbacks in order to make

best use of each quiescent period.

5.8 Implementation

Our currently shipping implementation of

read-copy update uses quiescent-state

counters.  An SMP version has been in

production in Sequent Dynix/ptx since 1994.

The CC-NUMA version went into production

in 1996 on a hierarchical-bus architecture

with four CPUs per local bus.  Each local unit

is called a quad.

The four issues listed in the previous section

are handled as follows:

1. Each CPU maintains a separate queue of

callbacks awaiting the end of a later

quiescent period (nxtlist) as well as the

queue of callbacks awaiting the end of the

current quiescent period (curlist).  Each

quiescent period is identified by a

generation number.  Each CPU tracks the

generation number corresponding to the

callbacks in its curlist.  Since one CPU can

start a new quiescent period before another

CPU is aware that the previous period has

ended, different CPUs can be tracking

different generation numbers.

2. The implementation checks for new

quiescent states from within an existing

scheduling-interrupt handler, and uses

software interrupts to dispatch callbacks

whose quiescent period has ended.  This

incurs minimal overhead and acceptably

small delays.

3. In order to promote locality in a CC-

NUMA environment, certain state

variables are replicated on a per-CPU and

a per-quad basis.  These variables are

combined in a manner similar to Scott's

and Mellor-Crummey's combining-tree

barriers [19].

4. Callbacks are accumulated in nxtlist while

the current quiescent period is in progress.

The heavier the read-copy update load, the

larger the batches and the smaller the per-

callback overhead.

The following sections describe the

quiescent-periods algorithm.  More details

are available [16, 21].
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5.8.1 State Variables

The state variables for the quad-aware

implementation of read-copy update are

grouped into generation numbers, bitmasks,

statistics, statistics snapshots, and callback

lists.

Each quiescent period is identified by a

generation number.  Since the algorithm

maintains loosely coupled state, there are

several state variables tracking different

generation numbers.  The highest generation

requested thus far is tracked by rcc_maxgen.

The generation currently being serviced is

tracked by rcc_curgen, which is replicated

per-quad in pq_rcc_curgen.  The earliest

generation that a particular CPU needs to be

completed is tracked by the per-CPU variable

rclockgen.

The bitmasks track which CPUs and quads

need to pass through a quiescent state in

order for the current generation to complete.

The set of quads that contain CPUs needing

to pass through a quiescent state is tracked by

rcc_needctxtmask, and the set of CPUs on a

given quad needing to pass through a

quiescent state is tracked by the per-quad

variable pq_rcc_needctxtmask.

Each CPU tracks the number of context

switches in the per-CPU variable cswtchctr.

Each CPU tracks the number of system calls

and traps from user mode in the per-CPU

variables v_syscall and usertrap, respectively.

Each CPU tracks the sum of the number of

passes through the idle loop and the number

of times a process to yielded that CPU in the

per-CPU variable syncpoint.

As soon as a given CPU notes the start of a

new generation, it snapshots its statistics:

cswtchctr into rclockcswtchctr, v_syscall into

rclocksyscall, usertrap into rclockusertrap,

and syncpoint into rclocksyncpoint.

Read-copy callbacks advance through per-

CPU callback lists nxtlist, curlist, and intrlist

when quiescent periods are detected, as

shown in Figure 11.

5.8.2 Pseudo-Code Overview

The pseudo-code call tree and function

descriptions are as follows:

• hardclock()

• rc_chk_callbacks()

• rc_adv_callbacks()

• rc_intr() (via software

interrupt)

• rc_reg_gen()

• rc_cleanup()

• rc_reg_gen()

• rc_adv_callbacks()

• rc_intr() (via software

interrupt)

• rc_reg_gen()
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1. hardclock():  This scheduling interrupt is

invoked by a per-CPU clock.  It invokes

rc_chk_callbacks() when this CPU’s

callbacks might advance.  Advancing is

possible when pq_rcc_needctxtmask

indicates that this CPU needs to pass

through a quiescent state, when

pq_rcc_curgen indicates that the quiescent

period for any callbacks in this CPU’s

curlist has ended, or when this CPU’s

curlist is empty and its nxtlist is nonempty.

2. rc_adv_callbacks():  Advances callbacks

from this CPU's nxtlist to its curlist and

from its curlist to its intrlist as quiescent

periods complete. Also calls rc_intr() via

software interrupt to invoke callbacks

placed into its intrlist and calls

rc_reg_gen() to register the presence of a

new set of callbacks in its curlist.

3. rc_callback():  Registers a new read-copy

callback by adding it to this CPU's nxtlist.

Callbacks arriving during a given

quiescent period are thus batched, greatly

improving performance, as shown in

Section 6.

4. rc_chk_callbacks():  Calls

rc_adv_callbacks() in order to advance

callbacks.  Snapshots the statistics

variables when it notes that a new

quiescent period has started.  Checks the

current statistics against the snapshot in

order to determine if this CPU has passed

through a quiescent state, and, if so, calls

rc_cleanup().

5. rc_cleanup():  At quiescent-period end,

rc_cleanup() updates the generation

numbers, and calls rc_reg_gen() and

rc_adv_callbacks() to start the next

quiescent period (but only if there are

callbacks waiting for another quiescent

period).

6. rc_intr():  Dispatches the callbacks in

intrlist, which have progressed through a

full quiescent period.

7. rc_reg_gen():  Tells the read-copy

subsystem of a request for a quiescent

period.  If this is the first request for a

given quiescent period, and if there is not

currently a quiescent period in progress,

initiate one by setting up rcc_maxgen and

initializing the bitmasks.

5.8.3 Flow of Callbacks

New callbacks are injected into the system by

rc_callback().  While the callbacks are

awaiting invocation by rc_intr(), they are kept

on per-CPU linked lists, and flow through the

system as shown in Figure 11. A rc_onoff()

function (not shown) moves callbacks to a

global list when a CPU is taken out of

service.
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Figure 11: Flow Of Callbacks

The actual implementation also includes

functions to check for CPUs taking too long

to reach a quiescent state.  This pinpoints

areas that are impacting real-time response.

5.9 Memory-Consistency Models

Memory-consistency models [5] can have a

significant effect on read-copy update.

Although it is not difficult to construct read-

copy update algorithms that are compatible

with all memory-consistency models, simpler

algorithms can be constructed for the stronger

models.6

The different algorithms for the different

memory-consistency models are illustrated

by a linked-list insertion example.

5.9.1 Sequential Consistency

To insert an element into a linked list, given a

sequentially consistent memory model:

                                                

6 Compilers can introduce code-reordering

complications, which can be dealt with via

C/C++ “volatile” declarations or equivalents.

1. Perform any synchronization operation

needed to prevent others from

concurrently modifying the list.

2. Allocate and initialize the new element,

including the pointer to its successor-to-

be.

3. Update the new element’s predecessor’s

pointer.

4. Perform any synchronization operation

needed to allow others to modify the

array.

Reading processes simply traverse the linked

list, as noted earlier.  Of course, if only one

CPU is permitted to add to the linked list,

then the synchronization operations in steps 1

and 4 may be omitted.

This implementation also works on systems

where writes from a given CPU are seen by

other CPUs in the order written.

5.9.2 Release Consistency

If writes may be reordered, but a special

memory barrier operation is available that

segregates writes issued by the CPU

executing the memory barrier, then it is

necessary to execute the memory barrier

operation before updating the pointers.  By

“segregates writes”, we mean that all writes

preceding the memory barrier are visible to

rc_adv_callbacks()

curlist intrlistnxtlist

rc_callback() rc_intr()
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all CPUs before any writes following the

memory barrier.

To insert into a linked list under release

consistency:

1. Perform any synchronization operation

needed to prevent others from

concurrently modifying the list.

2. Allocate and initialize the new element,

including the pointer to its successor-to-

be.

3. Execute a memory barrier, in order to

make the contents of the new element

visible to all CPUs.

4. Update the new element’s predecessor’s

pointer.

5. Perform any synchronization operation

needed to allow others to modify the

array.

Again, reading processes simply traverse the

linked list, as noted earlier.  And again, if

only one CPU is permitted to add to the

linked list, then the synchronization

operations in steps 1 and 4 may be omitted.

5.9.3 Weaker Memory-Consistency

Models

Some CPUs, such as the Alpha AXP [20]

lack a memory barrier instruction that fully

segregates writes.  Instead, weaker memory-

barrier instructions are executed by both the

reading and the updating CPUs.  In this

model, CPUs inserting into a linked list could

still use the procedure shown in Section

5.9.2.  However, CPUs traversing the list

would execute a memory-barrier instruction

after fetching each pointer, but before

dereferencing it.

Although this scheme executes correctly, the

internal synchronization and state-flushing

operations performed by memory-barrier

instructions are orders of magnitude more

expensive than normal instructions.

Furthermore, weak-memory-consistency

CPUs other than Alpha require other

arrangements of special instructions.

Fortunately, there are a number of ways to

safely eliminate read-side use of these

expensive operations in read-copy update

algorithms.

5.9.3.1 Freelist of Invalid Values

One method for CPUs similar to the Alpha

AXP assumes that there is at least one field in

each cacheline of each element with a distinct

invalid value [4].  A reading process would

use the following procedure to traverse each

element of the list:

1. Dereference the pointer to the element.

2. If any of the fields in the element contain

invalid values, execute a memory-barrier

instruction.
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3. Perform any needed operation on the

current element.

4. Repeat from step 1 with the pointer-to-

next field.

An updating process uses the procedure

outlined in Section 5.9.2, except that Step 2

allocates the element from a special freelist

whose elements have all their fields set to

invalid values.  Elements are freed onto this

special freelist using the following procedure:

1. Set all fields to the corresponding invalid

value.

2. Wait for a quiescent period to elapse.

3. Add the element to the freelist.

The algorithm for detecting quiescent periods

guarantees that each CPU will acquire and

release at least one lock. The lock primitives

contain a memory-barrier instruction, which

ensures that each CPU will see the invalid

values when the element is removed from the

freelist.

This method works well on the Alpha AXP,

and requires only a small amount of read-side

overhead.  However, it is possible to

eliminate even this modest amount of read-

side overhead, as shown in the next section.

5.9.3.2 Quiescent Periods

The general method is to wait for a quiescent

period after filling in the structure, but before

installing pointers to the structure.  Since

each CPU must execute at least one memory-

barrier instruction during a quiescent period

as a side effect of maintaining the summary

of thread activity, this procedure suffices to

ensure memory consistency.  The update

procedure for a singly-linked list is as

follows:

1. Perform any synchronization operation

needed to prevent others from

concurrently modifying the list.

2. Allocate and initialize the new element,

including the pointer to its successor-to-

be.

3. Wait for a quiescent period in order to

make the contents of the new element

visible to all CPUs.

4. Update the new element’s predecessor’s

pointer.

5. Perform any synchronization operation

needed to allow others to modify the

array.

This update procedure allows reading

processes to simply traverse the list, without

any need for synchronization operations.

However, this approach potentially requires

the updating process to hold a lock for the

full duration of a quiescent period, which in

some cases results in an unacceptably low

update rate.
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There are a number of well-known methods

for handling this update-rate bottleneck.  One

is to hash the list, with each bucket having its

own lock, so that updates to multiple buckets

may be performed in parallel.  A second is to

batch the updates, so that multiple elements

are added to the list over a single quiescent

period.

6 Analytical Comparison

There are four components to read-copy-

update overhead:

1. per-hardclock() costs.  These are incurred

on every execution of the per-CPU

scheduling-clock interrupt.

2. per-generation costs.  These are incurred

during each read-copy generation.

3. per-batch costs.  These are incurred during

each read-copy batch. Per-batch costs are

incurred only by CPUs that have a batch

during a given generation. These costs are

amortized over callbacks making up that

batch.

4. per-callback costs.  These are incurred for

every read-copy callback.

Details of the derivations may be found in

companion technical reports [15, 16].  The

symbols are defined as follows: f is the

fraction of lock acquisitions that do updates;

m is the number of CPUs per quad; n is the

number of quads, tc is the time required to

access the fine-grained hardware clock; tf is

the latency of a fast access that hits the CPU's

cache; tm is the latency of a medium-speed

access that hits memory or cache shared

among a subset of the CPUs; ts is the latency

of a slow access that misses all caches, and r

is the ratio of ts to tf.

Equation 1, Equation 2, Equation 3, and

Equation 4 give the read-copy overhead

incurred for each of these four components:

per hardclock(), per generation, per batch,

and per callback, respectively:

Equation 1

Equation 2

Equation 3

Equation 4

The best-case incremental cost of a read-copy

callback, given that at least one other

callback is a member of the same batch, is

just Cc, or 7tf.  Note that this time period is

shorter than may be measured accurately on

modern speculative and multi-issue CPUs.

The worst-case cost of an isolated callback is

m times the per-hardclock() cost plus the sum
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of the rest of the costs, as shown in Equation

5:

Equation 5

Note that this worst case assumes that at most

one CPU per quad passes through its first

quiescent state for the current generation

during a given period between hardclock()

invocations.  In typical commercial

workloads, CPUs will pass through several

quiescent states per period.

Typical costs may be computed assuming a

system-wide Poisson-distributed inter-arrival

rate of λ per generation, as shown in

Equation 6.

Equation 6

Here (λke-λ)/k! is the Poisson-distributed

probability that k callbacks are registered

during a given generation if on average λ of

them arrive per generation.  Note that the 0th

term of the Poisson distribution is omitted,

since there is no read-copy overhead if there

are no read-copy arrivals.  The division by

1-e-λ normalizes for this omission.  The

quantity Ck is defined as follows:

Equation 7

This definition states that we pay the per-

hardclock() and per-generation overhead

unconditionally, that we pay the per-batch

overhead for each of Nb(k) batches, and that

we pay per-callback overhead for each

callback.

The expected number of batches Nb(k) is

given by the well-known solution to the

occupancy problem:

Equation 8

This is just the number of CPUs expected to

have batches given nm CPUs and k read-copy

updates.

Substituting Equation 7 and Equation 8 into

Equation 6 and substituting Equation 1,

Equation 2, Equation 3, and Equation 4 into

the result, then multiplying by the update

fraction f yields the desired expression for the

typical cost:

Equation 9

These results are displayed in the following

figures. The traces are labeled as follows:

“drw” is per-CPU distributed reader-writer

spin-lock; “qrw” is per-quad distributed

reader-writer spin-lock; “sl” is simple spin-
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lock; “rcb” is best-case read-copy update;

“rcp”, “rcz”, and “rcn” are read-copy

update with Poisson-distributed arrivals with

λ equal to 10, 1, and 0.1, respectively; and

“rcw” is worst-case read-copy update.

Figure 12: Overhead vs. Number of CPUs

Figure 12 displays read-copy update

overhead as a function of the number of

CPUs.  At these typical latency ratios and

moderate-to-high update fractions, read-copy

update outperforms the other locking

primitives.  Note particularly that the

overhead of the non-worst-case read-copy

overheads do not increase with increasing

numbers of CPUs, due to the batching

capability of read-copy update.  Although

simple spin-lock also shows good scaling,

this good behavior is restricted to low

contention.

Figure 13 shows read-copy overhead as a

function of the update fraction f.  As

expected, read-copy update performs best

when the update fraction is low.

Figure 13: Overhead vs. Update Fraction

Figure 14: Overhead vs. Latency Ratio

Figure 14 shows read-copy overhead as a

function of the memory-latency ratio r.  The

distributed reader-writer primitives have

some performance benefit at high latency

ratios, but this performance benefit is offset

in many cases high contention, larger

numbers of CPUs, or by lower update

fractions, as shown in Figure 15.

The situation shown in Figure 15 is far from

extreme.  As noted earlier, common

situations can result in update fractions below

10-10.
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Figure 15: Overhead vs. Latency Ratio for Low f

Note finally that all of these costs assume that

the update-side processing for read-copy

update is guarded by a simple spin-lock.  In

cases where the update-side processing may

use a more aggressive locking design (for

example, if only one thread does updates),

read-copy update will have an even greater

performance advantage.

7 Measured Comparison

Data shown in this section was collected on a

Sequent NUMA-Q machine with 32 Xeon

CPUs, each running at 450 MHz.

The results for simple spin-lock shown in

Figure 16 show good agreement between the

analytic model and measurements taken on

real hardware.  Note that there are small but

measurable deviations both for smaller and

for larger numbers of quads.  The deviations

at the low end are due in part to hardware

optimizations and speculative execution,

neither of which are accounted for in the

model.  The deviations at the high end are

due in part to longer sharing list It is possible

to design more complex locking primitives

that do not suffer from these deviations, but

such designs are beyond the scope of this

paper.

Figure 16: Measured vs. Analytic Latencies for
Simple Spin-Lock

The results for distributed reader-writer spin-

lock shown in Figure 17 also show good

agreement between the analytic model and

real hardware.  Deviations are less apparent

than for simple spin-lock because of the log-

scale latency axis used to accommodate the

wide range of latencies measured for reader-

writer spin-lock.

Measured and analytic results for read-copy

update also show good agreement, but only

for older Pentium CPUs that do not feature

speculative and out-of-order execution.  The

very short and low-overhead code segments

implementing read-copy update make it

impossible to accurately measure read-copy
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update overhead at low levels of contention

on modern speculative multi-issue CPUs.

Figure 17: Measured vs. Analytic Latencies for
Reader-Writer Spin-Lock

Instead, we measured the locking overhead at

high levels of contention for simple spin-

lock, reader-writer spin-lock, and read-copy

update.  This approach allows accurate bulk-

measurement techniques to be applied.

However, since the analytic results assume

low contention, these measurements can only

be compared to each other, not to the analytic

results.

Figure 18: Simple Spin-Lock at High Contention

Figure 18 shows the expected results for

simple spin-lock at high contention.  The

sharp drop in system-wide critical sections

per microsecond between four and eight

CPUs is due to the greater latency of remote-

memory accesses.  It is possible to create

spin-locks that behave much better under

high contention, but these are beyond the

scope of this paper.

Figure 19: Reader-Writer Spin-Lock at High
Contention

Figure 19 shows that distributed reader-writer

spin-locks produce much greater levels of

critical-section throughput under high

contention, but only if read-side acquisitions

dominate.  The uppermost trace in this figure

corresponds to f=10-6, and each lower trace

corresponds to an order-of-magnitude

increase in f, up to f=0.1 in the lowermost

trace.  Note that the traces for 10-6 and 10-5

are almost overlapping.  The erratic nature of

the f=0.1 and f=0.01 traces is due to extreme

write-side contention, which results in
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interactions between the locking algorithm

and the cache-coherence protocol.

Figure 20: Read-Copy Update at High Contention

Figure 20 shows that read-copy update enjoys

linear scaling with increasing numbers of

CPUs even under high contention,

independent of the value of f.  Again, the

lowermost trace corresponds to f=0.1, with

each higher trace corresponding to an order-

of-magnitude decrease in f. The traces for

f=0.001 through f=10-6 are nearly

overlapping in the figure.  At moderately low

values of f, read-copy update achieves more

than one billion critical sections per second,

more than an order of magnitude greater than

reader-writer spin-lock and many orders of

magnitude greater than simple spin-lock.

However, it must be noted that the high-

contention case results in high values of l,

which allows the overhead of quiescent-

period detection to be amortized over many

requests.  Nevertheless, there are applications

of read-copy update that exhibit this high

level of l.

8 Conclusion

We have presented a novel update discipline,

named read-copy update, which provides

great reductions in synchronization overhead,

tolerates non-terminating threads and reduces

deadlock-avoidance complexity.  Read-copy

update generally gives the best performance

improvement for read-mostly algorithms or

under high levels of contention.  In some

cases, the need for synchronization

operations is completely eliminated.

We have delineated read-copy update’s area

of applicability: Data structures that are often

accessed and seldom updated, where a

modest amount of memory may be spared for

structures waiting on a quiescent period, and

where stale data may be tolerated or can be

suppressed.

We have provided a firm theoretical basis for

read-copy update, along with a very efficient

implementation.  This implementation, which

uses a summary of thread activity, fills an

important gap in earlier work with concurrent

update algorithms.  The implementation

comprises about 1,500 lines of C code, and

has run in production on Sequent machines

since 1994.
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We have presented measurements that

demonstrate multiple orders-of-magnitude

reductions in overhead compared to simple

spin-lock at low contention.

Future work includes comparison with other

methods of maintaining concurrent data

structures and analysis of behavior under

high contention.
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