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Abstract

With the advent of multi-threaded/multi-core CPUs,
even embedded realtime applications are starting to
run on SMP systems — for example, both the Xbox
360 and PS3 are multi-threaded, and there have even
been SMP ARM processors! As this trend continues,
there will be an increasing need for realtime response
from SMP systems. Because not all embedded sys-
tems vendors will be willing or able to create or pur-
chase SMP realtime operating systems, we can expect
that a number of them will make use of Linux®.

Because of this change, a number of realtime tenets
have now become myths. This article exposes these
myths, and then discusses some of the challenges that
Linux is surmounting in order to meet the needs of
this new SMP-realtime-embedded world.

Realtime Myths

New technologies often have a corrosive effect on
the wisdom of the ages. The advent of commodity
multi-core and multi-threaded hardware is no differ-
ent, making myths of the following pearls of wisdom:

1. Embedded systems are always uniprocessor sys-
tems.

2. Parallel programming is mind-crushingly diffi-
cult.

3. Realtime must be either hard or soft.

4. Parallel realtime programming is impossibly dif-
ficult.

5. There is no connection between realtime and en-
terprise systems.

Each of these myths is exposed in the following sec-
tions, and Ingo Molnar’s -rt realtime patchset (also
known as the “CONFIG_PREEMPT_RT patchset” after
the configuration variable used to enable realtime
behavior) plays a key role in exposing the last two
myths.

Myth 1: Embedded Systems are
Always Uniprocessor Systems

Past embedded systems were almost always unipro-
cessors, especially given that single-chip multiproces-
sors are a very recent phenomonon. The PS3, the
Xbox 360, and the SMP ARM are recent exceptions
to this rule. But what does the future hold?

Figure 1 shows how clock frequencies have leveled
off since 2003. Now, Moore’s Law is still in full force,
as transistor densities are still increasing. However,
these increasing densities are no longer providing the
side-benefit of increased clock frequency that they
once did.

Some say that parallel processing, hardware multi-
threading, and multi-core CPU chips will be needed
to make good use of the ever-increasing numbers of
transistors. Others say that embedded systems need
increasing levels of integration and reduced power
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Figure 1: Clock-Frequency Trend for Intel® CPUs

consumption more than they do ever-increasing per-
formance. Embedded systems vendors might there-
fore choose more on-chip I/O or memory over in-
creased parallelism.

This debate will not be resolved soon, though we
have all seen examples of multi-threaded and multi-
core CPUs in embedded systems. That said, as
multi-threaded /multi-core systems become cheaper
and more prevalent, we will see more rather than
fewer of them.

But these multi-threaded/multi-core systems re-
quire parallel software. Given the forbidding repu-
tation of parallel programming, how are we going to
program these systems successfully?

Myth 2: Parallel Programming
is Mind-Crushingly Difficult

Why is parallel programming hard?

Answers include deadlocks, race conditions, and
testing coverage, but the real answer is that it is not
really all that hard. After all, if parallel programming

was really so difficult, why are there so many paral-
lel open-source projects, including Apache, MySQL,
and the Linux kernel?

A better question would be: “Why is parallel pro-
gramming perceived to be so difficult?” Let’s go back
to the year 1991. I was walking across the parking lot
to Sequent’s benchmarking center carrying six dual-
80486 CPU boards, when I suddenly realized that
I was carrying several times the price of my house.
(Yes, I did walk more carefully. Why do you ask?)
These horribly expensive systems were limited to a
privileged few, who were the only ones with the op-
portunity to learn parallel programming

In contrast, in 2006, I am typing on a dual-core
x86 laptop that is orders of magnitude cheaper than
even one of Sequent’s CPU boards. Because almost
everyone can now gain access to parallel hardware,
almost everyone can learn to program it, and also
learn that although it can be non-trivial, it is really
not all that hard.

Even so, many multi-threaded/multi-core embed-
ded systems have realtime constraints. But what ex-
actly is realtime?

Myth 3: Realtime Must Be Ei-
ther Hard or Soft

There is hard realtime, which offers unconditional
guarantees, and there is soft realtime, which does not.
What else do you need to know?

As it turns out, quite a bit. There are at least four
different definitions of “hard realtime”. Needless to
say, it is important to understand which one your
users have in mind.

In one definition of hard realtime, the system must
always meet its deadlines. However, if you show me
a hard realtime system, I will show you the hammer
that will cause it to miss its deadlines, as shown in
Figure 2.

Of course, this is unfair. After all, we cannot blame
software for hardware failures that it did not cause.
Therefore, in another definition of hard realtime, the
system must always meet its deadlines, but only in
absence of hardware failure. This divide-and-conquer



Figure 2: Hard Realtime: But I Have a Hammer

approach can simplify things, but, as shown in Fig-
ure 3, is not sufficient at the system level. Nonethe-
less, this definition can be useful given restrictions on
the environment, including;:

1. Interrupt rates

2. Cache misses

3. Memory-system overhead due to DMA

4. Memory-error rate in ECC-protected systems
5

. Packet-loss rate in systems requiring networking

If these restrictions are violated, the system is per-
mitted to miss its deadlines. For example, if a hy-
peractive interrupt system delivered an interrupt af-
ter each instruction, the appropriate action might be
to replace the broken hardware rather than coding
around it. After all, if this degenerate situation must
be accounted for, the latencies will likely become use-
lessly long. Alternatively, “diamond hard” realtime
operating systems and applications might run with
interrupts disabled, giving up compatibility with off-
the-shelf software in order to gain additional robust-
ness in face of hardware failure.

In yet another definition of hard realtime, the sys-
tem is allowed to miss its deadline, but only if it an-
nounces its failure within the deadline specified. This

Figure 3: Hard Realtime: Sometimes System Failure
is not an Option!

sort of definition can be useful in data-fusion appli-
cations. For example, a system might have a high-
precision location sensor with unpredictable process-
ing overhead as well as a rough-and-ready location
sensor with deterministic processing overhead. A rea-
sonable hard-realtime strategy would be to give the
high-precision sensor a fixed amount of time to get
its job done, and if it fails to do so, abort its calcula-
tion, relying instead on the rough-and-ready sensor.
However, one (useless) way to meet the letter of this
definition would be to unconditionally announce fail-
ure, as illustrated by Figure 4. Clearly, a useful sys-
tem would almost always complete its work in time
(and this observation applies to soft-realtime systems
as well).

Finally, some define hard realtime with a test suite:
a system passing the test is labelled hard realtime.
Purists might object, demanding instead a mathe-
matical proof. However, given that proofs can be
subject to error, especially for today’s complex sys-
tems, a test suite can be an excellent additional proof
point. I certainly do not wish to put my life at the
mercy of untested software!

This is not to say that hard realtime is undefined
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Figure 4: Hard Realtime:

or useless. Instead, “hard realtime” is the start of
a conversation rather than a complete requirement.
You should ask the following questions:

1. Which operations must provide hard-realtime re-
sponse? (For example, I have yet to run across
a requirement for realtime filesystem unmount-
ing.)

2. What is the deadline? A ten-millisecond dead-
line is one thing, a one-microsecond deadline
quite another.

3. What is to happen in case of hardware failure?

4. What is the required probability of meeting that
deadline? (For hard realtime, this will be 100%.)

5. What degradation of non-realtime performance,
throughput, and scalability can be tolerated?

One piece of good news is that realtime deadlines
that once required extreme measures are now eas-
ily met with off-the-shelf hardware and open-source
software, courtesy of Moore’s Law.

But what if your realtime application is to run
on an embedded multi-core/multi-threaded system?
How can you deal with both realtime deadlines and
parallel programming?

At Least I Let You Know!

Myth 4: Parallel Realtime Pro-
gramming is Impossibly Difficult

Parallel programming might not be mind-crushingly
hard, but it is certainly harder than single-threaded
programming. Realtime programming is also hard.
So why would anyone be crazy enough to take on
both at the same time?

It is true that realtime parallel programming poses
special challenges, including interactions with lock-
induced delays, interrupt handlers, and priority in-
version. However, Ingo Molnar’s -rt patchset pro-
vides both kernel and application developers with
tools to deal with these challenges. These tools are
described in the following sections.

Locking and Realtime Latency

Much ink has been spilled on locking and realtime la-
tency, but we will stick to the following simple points:

1. Reducing lock contention improves SMP scala-
bility and reduces realtime latency.

2. When lock contention is low, there are a finite
number of tasks, critical-section execution time



is bounded, and locks act in a first-come-first-
served manner to the highest-priority tasks, then
lock wait times for those tasks will be bounded.

3. An SMP Linux kernel by its very nature requires
very few modifications in order to support the
aggressive preemption required by realtime.

The first point should be obvious, since spinning
on locks is bad for both scalability and latency. For
the second point, consider a queue at a bank where
each person spends a bounded time 7" with a solitary
teller, there are a bounded number of other people
N, and the queue is first-come-first-served. Because
there can be at most N people ahead of you, and each
can take at most time 7', you will wait for at most
time NT. Therefore, FIFO priority-based locking re-
ally can provide hard realtime latencies.

For the third point, see Figure 5. The left-hand
side of the diagram shows three functions A(), B(),
and C() executing on a pair of CPUs. If functions
A() and B() must exclude function C(), then some
sort of locking scheme must be used. However, that
same locking provides the protection needed by the
-rt patchset’s preemption, as shown on the right-hand
side of this diagram. If function B() is preempted,
then function C() blocks as soon as it tries to acquire
the lock, which permits B() to run. After B() com-
pletes, C() may acquire the lock and resume running,.
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Figure 5: SMP Locking and Preemption

This approach requires that kernel spinlocks block,
and this change is fundamental to the -rt patchset. In
addition, per-CPU variables must be protected more
rigorously. Interestingly enough, the -rt patchset also
located a number of SMP bugs that had gone unde-
tected.

However, in the standard Linux kernel, interrupt
handlers cannot block. But interrupt handlers must
acquire locks, which can block in -rt. What can be
done?

Interrupt Handlers

Not only are blocking locks a problem for interrupt
handlers, they can seriously degrade realtime latency,
as shown in Figure 6.
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Figure 6: Interrupts Degrade Latency

This degradation can be avoided by running the
interrupt handler in process context, as shown in
Figure 7, which also allows them to acquire block-
ing locks. Even better, these process-based interrupt
handlers can actually be preempted by user-level re-
altime threads, as shown in Figure 8, where the blue
rectangle within the interrupt handler represents a
high-priority realtime user process preempting the in-
terrupt handler.
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Figure 7: Move Interrupt Handlers to Process Con-
text
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Figure 8: Preempting Interrupt Handlers

Of course, “with great power comes great re-
sponsibility”. For example, a high-priority realtime
user process could starve interrupts entirely, shutting
down all I/O. One way to handle this situation is
to provide a low-priority “canary” process. If the
“canary” is blocked for longer than a predetermined
time, one might kill the offending thread.

Running interrupts in process context permits in-
terrupt handlers to acquire blocking locks, which in
turn allows critical sections to be preempted, which
permits extremely fast realtime scheduling latencies.
In addition, the -rt patchset permits realtime appli-
cation developers to select the realtime priority at
which interrupt handlers run. By running only the
most critical portions of the realtime application at
higher priority than the interrupt handlers, the de-
velopers can minimize the amount of code for which
“great responsibility” must be shouldered.

However, preempting critical sections can lead to
priority inversion, as described in the next section.

Priority Inversion

Priority inversion is illustrated by Figure 9. A low-
priority process P2 holds a lock, but is preempted
by medium-priority processes. When high-priority
process P1 tries to acquire the lock, it must wait,
because P2 holds it. But P2 cannot release it un-
til it runs again, which will not happen while the
medium-priority processes are running. So, in effect,
the medium-priority processes have blocked a high-
priority process: in short, priority inversion.

One way to prevent priority inversion is to dis-
able preemption during critical sections, as is done
in CONFIG_PREEMPT builds of the Linux kernel. How-

High—Priority Lock Low—Priority
Process P1 Process P2
I A
Acquisition Hold Preempt
Blocked

Medium-Priority
Processes

Figure 9: Priority Inversion

ever, this preemption disabling can result in excessive
latencies.

The -rt patchset therefore uses priority inheritance
instead, so that P1 donates its priority to P2, but
only for as long as P2 continues to hold the lock,
as shown in Figure 10. Because P2 is now running
at high priority, it preempts the medium-priority pro-
cesses, completing its critical section quickly and then
handing the lock off to P1.

High—Priority
Process P1

Acquisition

Priority Inheritance

Lock

Low—Priority
Process P2

Hold

Medium—Priority
Processes
~

_
_

Proceeds

Figure 10: Priority Inheritance

So priority inheritance works well for exclusive
locks, where only one thread can hold the lock at
a given time. But there are also reader-writer locks,
which can be held by one writer on the one hand
or by an unlimited number of readers on the other.
The fact that a reader-writer lock can be held by an
unlimited number of readers can be a real problem
for priority inheritance, as illustrated in Figure 11.
Here, several low-priority processes are read-holding
lock L1, but are preempted by medium-priority pro-
cesses. FKach low-priority process might also be
blocked write-acquiring other locks, which might be



read-held by even more low-priority processes, all of much higher overhead, as they must retain old ver-

which are also preempted by the medium-priority
processes.

High-Priority RW
Process P1 Write—Acquire Lock L1
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Figure 11: Reader-Writer Lock Priority Inversion

Priority inheritance can solve this problem, but the
cure is worse than the disease. For example, the ar-
bitrarily bushy tree of preempted processes requires
complex and slow bookkeeping. But even worse, be-
fore the high-priority writer can proceed, all of the
low-priority processes must complete their critical
sections, which will result in arbitrarily long delays.

Such delays are not what we want in a realtime sys-
tem. This situation resulted in numerous “spirited”
discussions on the Linux-kernel mailing list, which
Ingo Molnar closed down with the following proposal:

1. Only one task at a time may read-acquire a given
reader-writer lock.

2. If #1 results in performance or scalability prob-
lems, the problematic lock will be replaced with
RCU (read-copy update).

RCU can be thought of as a reader-writer lock
where readers never block; in fact, readers execute
a deterministic number of instructions. Writers have

sions of the data structure that readers might still be
referencing. RCU provides special primitives to allow
writers to determine when all readers have completed,
so that the writer can determine when it is safe to free
old versions. RCU works best for read-mostly data
structures, or for data structures with hard-realtime
readers. (More detail may be found at http://
en.wikipedia.org/wiki/RCU and even more detail
may be found at http://www.rdrop.com/users/
paulmck/RCU/.  Although user-level RCU imple-
mentations have been produced for experimental
purposes, for example http://www.cs.toronto.
edu/~tomhart/perflab/ipdps06.tgz, production-
quality RCU implementations are currently found
only in kernels. Fixing this is on my to-do list.)

A key property of RCU is that writers never block
readers, and, conversely, readers do not block writers
from modifying a data structure. Therefore, RCU
cannot cause priority inversion. This is illustrated
in Figure 12. Here, the low-priority processes are in
RCU read-side critical sections, and are preempted
by medium-priority processes, but because the locks
are used only to coordinate updates, the high-priority
process P1 can immediately acquire the lock and
carry out the update by creating a new version. Free-
ing the old version does have to wait for readers to
complete, but this freeing can be deferred to avoid
degrading realtime latencies.

This combination of priority inheritance and RCU
permits the -rt patchset to provide realtime laten-
cies on mid-range multiprocessors. But priority in-
heritance is not a panacea. For example, one could
imagine applying some form of priority inheritance
to real live users who might be blocking high-priority
processes, as shown in Figure 13. However, I would
rather we did not.

Parallel Realtime Programming Sum-
mary

I hope I have convinced you that the -rt patchset
greatly advances Linux’s parallel realtime capabili-
ties, and that Linux is quickly becoming capable of
supporting the parallel relatime applications that are
appearing in embedded environments. Parallel real-
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Figure 13: Priority Boosting for Users?

time programming is decidedly non-trivial, in fact,
many exciting challenges lie ahead in this field, but
it is far from impossible.

But there are a number of realtime operating sys-
tems, and some even provide some SMP support.
What is special about realtime Linux?

Myth 5: There is no Connec-
tion Between Realtime and En-
terprise Systems

To test the fifth and final myth, and to show just what
is special about realtime Linux, let’s first outline the
-rt patchset’s place in the realtime pantheon.

The -rt patchset turns Linux into an extremely ca-
pable realtime system. Is Linux suited to all pur-
poses? The answer is clearly “no”, as can be seen
from Figure 14. With the -rt patchset, Linux can
achieve scheduling latencies down to a few tens of
microseconds — an impressive feat, to be sure, but

some applications need even more. Systems with
very tight hand-coded assembly-language loops might
achieve sub-microsecond response times, at which
point memory and I/O-system latencies loom large.
Below this point comes the realm of special-purpose
digital hardware, and below that the realm of analog
microwave and photonics devices.

However, Linux’s emerging realtime capabilities
are sufficient for the vast majority of realtime appli-
cations. Furthermore, Linux brings other strengths
to the realtime table, including full POSIX semantics,
a complete set of both open-source and proprietary
applications, a high degree of configurability, and a
vibrant and productive community.

In addition, realtime Linux forges a bond between
the realtime and enterprise communities. This bond
will become tighter as enterprise applications face in-
creasing realtime requirements. These requirements
are already upon us: for but one example, web re-
tailers find that they lose customers when response
times extend beyond a few seconds. A few seconds
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Figure 12: RCU Prevents Priority Inversion

might seem like a long time, but not when you (1)
subtract off typical Internet round-trip times and (2)
divide by an increasingly large numbers of layers, in-
cluding firewalls, IP load levellers, web servers, web-
application servers, XML accelerators, and database
servers — across multiple organizations. The re-
quired per-machine response times fall firmly into re-
altime territory.

Web2.0 mashups will only increase the pressure
on per-machine latencies, since such mashups must
gather information from multiple web sites, so that
the slowest site controls the overall response time.
This pressure will be most severe in cases where in-
formation gathered from one site is used to query
other sites, thus serializing the latencies.

We are witnessing nothing less than the birth of a
new kind of realtime: enterprise realtime. What ex-
actly is “enterprise realtime”? Enterprise realtime
is defined by developer and user requirements, as
might be obtained from the realtime questions listed
in the discussion of Myth 3. Some of these require-
ments would specify latencies and guarantees (hard
or soft) for various operations, while others would
surround the ecosystem, where realtime Linux’s rich
array of capabilities, environments, applications, and

Non-Realtime Java

Linux 2.4 kernel

Realtime Java (w/GC) 1ms

Linux 2.6 kernel

Realtime Java (no GC) 100us
Linux —rt Patchset 10us
Specialty RTOSes

1us
100ns
10ns
1ns

Custom Analog Hardware
Figure 14: Realtime Capability Triangle

supported hardware really shines.

Of course, even the rich realtime-Linux ecosys-
tem cannot completely remove the need for special-
purpose hardware and software. However, the birth
of enterprise realtime will provide a new-found ability
to share software between embedded and enterprise
systems. Such sharing will greatly enrich both envi-
ronments.

Future Prospects

Impressive as it is, realtime Linux with the -rt patch-
set focuses primarily on user-process scheduling and
inter-process communication. Perhaps the future
holds realtime protocol stacks or filesystems, and per-
haps also greater non-realtime performance and scal-
ability while still maintaining realtime response, al-
lowing electrical power to be conserved by consoli-
dating realtime and non-realtime workloads onto a
single system.

However, realtime applications and environments
are just starting to appear on Linux, both from pro-
prietary vendors and F/OSS communities. For ex-
ample, existing realtime J ava  environments require
that realtime programs avoid the garbage collector,



making it impossible to use Java’s standard runtime
libraries. IBM recently announced a Java JVM that
meets realtime deadlines even when the garbage col-
lector is running, allowing realtime code to use stan-
dard libraries. This JVM is expected to greatly ease
coding of realtime systems, and to ease conversion
of older realtime applications using special-purpose
languages such as ADA.

In addition, there are realtime audio systems, SIP
servers, and object brokers, but much work remains
to provide a full set of realtime webservers, web appli-
cation servers, database kernels, and so on. Realtime
applications and environments are still few and far
between.

I very much look forward to participating in —
and making use of — the increasing SMP-realtime
capability supported by everyday computing devices!
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