
Real Time Linux Technology
Paul E. McKenney

IBM Distinguished Engineer, Linux Technology Center

How I Got Here

Non-Real-Time Interlude

• Business-application programming
• Real-time programming (building control, security,

acoustic navigation)
• Systems administration (1986-8)
• Internet routing and congestion avoidance protocol

(1988-1990)
• Parallel and NUMA algorithms, DYNIX/ptx, Digital Unix,

AIX, Linux (1990-2004)
– Some exposure to realtime via the MontaVista-lead

PREEMPT effort interactions with RCU (2002-2004)

• Return to realtime:
– Parallel realtime algorithms in Linux (2004-present)

Why Parallel Realtime?

Emergence of SMP Embedded Realtime Systems

OR

Traditional Realtime:
Few CPUs

Latency Guarantees
Non-Standard

Traditional SMP:
Many CPUs

No Guarantees
Standard (and OSS)

SMP Realtime:
Many CPUs

Latency Guarantees
Standard (and OSS)

Convergence

•User Demand (DoD, Financial, Gaming, ...)
•Techological Changes Leading to Commodity SMP

•Commodity Hardware Multithreading
•Commodity Multi-Core Dies
•Tens to Hundreds of CPUs per Die – Or More

Traditional Systems

Emerging Systems

But Not Both!!!

Real-Time Regimes

Real-Time Regimes

1s

100ms
10ms

1us

100ns
10ns

1ns

100ps

Non-Realtime Java

Linux 2.4 Kernel

Realtime Java (w/GC)

Linux 2.6 Kernel
Realtime Java (no GC)

Linux -rt Patchset
Specialty RTOSes

Hand-Coded Assembly

Custom Digital Hardware

Custom Analog Hardware

1ms

10us
100us

Preemption

Vanilla Linux Kernel

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux Kernel

CPU 0

Linux Kernel CONFIG_PREEMPT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

Linux Kernel CONFIG_PREEMPT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

Reduced

Timers and -rt Patchset

Linux Timer Wheel at 1KHz

Linux Timer Wheel at 100KHz

Any
Questions?

Solution: High-Resolution Timers

High-Resolution
Timers

Red-Black Tree

Timeouts: approximation OK, likely cancelled

Timers: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),
hrtimer_cancel(), hrtimer_forward(), ...

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...

Priority Inversion and -rt Patchset

“Trapdoor” Metaphor for Priority Inheritance

• A dance floor...
– CPUs dance with highest priority tasks (Tuxes)

• Warning: any attempt to apply this metaphor in
reverse will probably not end well...

Priority Inheritance

Priority Inheritance

Priority Inheritance

Priority Inheritance

Priority Inheritance

Preventing Priority Inversion Outside the Dance Hall

• Trivial solution: Prohibit preemption while holding locks
– But degrades latency!!! Especially for sleeplocks!!!!

• Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
– But only while holding a lock that P1 is attempting to acquire
– Standard solution, very heavily used

• Either way, prevent the low-priority process from being preempted

High-Priority
Process P1

Lock 1Acquire
Low-Priority
Process P2

Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

Priority Inheritance

Priority Inheritance and Reader-Writer
Locking

Priority Inheritance and Reader-Writer Locking

RCU

Example: RCU Removal From Linked List
● Writer removes element B from the list (list_del_rcu())
● Writer waits for all readers to finish (synchronize_rcu())
● Writer can then free B (kfree())

readers?readers?

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

No more readers
referencing B!

Priority Inversion and RCU: Back to the
Dance Hall

Priority Inversion and RCU

Priority Inversion and RCU

Priority Inversion and RCU

Priority Inversion and RCU

Can the Linux
Community

Handle RCU?

Linux Usage of RCU APIs

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

Summary: Realtime Regimes Redux

1s

100ms
10ms

1us

100ns
10ns

1ns

100ps

Non-Realtime Java

Linux 2.4 Kernel

Realtime Java (w/GC)

Linux 2.6 Kernel
Realtime Java (no GC)

Linux -rt Patchset
Specialty RTOSes

Hand-Coded Assembly

Custom Digital Hardware

Custom Analog Hardware

1ms

10us
100us

Summary

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

To Probe Deeper
http://rt.wiki.kernel.org/index.php/Main_Page
http://people.redhat.com/mingo/realtime-preempt/

But now: http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.linuxjournal.com/article/9361 (Linux Journal article)
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?subtype=ca&
infotype=an&appname=iSource&supplier=877&letternum=
ENUSZP06-0365
http://www.linutronix.de/
http://www.mvista.com/products/realtime.html

• Hollis Blanchard's “Virtualization – Not Just for Servers”
• My “Real Time Linux Technology: A Deeper Dive” (shameless plug)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, I have no
problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006

http://rt.wiki.kernel.org/index.php/Main_Page
http://people.redhat.com/mingo/realtime-preempt/
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.linuxjournal.com/article/9361
http://www.linutronix.de/
http://www.mvista.com/products/realtime.html

Legal Statement
This work represents the view of the author and does not necessarily

represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server, and xSeries
are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or
service marks of others.

Questions?

