
Real Time Linux Technology
A Deeper Dive

Paul E. McKenney
IBM Distinguished Engineer, Linux Technology Center



How I Got Here



Real Time Computing ca. 1980-1985

8-bit or 16-bit
CPU

512K to 30MB
Disk Storage

Data
Concentrator

Opto-Isolated
Serial Board

1-100KFLOP
FPU

Disk
Controller

1200 bps
Serial

Sensors and
Actuators
Sensors and
Actuators
Sensors and
Actuators
Sensors and

Actuators

256K to 1M
Memory



Non-Real-Time Interlude

• Systems administration (1986-8)
• Internet routing and congestion avoidance protocol 

(1988-1990)
• Parallel and NUMA algorithms, DYNIX/ptx, Digital 

Unix, AIX, Linux (1990-2004)
– Some exposure to realtime via the MontaVista-lead 

PREEMPT effort interactions with RCU (2002-2004)

• Return to realtime:
– Parallel realtime algorithms in Linux (2004-present)



Why Parallel Realtime?



Clock-Frequency Trend For Intel CPUs

Increased performance requires multiple hardware threads and multiple cores



Emergence of SMP Embedded Realtime Systems

OR

Traditional Realtime:
Few CPUs

Latency Guarantees
Non-Standard

Traditional SMP:
Many CPUs

No Guarantees
Standard (and OSS)

SMP Realtime:
Many CPUs

Latency Guarantees
Standard (and OSS)

Convergence

•User Demand (DoD, Financial, Gaming, ...)
•Techological Changes Leading to Commodity SMP

•Commodity Hardware Multithreading
•Commodity Multi-Core Dies
•Tens to Hundreds of CPUs per Die – Or More

Traditional Systems

Emerging Systems

But Not Both!!!



2004: Prototype Multi-Core ARM Chip!!!

Core 0 Core 1

Core 2 Core 3

Realtime work

Non-realtime workRealtime work

Realtime work

Submitted simple patch to Linux-kernel mailing list in 2004...



Leveraging Multiprocessor Systems for Realtime

Useful approach in many cases – but not so good if all CPUs must do realtime...



Real-Time Regimes



Real-Time Regimes

1s

100ms
10ms

1us

100ns
10ns

1ns

100ps

Non-Realtime Java

Linux 2.4 Kernel

Realtime Java (w/GC)

Linux 2.6 Kernel
Realtime Java (no GC)

Linux -rt Patchset
Specialty RTOSes

Hand-Coded Assembly

Custom Digital Hardware

Custom Analog Hardware

1ms

10us
100us



Preemption



Vanilla Linux Kernel

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Linux Kernel

CPU 0



Linux Kernel CONFIG_PREEMPT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt



Linux Kernel CONFIG_PREEMPT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Li
nu

x 
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

Reduced



Preemptible Spinlocks

• Threads can be preempted while holding spinlocks
• Threads must therefore be permitted to block while 

acquiring spinlocks
– Necessary to avoid self-deadlock scenario

• spinlock_t acquisition primitives can therefore block
• raw_spinlock_t provides “true spinlock” that disables 

preemption for special cases: scheduler, scheduling-
clock interrupt

• Note that one uses the same primitives (e.g., 
spin_lock()) on both spinlock_t and raw_spinlock_t



Timers and -rt Patchset



tvec_bases

tvec_base_t *

tvec_basestvec_basestvec_bases

lock
running_timer
timer_jiffies
tv1
tv2
tv3
tv4
tv5

tv
ec

_b
as

e_
t

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[255]

Cascade

Cascade

Cascade
Cascade

Cascade

struct timer_list

Timer wheel advances once per clock tick



Timer Wheels: Advantages and Disadvantages

• Advantages:
– O(1) insertion and removal operations
– Batching of cascade operations improves throughput
– Simple, well tested (both in Linux and elsewhere)

• Disadvantages:
– Cascading operations major latency hit!!!
– Unforgiving tradeoff between accuracy and overhead

• But when you need tens-of-microseconds latencies 
for some applications...



Linux Timer Wheel at 1KHz



Linux Timer Wheel at 100KHz

Any
Questions?



Solution: High-Resolution Timers

High-Resolution
Timers

Red-Black Tree

Timeouts: approximation OK, likely cancelled

Timers: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),
hrtimer_cancel(), hrtimer_forward(), ...

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...



High-Resolution Timer API (1/2)
• hrtimer_init(timer, clock_id, mode)

– timer: already-allocated struct hrtimer to use
– clock_id: usually want CLOCK_MONOTONIC (not CLOCK_REALTIME)
– mode: HRTIMER_MODE_ABS or HRTIMER_MODE_REL

• Note: if HRTIMER_MODE_REL, CLOCK_REALTIME treated as CLOCK_MONOTONIC
• hrtimer_init_sleeper(sl, task)

– sl: already-allocated and hrtimer_init()ed hrtimer_sleeper to use
• hrtimer_sleeper is a struct containing an hrtimer and a pointer to task_struct

– task: task to be awakened upon timer expiry (sl->timer.function overridden)
• hrtimer_start(timer, tim, mode)

– timer: hrtimer to start
– tim: expiration time in ktime_t format
– mode: absolute or relative (HRTIMER_MODE_ABS or HRTIMER_MODE_REL)

• hrtimer_cancel(timer)
– timer: hrtimer to cancel – waits for the timer to finish if it has already fired

• hrtimer_try_to_cancel(timer) – as hrtimer_cancel(), fail if already fired



High-Resolution Timer API (2/2)
• hrtimer_forward(timer, now, interval)

– timer: hrtimer to rearm in future
– now: current time (from which the notion of “future” will be derived)
– interval: time interval from time of last timer expiration
– returns number of intervals required to get to future

• hrtimer_get_remaining(timer)
– timer: timer for which to return remaining wait time

• hrtimer_get_next_event()
– return nanoseconds to next timer expiry – useful for power-savings decisions

• ktime_get() -- get current time (ns), compatible with above APIs
• ktime_add_ns(kt, nsec) – arithmetic on nanosecond timestamps.
• hrtimer_get_res(which_clock, tp)

– which_clock: CLOCK_MONOTONIC or CLOCK_REALTIME
– tp: struct timespec into which to put resolution



High-Resolution Timer API Example Usage
From futex_wait():

__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&q.waiters, &wait);
...
hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_init_sleeper(&t, current);
t.timer.expires = *abs_time;

hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);

/* 
 * the timer could have already expired, in which
 * case current would be flagged for rescheduling.
 * Don't bother calling schedule.
 */
if (likely(t.task))
        schedule();

hrtimer_cancel(&t.timer);

/* Flag if a timeout occured */
rem = (t.task == NULL)



Timers and -rt Patchset: To Probe Deeper

• http://lwn.net/Articles/152363/ (rationale for timer/hrtimer split)
• http://lwn.net/Articles/152436/ (timer implementation)
• http://lwn.net/Articles/167897/ (high-resolution timer API – dated)
• http://lwn.net/Articles/228143/ (deferrable timers)

http://lwn.net/Articles/152363/
http://lwn.net/Articles/152436/
http://lwn.net/Articles/167897/
http://lwn.net/Articles/228143/


Threaded Interrupt Handlers



Linux's Non-Threaded Interrupt Handlers

R
et

ur
n

 F
ro

m
In

te
rr

u
pt

Mainline
Code

In
te

rr
up

t
IRQ Handler

Mainline
Code

Long latency:
Degrades Response Time



-rt Patchset Threaded Interrupt Handlers

R
e

tu
rn

 
F

ro
m

In
te

rr
u

p
tMainline

Code
In

te
rr

u
pt

IRQ Handler

Mainline
Code

IRQ

IRQ
Thread

Short latency:
Better Response Time



-rt Patchset Threaded Interrupt Handlers

R
e

tu
rn

 
F

ro
m

In
te

rr
u

pt

Mainline
Code

In
te

rr
up

t

IRQ        Handler

Mainline
Code

IRQ IRQ
Thread

Preemption by Realtime User Thread

Can get old hardirq behavior by specifying IRQ_NODELAY for given IRQ,
but need very special handler: raw spinlocks, etc.



Writing Raw Interrupt Handlers

• When setting up irq:
– Use IRQ_NODELAY in status field of irqdesc element
– Use IRQF_NODELAY in action.flags field of irqdesc element
– request_irq() propagates appropriately

• Must use raw_spinlock_t within handler
– spinlock_t OK within non-IRQF_NODELAY handlers

• Example raw interrupt handlers:
– Scheduling-clock interrupt, i8259 math_error_irq(), lpptest, 

xscale_pmu_interrupt(), and various irq-cascading handlers



Threaded Interrupts: To Probe Deeper

• http://lwn.net/Articles/106010/ (Approaches, October 2004)
• http://lwn.net/Articles/138174/ (Debate, June 2005)
• http://lwn.net/Articles/139062/ (softirq splitting, June 2005)

http://lwn.net/Articles/106010/
http://lwn.net/Articles/138174/
http://lwn.net/Articles/139062/


Priority Inversion and -rt Patchset



“Trapdoor” Metaphor for Priority Inheritance

• A dance floor...
– CPUs dance with highest priority tasks (Tuxes)

• Warning: any attempt to apply this metaphor in 
reverse will probably not end well...



Priority Inheritance



Priority Inheritance



Priority Inheritance



Priority Inheritance



Priority Inheritance



Priority Inversion Outside the Dance Hall

• Process P1 needs Lock L1, held by P2
• Process P2 has been preempted by medium-priority 

processes
– Consuming all available CPUs

• Process P1 is blocked by lower-priority processes

High-Priority
Process P1

Lock 1Acquire
Low-Priority
Process P2

Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt



Preventing Priority Inversion Outside the Dance Hall

• Trivial solution: Prohibit preemption while holding locks
– But degrades latency!!!  Especially for sleeplocks!!!!

• Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
– But only while holding a lock that P1 is attempting to acquire
– Standard solution, very heavily used

• Either way, prevent the low-priority process from being preempted

High-Priority
Process P1

Lock 1Acquire
Low-Priority
Process P2

Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

Priority Inheritance



Limits to Priority Boosting

• Inappropriate for ultimate in responsiveness
– Then again, the same is true for digital hardware

• Does not work for events – who will raise the event?
• Does not work for memory exhaustion – who will free 

memory?
• Does not work for mass storage – make the disk spin 

faster???
• Does not work for network receives – boostee on 

other machine!
– Could do cross-system boosting
– But there are limits (see next slide)

• Does not work for reader-writer locking
– At least not very well (see following slides)



In Some Cases, Priority Boosting is Undesirable...

...Or At Least Uncomfortable!!!



Priority-Inheritance API

• All spinlock_t primitives do priority inheritance
• All struct semaphore primitives do priority 

inheritance
– Use compat_semaphore to avoid priority inheritance 

(events)

• All struct mutex (and struct rt_mutex) primitives do 
priority inheritance
– struct rt_mutex does priority inheritance in mainline as well
– As of 2.6.22, used only by futexes



Priority Inheritance and Reader-Writer 
Locking



Priority Inheritance and Reader-Writer Locking



Priority Inversion and Reader-Writer Locking

• Process P1 needs Lock L1, held by P2, P3, and P4
– Each of which is waiting on yet another lock

• read-held by yet more low-priority processes
• preempted by medium-priority processes

• Process P1 will have a long wait, despite its high priority
– Even given priority inheritance: many processes to boost!

• And a great many processes might need to be priority-boosted
– Further degrading P1's realtime response latency

High-Priority
Process P1

Lock 1

Write
Acquire Low-Priority

Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Read
Hold

Read
Hold

Lock 2

Lock 4

Lock 3

Write
Acquire

Write
Acquire

Write
Acquire

Read Hold

Read Hold

Read Hold

Read Hold

Read Hold

Read Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt  



Priority Inheritance and Reader-Writer Locking

• Real-time operating systems have taken the following approaches to writer-to-
reader priority boosting:
– Boost only one reader at a time

• Reasonable on a single-CPU machine, except in presence of readers that can 
block for other reasons.

• Extremely ineffective on an SMP machine, as the writer must wait for readers 
to complete serially rather than in parallel

– Boost a number of readers equal to the number of CPUs
• Works well even on SMP, except in presence of readers that can block for 

other reasons (e.g., acquiring other locks)
– Permit only one task at a time to read-hold a lock (PREEMPT_RT)

• Very fast priority boosting, but severe read-side locking bottlenecks
• All of these approaches have heavy bookkeeping costs

– Priority boost propagates transitively through multiple locks
– Processes holding multiple locks may receive multiple priority boosts to 

different priority levels, actual boost must be to maximum level
– Priority boost reduced (perhaps to intermediate level) when locks released

• So -rt patchset permits only one reading task at a time on a given lock
– How to deal with this scalability limitation???



RCU



Reader-Writer Lock vs. RCU

Readers

ReclaimerRemover

ReadersReadersReaders

Lock 
Read

Acquire Writer
Write

Acquire

Writer

Lock Acquire  

ReaderReaderReaderReader



What is RCU?
• Analogous to reader-writer lock, but readers acquire no locks

– Readers therefore cannot block writers
– Readers cannot be involved in deadlock cycles

• Writers break updates into “removal” and “reclamation” phases
– Removals do not interfere with readers
– Reclamations deferred until all readers drop references

• Readers cannot obtain references to removed items
• RCU used in production for over a decade by IBM (and Sequent)

– RCU API best suited for read-intensive situations

Readers

ReclaimerRemover

ReadersReadersReaders

Remover Identifies Removed Objects

Readers Indicate When DoneReaders and Updaters
Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

Writer



Example: RCU Removal From Linked List
● Writer removes element B from the list (list_del_rcu())
● Writer waits for all readers to finish (synchronize_rcu())
● Writer can then free B (kfree())

readers?readers?

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

No more readers 
referencing B!



Code For RCU Removal From Linked List

int search(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   rcu_read_lock();
   list_for_each_entry_rcu(p, head, list) {
      if (p->key == k) {
         rcu_read_unlock();
         return 1;
      }
   }
   rcu_read_unlock();
   return 0;
}

int delete(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   spin_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         list_del_rcu(p);
         spin_unlock(&fhp->mutex);
         synchronize_rcu();
         kfree(p);
         return 1;
      }
   }
   spin_unlock(&fhp->mutex);
   return 0;
}

struct foo_head {
   struct list_head list;
   spinlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
};

foo_head foo foo



Relation of Grace Period to Readers

Reclamation

Reader

Removal Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?



Relation of Grace Period to Readers

          Reclamation

Reader

Removal Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

Grace period
extends as
needed.



Code For RCU Removal From Linked List

int search(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   rcu_read_lock();
   list_for_each_entry_rcu(p, head, list) {
      if (p->key == k) {
         rcu_read_unlock();
         return 1;
      }
   }
   rcu_read_unlock();
   return 0;
}

int delete(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   spin_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         list_del_rcu(p);
         spin_unlock(&fhp->mutex);
         synchronize_rcu();
         kfree(p);
         return 1;
      }
   }
   spin_unlock(&fhp->mutex);
   return 0;
}

struct foo_head {
   struct list_head list;
   spinlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
};

foo_head foo foo



Code For Reader-Writer Removal From Linked List

int search(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   read_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         read_unlock(&fhp->mutex);
         return 1;
      }
   }
   read_unlock(&fhp->mutex);
   return 0;
}

int delete(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   write_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         list_del(p);
         write_unlock(&fhp->mutex);
         /* */
         kfree(p);
         return 1;
      }
   }
   write_unlock(&fhp->mutex);
   return 0;
}

struct foo_head {
   struct list_head list;
   rwlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
};

foo_head foo foo



Reader-Writer Lock vs. RCU

Readers

ReclaimerRemover

ReadersReadersReaders

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Readers Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

Lock 
Read

Acquire Writer
Write

Acquire

Writer

Lock Acquire  

Readers Indicate When Done:
Realtime Focus

(Balance low reader
overhead w/memory

and preemption)

List Update
FreeFree

ReaderReaderReaderReader



Guide to RCU API

srcu_read_lock()
srcu_read_unlock()

rcu_assign_pointer()
list_add_rcu()
list_add_tail_rcu()
list_del_rcu()
list_replace_rcu()
hlist_del_rcu()
hlist_add_head_rcu()

synchronize_srcu()

rcu_dereference()
list_for_each_entry_rcu()
hlist_for_each_entry_rcu()
[list_for_each_rcu()]
[list_for_each_continue_rcu()

preempt_disable()
preempt_enable()

rcu_read_lock()
rcu_read_unlock()

rcu_read_lock_bh()
rcu_read_unlock_bh()

synchronize_sched()

call_rcu_bh()

synchronize_rcu()
synchronize_net()
call_rcu()

kfree()
kmem_cache_free()

General purpose

Bottom-half context
(networking)

Hard IRQs, NMIs, ...

When readers must sleep

Pointer dereferencing, including list traversal

List update



● Multiple RCU implementations
● “Classic RCU” leverages context switches

● RCU read-side critical sections not permitted to block
● Therefore, context switch means all RCU readers on that CPU done
● Once all CPUs context-switch, all prior RCU readers are done

● Realtime RCU implementations uses counter-based algorithm
● Permits preemption of RCU read-side critical sections

Example RCU Infrastructure Implementation

synchronize_rcu()

CPU 0

CPU 1

CPU 2

RCU read-side
critical section

context
switch



RCU Read-Side Primitives: How Lightweight?

• RCU
– “Classic RCU” (non-CONFIG_PREEMPT)

• #define rcu_read_lock()
• #define rcu_read_unlock()

– CONFIG_PREEMPT RCU
• #define rcu_read_lock() preempt_disable()
• #define rcu_read_unlock() preempt_enable()

– CONFIG_PREEMPT_RT RCU on following slide
• RCU BH

– #define rcu_read_lock_bh() {rcu_read_lock(); local_bh_disable(); }
– #define rcu_read_unlock_bh() { local_bh_enable(); rcu_read_unlock(); }

• synchronize_sched() RCU
– #define preempt_disable() {inc_preempt_count(); barrier(); }
– #define preempt_enable() { barrier(); dec_preempt_count(); }



But What About The Update Side?

• Updates can be quite expensive, despite numerous 
optimizations

• Which is why RCU should be used for read-mostly situations
– Use the right tool for the job!!!

• The important thing is overall performance:
– System V IPC: 12x at system call level, >5% DB benchmark
– dcache: 10-30% improvement SDET, SPECweb99, kernbench
– FD array: Up to 30% improvement in chat
– SELinux avc: More than 2 orders of magnitude on 32 CPUs
– IP route cache: 2x reduction in lookup overhead



Priority Inversion and RCU
• Process P1 needs Lock L1, but P2, P3, and P4 now use RCU

– P2, P3, and P4 therefore need not hold L1
– Process P1 thus immediately acquires this lock
– Even though P2, P3, and P4 are preempted by the per-CPU medium-priority 

processes
• No priority inheritance required

– Except if low on memory: permit reclaimer to free up memory
• Excellent realtime latencies: medium-priority processes can run

– High-priority process proceeds despite low-priority process preemption
– If sufficient memory...

Acquire

RCU

RCU

RCU

Write
Acquire

Write
Acquire

Write
Acquire

RCU

RCU

RCU

RCU

RCU

RCU

Preempt  

High-Priority
Process P1

Lock 1
Low-Priority
Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Lock 2

Lock 4

Lock 3

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)



Priority Inversion and RCU



Priority Inversion and RCU



Priority Inversion and RCU



Priority Inversion and RCU



Realtime and RCU
• RCU exploited in PREEMPT_RT patchset to reduce latencies

– “kill()” system-call RCU provided large reduction in latency
– Expect similar benefits for pthread_cond_broadcast() and 

pthread_cond_signal()
• Current PREEMPT_RT realtime Linux provides relatively few realtime 

services
– Process scheduling, interrupts, some signals

• Increasing the number of realtime services will likely require additional 
exploitation of RCU
– And will likely require that RCU readers be priority-boosted when low on 

memory
• But “Classic RCU” has realtime-latency problems of its own!!!

– Classic RCU disables preemption across read-side critical sections...



What is Needed From Realtime RCU

• Reliable
• Callable from IRQ
•Preemptible read-side critical sections
•Small memory footprint
• Synchronization-free read side
• Independent of memory-allocator data structures
• Freely nestable read side
• Unconditional read-to-write upgrade
• API compatible with “Classic RCU”

Why small memory footprint???



But Can't Just Make RCU Preemptible...

Small memory footprint means timely grace-period processing...



Overhead of RT RCU Read-Side....

• Heavier weight than the classic RCU 
implementations

• But still:
– No locks
– No loops
– In out-of-tree patch:

• No atomic instructions
• No memory barriers

– So still lightweight with O(1) worst-case execution time
• And many implementations have fixed execution time



Real-Time rcu_read_lock()
void rcu_read_lock(void)
{
        int idx;
        int nesting;

        nesting = current->rcu_read_lock_nesting;
        if (nesting != 0) {
                current->rcu_read_lock_nesting = nesting + 1;
        } else {
                unsigned long oldirq;

                local_irq_save(oldirq);
                idx = rcu_ctrlblk.completed & 0x1;
                smp_read_barrier_depends();
                barrier();
                __get_cpu_var(rcu_flipctr)[idx]++;
                barrier();
                current->rcu_read_lock_nesting = nesting + 1;
                barrier();
                current->rcu_flipctr_idx = idx;
                local_irq_restore(oldirq);
        }
}



Real-Time rcu_read_unlock()

void __rcu_read_unlock(void)
{
        int idx;
        int nesting;

        nesting = current->rcu_read_lock_nesting;
        if (nesting > 1) {
                current->rcu_read_lock_nesting = nesting - 1;
        } else {
                unsigned long oldirq;

                local_irq_save(oldirq);
                idx = current->rcu_flipctr_idx;
                smp_read_barrier_depends();
                barrier();
                current->rcu_read_lock_nesting = nesting - 1;
                barrier();
                __get_cpu_var(rcu_flipctr)[idx]--;
                local_irq_restore(oldirq);
        }
}



Can the Linux 
Community

Handle RCU?



Linux Usage of RCU APIs

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html



Linux Usage of RCU APIs – In Perspective



Linux Usage of RCU APIs – Perspective II



To Probe Deeper
• http://en.wikipedia.org/wiki/RCU
• http://lwn.net/Articles/128228/ (early realtime-RCU attempt)
• http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf 

(realtime-RCU OLS paper)
• http://www.rdrop.com/users/paulmck/RCU/ (More RCU papers)
• http://www.rdrop.com/users/paulmck/RCU/linuxusage.html (Graphs)
• http://lwn.net/Articles/201195/ (Jon Corbet realtime-RCU writeup)
• http://lwn.net/Articles/220677/ (RCU priority boosting)
• http://lwn.net/Articles/220677/ (patch for higher-performance RCU)

http://en.wikipedia.org/wiki/RCU
http://lwn.net/Articles/128228/
http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf
http://www.rdrop.com/users/paulmck/RCU/
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://lwn.net/Articles/201195/
http://lwn.net/Articles/220677/
http://lwn.net/Articles/220677/


Summary: Realtime Regimes Redux

1s

100ms
10ms

1us

100ns
10ns

1ns

100ps

Non-Realtime Java

Linux 2.4 Kernel

Realtime Java (w/GC)

Linux 2.6 Kernel
Realtime Java (no GC)

Linux -rt Patchset
Specialty RTOSes

Hand-Coded Assembly

Custom Digital Hardware

Custom Analog Hardware

1ms

10us
100us



Summary

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney



To Probe Deeper
http://rt.wiki.kernel.org/index.php/Main_Page
http://people.redhat.com/mingo/realtime-preempt/

But now: http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.linuxjournal.com/article/9361 (Linux Journal article)
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?subtype=ca&
infotype=an&appname=iSource&supplier=877&letternum=
ENUSZP06-0365
http://www.linutronix.de/
http://www.mvista.com/products/realtime.html

• Hollis Blanchard's “Virtualization – Not Just for Servers”
• My “Real Time Linux Technology: A Deeper Dive” (shameless plug)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own 
way. So if you want to use Linux to control an industrial welding laser, I have no 
problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006

http://rt.wiki.kernel.org/index.php/Main_Page
http://people.redhat.com/mingo/realtime-preempt/
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.linuxjournal.com/article/9361
http://www.linutronix.de/
http://www.mvista.com/products/realtime.html


Legal Statement
This work represents the view of the author and does not necessarily 

represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server, and xSeries 
are trademarks or registered trademarks of International Business 
Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or 
service marks of others.



Questions?


