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Abstract
As battery-powered embedded devices move towards
multicore processors, multicore energy efficiency is be-
coming critically important. To this end, ARM recently
announced its big.LITTLE architecture, featuring a mul-
ticore chip with both high-performance processors and
high-efficiency processors running a single instance of
the Linux operating system. Prior work has shown
the benefits of running performance-critical code on the
high-performance processors, while confining other pro-
cessing to the high-efficiency processors. This paper
builds on this work by showing that for some impor-
tant mobile workloads, pre-existing Linux-kernel tun-
ing parameters originally designed for real time, high-
performance computing, and SMP energy efficiency can
further reduce the amount of non-performance-critical
code running on the high-performance processors, result-
ing in energy efficiency gains in excess of 10%.

1 Introduction

Battery lifetime is crucially important to battery-powered
devices such as smartphones, including multicore smart-
phones. These devices run workloads with very low av-
erage CPU utilization, but often experience short bursts
of high-utilization work required for good user experi-
ence [17]. One approach for these workloads is asym-
metric multiprocessing, as discussed in the next section.

2 Big.LITTLE

The big.LITTLE architecture is an asymmetric multipro-
cessing architecture developed by ARM, Ltd. [7].

Here, the high-performance processors are Cortex-
A15s and the high-efficiency processors are the Cortex-
A7s. The Cortex-A15s run about twice as fast as
the Cortex-A7s, which in turn run instructions about
three times as efficiently as do the Cortex-A15s. As

noted earlier, this configuration suggests running non-
performance-critical code on the Cortex-A7s.

Unfortunately, performance-critical code might in-
voke non-performance-critical deferred cleanup opera-
tions. One example of such an operation is deferred work
from read-copy update (RCU), which is overviewed in
the next section.

3 Read-Copy Update

Read-copy update (RCU) is a synchronization mecha-
nism [13] that is often used as a replacement for reader-
writer locking for read-mostly data structures in the
Linux kernel (see Figure 2) [11], and has more recently
been implemented in user space as well [3].

RCU coordinates updaters with readers executing in
RCU read-side critical sections demarked by rcu read

lock() and rcu read unlock(). RCU does not coor-
dinate among updaters, which must use some other syn-
chronization mechanism (e.g., locking). One major ad-
vantage of RCU is that its read-side primitives are ex-
ceedingly fast, and can in fact incur zero overhead in
real-world usage. This advantage in turn implies a high
degree of freedom from deadlock, and also implies that
updaters can in no way exclude, block, or delay read-
ers. Updaters must therefore carry out their updates with
care, by preventing future readers from accessing a given
data element, then waiting for all pre-existing readers to
complete. Sections 3.1 and 3.2 show examples for inser-
tion and deletion, respectively.

3.1 RCU Element Insertion

The four states shown in Figure 3, with time advancing
from top to bottom, demonstrate how a new element may
be referenced by an initially NULL global pointer named
gptr despite the fact that there are concurrent readers.
We start out in state 1 with the NULL gptr, and then use
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Figure 1: ARM big.LITTLE Schematic
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Figure 2: RCU Usage in the Linux Kernel

kmalloc() to allocate a new structure with indetermi-
nate contents, transitioning to state 2. The pointer is col-
ored red to indicate that any RCU reader might access
it at any time, and the new structure is colored green to
indicate that it is inaccessible to readers. We transition
to state 3 by initializing the new structure and to state 4
by storing a pointer to it in gptr, so that the new struc-
ture is now accessible to readers (and thus colored red).
This store operation relies on atomicity, in other words,
concurrent readers can see either the old NULL pointer or
the pointer to the new structure, but they must not see
a “mash-up” of the two pointers. Old versions of C/C++
may use volatile casts and memory barriers to implement
this atomic store, while new C11/C++11 compilers can
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Figure 3: Insertion With Concurrent Readers

use release operations on atomic variables.
This example illustrates how updaters can insert data

into linked structures despite concurrent readers.

3.2 RCU List Deletion
Figure 4 shows a four-state process for deleting from an
RCU-protected linked list. In state 1, we have a list con-
taining elements A, B, and C, all of which might be ac-
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Figure 4: Deletion From Linked List With Concurrent
Readers

cessed by a concurrent reader at any time. We transition
to state 2 by deleting element B, at which point new read-
ers no longer have a path to it, so that only pre-existing
readers can be referencing element B, which is now col-
ored yellow. Note that the path from element B to ele-
ment C remains intact, enabling readers that are still ref-
erencing B to advance through the remainder of the list.
We transition to state 3 by waiting for all pre-existing
readers, after which there can no longer be any readers
referencing element B, which is now colored green. At
this point, it is safe to transition to state 4 by freeing ele-
ment B.

Given the ability to insert into and remove from linked
structures, we can see that RCU can be used to carry out
a wide range of updates to a wide range of linked data
structures, without forcing readers to execute expensive
operations. However, the wait-for-readers operation has
energy-efficiency consequences that are discussed in the
next section.

3.3 RCU and Energy Efficiency

RCU operates via a state machine driven by the
scheduling-clock interrupt. This means that if an other-
wise idle processor has one or more wait-for-readers op-
erations pending, its scheduling-clock interrupt will con-
tinue until all such operations have completed. This se-
ries of scheduling-clock interrupts will result in a closely
spaced series of wakeups from idle, which will in turn re-
sult in increased energy consumption. This paper looks

at two methods for reducing these wakeups, which are
covered in the next section.

4 Reducing RCU-Induced Wakeups

The first method for reducing RCU-induced wakeups is
to reduce the frequency of invocation of the RCU state
machine during idle periods, thereby enforcing longer
idle durations. This is accomplished by allowing the
scheduling-clock interrupt to be disabled during idle pe-
riods even when the processor in question has wait-
for-readers operations pending, and substituting a timer
with a period that is four times longer than that of the
scheduling-clock interrupt. This method is enabled in
recent Linux kernels using CONFIG RCU FAST NO HZ=y.
Interestingly enough, this method was designed to im-
prove energy efficiency not in asymmetric multiproces-
sors, but rather in symmetric multiprocessors.

The second method for reducing RCU-induced wake-
ups is to offload RCU processing from the Cortex-A15
processors using CONFIG RCU NOCB CPU=y. Of course,
this processing has to happen somewhere, and where
it does happen it will consume energy, but given that
the Cortex-A7 processors are three times as energy-
efficient as are the Cortex-A15 processors, offloading
from the Cortex-A15 processors should improve energy
efficiency. This second method was designed to reduce
OS jitter for compute-intensive applications and to im-
prove real-time response. It was never intended to im-
prove energy efficiency, much less on asymmetric multi-
processors.

Both methods were implemented by one of the authors
(Paul), and both are now available in the Linux kernel.

The next section compares these two approaches.

5 Measured Performance

We compared the RCU-processing-offload and enforced-
idle approaches to a reference kernel with stock RCU
and idle settings. All of the tests included Morten Ras-
mussen’s big.LITTLE scheduler modifications [15]. We
used six different benchmarks, each of which performs a
fixed amount of work. We therefore measured the energy
consumed (in Joules) and the duration of each run (in
seconds), taking the mean value from five runs of each
combination of benchmark and software configuration.
We ran these benchmarks on a CoreTile Express A15x2
A7x3 [1], which is an ARM big.LITTLE system that is
popularly referred to as TC2.

The benchmarks are as follows:

• cyclictest: This benchmark sets a series of timers
and measures the resulting timer jitter [18]. Al-
though this benchmark was intended to test real-
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time systems, it provides a good example of a low-
utilization workload.

• sysbench: This benchmark is intended to test a sys-
tem’s ability to support database workloads [9]. We
included it in order to verify overall performance.

• andebench: This benchmark was developed by The
Embedded Microprocessor Benchmark Consortium
to evaluate Android smartphones [17]. We ran this
in two-thread (andebench2) and eight-thread (an-
debench8) configurations.

• audio: This benchmark emulates audio playback.

• audio+bbench: This benchmark combines audio
playback with the bbench web rendering bench-
mark [8].

These benchmarks ran on real hardware, and the en-
ergy consumption was directly measured.

The results are shown in Table 1. The “Reference”
columns show the mean energy (in Joules) and test time
(in seconds) for five runs of each benchmark using the
reference kernel, that is, with neither RCU processing
offload nor enforced idle. The boldfaced entries in the
other columns highlight cases where the range of val-
ues overlap with their reference counterparts. This high-
lights a limitation of this data: System energy consump-
tion can vary with a number of factors, most notably
increasing with the temperature of the chip electronics.
We accounted for this effect by running the system for
ten minutes in order to bring the temperature up to its
steady-state value before running any benchmarks. Note
that all of the test-duration measurements show overlap,
which indicates that the energy-conservation methods do
not unambiguously degrade performance. The raw data
may be found in the accompanying technical report [12].

The “RCU Processing Offload” columns show the
same data for a kernel built to offload RCU processing
from the Cortex-A15 processors via the CONFIG RCU

NOCB CPU=y kernel parameter, along with the percent-
age improvement over over the reference kernel. The
improvements in energy efficiency are substantial, espe-
cially for cyclictest and the audio+bbench benchmarks.
The measurements for the andebench8 and audio bench-
marks overlap with those from the reference runs, so we
rejected those values as insufficiently different.

The “Enforced Idle” columns again show energy, du-
ration, and improvement data, but for a kernel built
to enforce idle periods via the CONFIG RCU FAST NO

HZ=y kernel parameter. This approach provides even
better energy efficiency, with several benchmarks show-
ing double-digit improvements compared to the refer-
ence kernel (though the cyclictest and andebench2 results
are insufficiently different than those of the reference

run), but also showing greater test-duration increases for
a number of the benchmarks. These duration increases
are likely due to the fact that enforcing idle increases the
time spend waiting for readers, however, we rejected all
of the duration measurements as insufficiently different
from the reference runs.

Both approaches show substantial energy-efficiency
improvements, which raises the question as to whether
combining them would further improve energy effi-
ciency. Unfortunately, preliminary experiments indicate
that combining these approaches does no better than each
can do separately. This should not come as a surprise,
given that both act to reduce busy periods on the Cortex-
A15 processors, and that it is not possible to remove
the same busy period twice. Furthermore, running both
methods incurs their combined overhead, which can ac-
tually degrade energy efficiency. Determining which of
these two methods is better is future work.

6 Related Work

Energy efficiency in asymmetric multiprocessors has
been a topic of research for some time. Kumar et al. [10]
proposed a feedback approach to dynamically migrate
processing among four different DEC Alpha processors,
ranging from EV4 to EV8. This feedback approach takes
samples every 100 million instructions, and resulted in
significant energy savings, but at the cost of significant
performance degradation. Furthermore, the energy sav-
ings were modeled rather than measured.

Grant and Afsahi [5, 6] use a modified scheduler
to identify and offload non-performance-critical house-
keeping work to separate low-frequency CPUs in CPU-
intensive numerical applications. This offloading re-
duces OS jitter, thus in some cases improving perfor-
mance while also reducing energy consumption. Of-
floading non-performance-critical housekeeping work is
now standard practice for this class of application.

Fedorova et al. [4] describe a scheduler that dis-
tinguishes between sequential and parallel application-
execution phases via the number of runnable threads:
An application with only a single runnable thread is
considered to be sequential, and is thus run on the fast
CPU, while applications with many runnable threads are
assumed to be parallel, and are thus run on the slow
CPUs. Slow CPUs are emulated by reducing the clock
frequency on selected CPUs in an SMP system. They
also describe methods of detecting memory and scalabil-
ity bottlenecks, but do not directly measure energy con-
sumption.

In addition, there have been a number of analytic cal-
culations of and simulations of performance and energy
efficiency for asymmetric multiprocessors [14, 16].
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Reference RCU Processing Offload Enforced Idle
Benchmark E (J) T (s) Energy Benefit Time Benefit Energy Benefit Time Benefit
cyclictest 1.75 3.13 1.47 15.98% 3.23 -3.38% 1.47 16.13% 3.13 -0.07%
sysbench 32.68 9.14 31.61 3.29% 8.99 1.68% 31.12 4.77% 8.99 1.70%
andebench2 59.51 20.54 57.91 2.70% 20.37 0.83% 57.99 2.57% 21.59 -5.09%
andebench8 174.04 45.87 170.37 2.11% 46.19 -0.70% 166.91 4.09% 46.60 -1.59%
audio 7.87 30.01 7.39 6.05% 30.03 -0.04% 6.28 20.16% 30.02 -0.04%
audio+bbench 99.05 156.29 93.02 6.09% 155.58 0.45% 86.95 12.21% 160.75 -2.85%

Table 1: Measured Energy Consumption and Performance on TC2

All the preceding work involves CPU-intensive work-
loads, and thus does not necessarily apply to the low-
utilization workloads found in the battery-powered em-
bedded arena. Morten Rasmussen [15] filled this gap
with a study demonstrating performance and energy-
efficiency improvements for low-utilization workloads.
This work combines a priori knowledge of properties
of software making up the Android system with Paul
Turner’s per-entity load-tracking enhancement to the
Linux scheduler [2]. This combination results in substan-
tial improvements in performance and energy efficiency.
Despite views to the contrary [16], a priori knowledge is
practical and valuable in the specialized embedded arena.

However, Morten’s work does not address tiny units of
deferred work that are the subject of this paper.

7 Conclusions and Future Directions

We have shown that enforced idle (CONFIG RCU FAST

NO HZ=y kernel parameter) is effective at reducing en-
ergy consumption, but that it might also reduce perfor-
mance by increasing RCU’s grace-period interval. We
have also shown that RCU processing offload (CONFIG
RCU NOCB CPU=y kernel parameter) is also effective at
reducing energy consumption, but with no perceptible
performance reduction. Preliminary results show that
combining enforced idle and RCU processing offload do
not result in further improvements in energy efficiency.
Both enforced idle and RCU processing offload are gen-
erally useful improvements that also happen to benefit
energy efficiency on asymmetric multiprocessors.

We hypothesize that energy efficiency would be fur-
ther improved if other deferred-work mechanisms (in-
cluding timers, work queues, inter-processor interrupts,
and softirq handlers) were to offload their work from
the high-performance Cortex-A15 processors onto high-
efficiency Cortex-A7 processors. We further hypothesize
that the same is true of equivalent mechanisms in user-
level applications and utilities. Regardless of whether
or not these hypotheses hold true, we have demonstrated
that significant energy-efficiency improvements are pos-

sible for asymmetric computer systems given modest
modifications to the software running on them. Such
improvements will become increasingly important as
battery-powered devices move to multicore configura-
tions.
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A Raw Data

Table 2 shows the raw data used to produce Table 1. Each
set of five data samples is sorted into increasing order to
make it easy to see overlap between samples. All energy
measurements are in Joules and all time measurements
are in seconds.
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RCU Processing
Reference Offload Enforced Idle

Benchmark Energy Time Energy Time Energy Time
cyclictest 1.62 3.12 1.42 3.12 1.40 3.12

1.68 3.12 1.42 3.12 1.42 3.13
1.74 3.12 1.46 3.12 1.44 3.13
1.80 3.12 1.48 3.13 1.45 3.13
1.94 3.15 1.59 3.67 1.65 3.14

sysbench 32.48 8.98 31.44 8.98 31.06 8.97
32.54 9.00 31.50 8.99 31.10 8.98
32.79 9.03 31.65 8.99 31.12 8.99
32.80 9.03 31.70 8.99 31.16 9.00
32.81 9.68 31.74 9.00 31.17 9.01

andebench2 59.36 20.29 57.67 20.27 56.75 20.31
59.38 20.32 57.86 20.29 56.81 20.31
59.52 20.33 57.90 20.39 56.84 20.41
59.64 20.36 58.01 20.41 59.73 23.39
59.69 21.39 58.11 20.49 59.84 23.51

andebench8 171.40 45.27 167.72 45.29 164.92 45.62
173.45 45.46 168.11 45.52 165.61 45.65
173.77 45.48 171.42 46.64 167.01 46.89
175.08 46.45 171.72 46.73 167.40 47.09
176.49 46.68 172.86 46.77 169.64 47.74

audio 7.73 30.00 6.84 30.02 5.50 30.02
7.85 30.01 7.35 30.02 5.85 30.03
7.85 30.01 7.46 30.03 6.04 30.03
7.94 30.01 7.57 30.03 6.77 30.03
7.97 30.02 7.73 30.03 7.24 30.03

audio+bbench 96.15 152.60 89.94 152.69 83.96 151.79
98.67 155.18 92.03 152.80 85.63 155.76
99.11 157.14 93.35 154.93 86.69 156.77
99.86 157.82 93.75 158.71 87.56 160.54

101.43 158.74 96.01 158.80 90.93 178.89

Table 2: Raw Data For Energy Consumption and Performance on TC2
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