
© 2006 IBM Corporation1 02/12/2006RDIMS-1

First Workshop on Real Time, Interactive and Digital
Media Supercomputing (RIDMS-1)

Linux Realtime Response

Challenges in Making Linux Ready for Real Time
Computing

Paul E. McKenney
Distinguished Engineer

IBM Linux Technology Center

© 2006 IBM Corporation2 02/12/2006RDIMS-1

Overview

Goals, Non-Goals, and Corollaries
Overview of Linux Realtime Approaches

Priority Inversion and Reader-Writer Lock

Case Study: Signal-Delivery Latency

Summary and Conclusions

© 2006 IBM Corporation3 02/12/2006RDIMS-1

Goals, Non-Goals, And Corollaries

Goals
Realtime response on commodity mid-range multiprocessors
Common Linux-kernel code base
Merciless application of the 80-20 rule: do the 20% of the work
required by 80% of the realtime applications now, more later

Non-Goals
Provable “diamond-hard” realtime response (not yet, anyway)
Realtime response from all services: incrementalism instead

Corollaries
Normal locking (priority inheritance)
Full POSIX semantics
Scalability and performance in addition to realtime response

© 2006 IBM Corporation4 02/12/2006RDIMS-1

Linux Realtime Goals

10 s

1 s

100 μs

10 ms

100 ms

1 ms

10 μs

STRATEGY

TACTICS

COORDINATION

ACTUATION

SENSING

MODULATION

SIGNALING CUSTOM HARDWARE

P
E

R
C

E
P

T
IO

N

R
E

A
C

T
IO

N

 C
O

G
N

IT
IO

N

SMP

© 2006 IBM Corporation5 02/12/2006RDIMS-1

Linux Realtime Approaches (Violently Abbreviated)

Project Inspection API Complexity HW/SW Configs

All N/A None All

PREEMPT N/A None All

Nested OS RTOS Good All

All RTOS RTOS Excellent Specialized

PREEMPT_RT None

OK All?

Small patch None All?

Quality of
Service

Fault
Isolation

Vanilla Linux
Kernel

10s of ms
all services

POSIX + RT
extensions

100s of us
Schd, Int

All spinlock
critsect, preempt-
& int-disable

POSIX + RT
extensions

~10 us
RTOS svs

RTOS + int-
disable

Dual
environment

Dual-OS /
Dual-Core

<1 us RTOS
svcs

Dual
environment

10s of us
Schd, Int

All preempt- & int-
disable (most ints
in process ctxt)

POSIX + RT
extensions

“Modest”
patch

All (except some
drivers)

Migration
Between OSes

? us
RTOS svcs

All RTOS + int-
disable

RTOS (can
be POSIX)

Dual env.
(Fusion)

Migration
Within OS

? us
RTOS svcs

Scheduler + RT
syscalls

POSIX + RT
extensions

http://lwn.net/Articles/143323/ for additional detail.

http://lwn.net/Articles/143323/

© 2006 IBM Corporation6 02/12/2006RDIMS-1

Other Features That Might Appear. Someday.

Deterministic I/O
Disk I/O – or, more likely, Flash memory
Network protocols

Datagram protocols (UDP) relatively straightforward
“Reliable” protocols (TCP, SCTP) more difficult
Maintaining low network utilization is key workaround
Possible contender: Van Jacobson's lock-free Linux TCP/IP work

Priority Inheritance Beyond Locking
Reader-writer locks with concurrent readers

Writer-to-reader boosting problematic

Across RCU, especially when low on memory
Across memory allocation

Boost priority of someone who is about to free?

Across networks

© 2006 IBM Corporation7 02/12/2006RDIMS-1

In Some Cases, Priority Boosting is Undesirable...

...Or At Least Uncomfortable!!!

© 2006 IBM Corporation8 02/12/2006RDIMS-1

Priority Boosting and Reader-Writer Locking

Process P1 needs Lock L1, held by P2, P3, and P4
Each of which is waiting on yet another lock

read-held by yet more low-priority processes
preempted by medium-priority processes

Process P1 will have a long wait, despite its high priority
Even given priority inheritance: many processes to boost!
Further degrading P1's realtime response latency

Linux -rt approach: only one reading task...

Write
Acquire

Read
Hold

Read
Hold

Write
Acquire

Write
Acquire

Write
Acquire

Read Hold

Read Hold

Read Hold

Read Hold

Read Hold

Read Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

High-Priority
Process P1

Lock 1
Low-Priority
Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Lock 2

Lock 4

Lock 3

Medium-Priority
Processes

© 2006 IBM Corporation9 02/12/2006RDIMS-1

Priority Inversion and RCU: What is RCU?

Analogous to reader-writer lock, but readers acquire no locks
Readers therefore cannot block writers
Reader-to-writer priority inversion is therefore impossible

Writers break updates into “removal” and “reclamation” phases
Removals do not interfere with readers
Reclamations deferred until all readers drop references

Readers cannot obtain references to removed items
RCU used in production for over a decade by IBM (and Sequent)
IBM recently adapted RCU for realtime use in Linux

Readers

ReclaimerRemover

ReadersReadersReaders

Remover Identifies Removed Objects

Readers Indicate When DoneReaders and Updaters
Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

Writer
Lock Acquire

© 2006 IBM Corporation10 02/12/2006RDIMS-1

RCU Example: Removal From Linked List

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

C

A

C

Determine when RCU readers are done by observing states forbidden to RCU readers

© 2006 IBM Corporation11 02/12/2006RDIMS-1

Priority Inversion and RCU

Process P1 needs Lock L1, but P2, P3, and P4 now use RCU
P2, P3, and P4 therefore need not hold L1
Process P1 thus immediately acquires this lock
Even though P2, P3, and P4 are preempted by the per-CPU medium-
priority processes

No priority inheritance required
Except if low on memory: permit reclaimer to free up memory

Excellent realtime latencies: medium-priority processes can run
High-priority process proceeds despite low-priority process preemption
If sufficient memory...

Acquire

RCU

RCU

RCU

Write
Acquire

Write
Acquire

Write
Acquire

RCU

RCU

RCU

RCU

RCU

RCU

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

High-Priority
Process P1

Lock 1
Low-Priority
Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Lock 2

Lock 4

Lock 3

Medium-Priority
Processes

© 2006 IBM Corporation12 02/12/2006RDIMS-1

RCU Realtime Scorecard

 R
el

ia
bl

e

 C
al

la
bl

e
Fr

om
 IR

Q

 P
re

em
pt

ib
le

 R
ea

d
S

id
e

 S
m

al
l M

em
or

y
Fo

ot
pr

in
t

 S
yn

c-
Fr

ee
 R

ea
d

S
id

e

 In
dp

t o
f M

em
or

y
B

lo
ck

s

 N
es

ta
bl

e
R

ea
d

S
id

e

 U
nc

on
d

R
-W

 U
pg

ra
de

 C
om

pa
tib

le
 A

P
I

Classic RCU N N
rcu-preempt X N
Jim Houston Patch N N
Reader-Writer Locking N N N n
Unconditional Hazard Pointers X n N
Hazard Pointers: Failure n n N N
Hazard Pointers: Panic N n n N
Hazard Pointers: Blocking N n n N
Reference Counters N n N
rcu_donereference() n N N
Lock-Based Deferred Free N N
Read-Side Counter GP Suppression N n
Read-Side Counters w/ “Flipping” (n)

© 2006 IBM Corporation13 02/12/2006RDIMS-1

Case Study: kill() System-Call Latency

Current concern: Latency of signal transmission
Reduce latency effect on sending process
Transmission-to-reception latency not yet a problem

kill() read-holds on tasklist_lock for mutual exclusion
Prevent processes and threads from changing state

Updates to process/thread state write-hold tasklist_lock
fork(), exec(), exit(), change process group, setuid, ...

But most state-changes do not affect signal delivery
Traditional approach: fine-grained locking or non-blocking
synchronization
But these approaches introduce high complexity

Alternative: use RCU instead of read-acquiring tasklist_lock
2x-3x reduction in latency, small code change
Now in Linus's mainline kernel source tree

© 2006 IBM Corporation14 02/12/2006RDIMS-1

Summary

Linux is making great progress in realtime latency
Modest technical goals, striving for widespread usefulness

Tens of microseconds scheduling/interrupt latency
Similar latencies for selected operations and system calls
Single source base (this may take awhile)
Simplicity, scalability, and performance minimally degraded
No provable latencies – perhaps SW tools will help?

Using old (preemption) and new (RCU) techniques
Preemption of RCU read-side critical sections requires
innovation in RCU implementation (ongoing work)
Replacement of reader-writer locks with RCU requires care due
to RCU readers not blocking updates (ongoing work)

No obvious technological barrier to scalable realtime Linux...
But can the Linux community handle RCU?

© 2006 IBM Corporation15 02/12/2006RDIMS-1

Can the Linux Community Handle RCU?

Seems to be doing so!!!

© 2006 IBM Corporation16 02/12/2006RDIMS-1

Legal Statement

The views expressed in this paper are the author's only, and
should not be attributed to IBM.

Linux is a trademark of Linus Torvalds in the United States,
other countries, or both.

Other company, product, and service names may be
trademarks or servicemarks of others.

© 2006 IBM Corporation17 02/12/2006RDIMS-1

Resources

Discussion of realtime measures and goals

Different approaches to Linux realtime

•http://lwn.net/Articles/143323/

Description of PREEMPT_RT patchset

•http://lwn.net/Articles/146861/

PREEMPT_RT patchset

•http://www.redhat.com/~mingo/realtime-preempt/

Victor Yodaiken dislikes priority inheritance; Doug Locke
disagrees

•http://www.linuxdevices.com/articles/AT7168794919.html

•http://www.linuxdevices.com/articles/AT5698775833.html

http://lwn.net/Articles/143323/
http://lwn.net/Articles/146861/
http://www.redhat.com/~mingo/realtime-preempt/
http://www.linuxdevices.com/articles/AT7168794919.html
http://www.linuxdevices.com/articles/AT5698775833.html

© 2006 IBM Corporation18 02/12/2006RDIMS-1

RDIMS-1

BACKUP

© 2006 IBM Corporation19 02/12/2006RDIMS-1

Why Realtime Response???

Moore's Law Now Generating Multithread/Multicore CPUs
Consolidate Realtime Market: Improve software portability
Customer Demand: DoD, Digital Media/Gaming, Financial
“Nintendo Generation”

Grew up with sub-reflex response time from computers
Now are entering jobs controlling computer purchases

Human-computer interaction changes when response time
drops below about 100 milliseconds

Much more natural and fluid, much more productive
And can developed countries afford to continue to pay their
people to stare at hourglasses???

But this problem extends far above the operating system...

Delays accumulate across networks of machines

© 2006 IBM Corporation20 02/12/2006RDIMS-1

OR

Isn't Realtime a Single-CPU Thing?

Historical Realtime:
•Few CPUs
•Latency Guarantees
•Non-Standard

Historical SMP:
•Many CPUs
•No Guarantees
•Standard (and OSS)

SMP Realtime:
•Many CPUs
•Latency Guarantees
•Standard (and OSS)

Convergence

•User Demand (DoD, Financial, Gaming, ...)
•Techological Changes Leading to Commodity SMP

•Hardware Multithreading
•Multi-Core Dies
•Tens to Hundreds of CPUs per Die – Or More

Today's Systems

Emerging Systems

But Not Both!!!

© 2006 IBM Corporation21 02/12/2006RDIMS-1

What Does Realtime Entail?

Quality of Service (Beyond “Hard”/“Soft”)
Services Supported

Probability of meeting deadline absent HW failure
Deadlines supported

Performance/Scalability for RT & non-RT Code

Amount of Global Knowledge Required
Fault Isolation
HW/SW Configurations Supported

“But Will People Use It?”

© 2006 IBM Corporation22 02/12/2006RDIMS-1

Classic RCU

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

r i
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

ca
ll_

rc
u

()

C
o

n
te

xt
S

w
it

ch

C
o

n
te

xt
S

w
it

ch

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

e c
ti

o
n

R
C

U
 R

ea
d

-S
i d

e
C

ri
ti

ca
l S

ec
t i

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

May hold reference Can't hold reference to old
version, but RCU can't tell

Can't hold reference
to old version

Can't hold reference
to old version

C
o

n
te

xt
S

w
i t

ch

C
o

n
te

xt
S

w
it

ch

re
m

o
ve

© 2006 IBM Corporation23 02/12/2006RDIMS-1

Simple Solution: Lock-Based Defer

void rcu_read_lock(void)
{
 read_lock(&rcu_ctrlblk.lock);
}

void rcu_read_unlock(void)
{
 read_unlock(&rcu_ctrlblk.lock);
}

void synchronize_kernel(void)
{
 write_lock_bh(&rcu_ctrlblk.lock);
 write_unlock_bh(&rcu_ctrlblk.lock);
}

© 2006 IBM Corporation24 02/12/2006RDIMS-1

Lock-Based Defer: Grace Periods

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

r i
ti

ca
l S

e c
ti

o
n

D
el

et
e

E
le

m
en

t

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

e c
ti

o
n

R
C

U
 R

e a
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

A
cq

u
ir

e
L

o
ck

...

A
cq

u
i r

ed

May hold reference
Can't hold reference

to old version

W
ai

t
f o

r
C

P
U

 0
...

© 2006 IBM Corporation25 02/12/2006RDIMS-1

Problems With Lock-Based Deferral

Latency can “bleed” from one reader to another via updater

Reader 1 read-holds lock

Updater blocked attempting to write-acquire lock

Reader 2 blocked attempting to read-acquire lock

Allowing Reader 2 to precede Updater results in starvation

Use of RCU in interrupt handlers can result in self-deadlock

These deadlocks could be avoided by masking interrupts

But that would defeat the whole purpose: preemptible RCU read-
side critical sections

Solution: Counter-based scheme

© 2006 IBM Corporation26 02/12/2006RDIMS-1

Counter-Based Realtime RCU

Current Count Previous Count

CPU 0 0 1

CPU 1 2 0

CPU 2 1 0

CPU 3 1 0

CPU 4 0 0

CPU 5 3 1

CPU 6 0 1

CPU 7 0 0

© 2006 IBM Corporation27 02/12/2006RDIMS-1

Final Word...

Realtime preemption and read-copy-update
(Posted Apr 1, 2005 5:56 UTC (Fri) by subscriber bronson) (Post reply)

Wow. Just when I thought Linux was getting good enough, that it has all the
features I need for the forseeable future, along comes something like this
that makes me say, I want I want I want!

From http://lwn.net/Articles/129511/

