‘Real Time’ vs. ‘Real Fast’: How to Choose?

Paul E McKenney
IBM Linux Technology Center

paulmck@linux.vnet.ibm.com

Abstract

Although the oft-used aphorism "real-time is not real-
fast" makes a nice sound bite, it does not provide much
guidance to developers. This paper will provide the
background needed to make a considered design choice
between "real time" (getting started as quickly as possi-
ble) and "real fast" (getting done quickly once started).
In many ways, "real fast" and "real time" are Aesop’s
tortoise and hare, respectively. But in the real world of
real time, sometimes the race goes to the tortoise and
sometimes it goes to the hare, depending on the require-
ments as well as the details of the workload and the en-
closing software environment.

1 Introduction

Linux has made much progress in the real-time arena
over the past ten years, particularly with the advent of
the -rt patchset [10], a significant fraction of which has
now reached mainline. This naturally leads to the ques-
tion of which workloads gain improved performance by
running on real-time Linux. To help answer this ques-
tion, we take a close look at the real-time vs. real-fast
distinction in order to produce useful criteria for choos-
ing between a real-time and non-real-time Linux.

Section 2 looks at a pair of example applications in or-
der to make a clear distinction between real-time and
real-fast, Section 3 examines some factors governing the
choice between real-time and real-fast, and Section 4
gives an overview of the underlying causes of real-time
Linux’s additional overhead. Section 5 lays out some
simple criteria to help choose between real fast and real
time, and finally, Section 6 presents concluding remarks.

2 Example Applications

This section considers a pair of diverse workloads, an
embedded fuel-injection application and a Linux kernel
build.

2.1 Fuel Injection

This rather fanciful fuel-injection scenario evaluates
real-time Linux for controlling fuel injection for a mid-
sized industrial engine with a maximum rotation rate of
1500 RPM. This is slower than an automotive engine:
when all else is equal, larger mechanical artifacts move
more slowly than do smaller ones. We will be ignoring
complicating factors such as computing how much fuel
is to be injected.

If we are required to inject the fuel within one degree of
top dead center (the point in the combustion cycle where
the piston is at the very top of the cylinder), what jitter
can be tolerated in the injection timing? 1500 RPM is 25
RPS, which in turn is 9000 degrees per second. There-
fore, a tolerance of one degree turns into a tolerance of
one nine-thousandth of a second, or about 111 microsec-
onds.

Such an engine would likely have a rotational position
sensor that might generate an interrupt to a device driver,
which might in turn awaken a real-time control process.
This process could then calculate the time until top dead
center for each cylinder, and then execute a sequence
of nanosleep () system calls to control the timing.
The code to actuate the fuel injector might be a short
sequence of MMIO operations.

This is a classic real-time scenario: we need to do some-
thing before a deadline, and faster is most definitely not
better: injecting fuel too early is just as bad as injecting
it too late. This situation calls for some benchmarking
and validation of the nanosleep () system call, for
example, with the code shown in Figure 1. On each pass
through the loop, lines 2-5 record the start time, lines 6-9
execute the nanosleep () system call with the speci-
fied sleep duration, lines 10-13 record the end time, and
lines 14-16 compute the jitter in microseconds and print
it out. This jitter is negative if the nanosleep () call
did not sleep long enough, and positive if it slept too
long.

1 for (1 = 0; 1 < iter; i++) {

2 if (clock_gettime (CLOCK_MONOTONIC, ×tart) != 0) {

3 perror ("clock_gettime 1");

4 exit (-1);

5 }

6 if (nanosleep (&timewait, NULL) != 0) {

7 perror ("nanosleep");

8 exit (=1);

9 }
10 if (clock_gettime (CLOCK_MONOTONIC, &timeend) != 0) {
11 perror ("clock_gettime 2");

12 exit (-1);
13 }

14 delta = (double) (timeend.tv_sec - timestart.tv_sec) * 1000000 +
15 (double) (timeend.tv_nsec - timestart.tv_nsec) / 1000.;
16 printf ("iter %d delta %g\n", iter, delta - duration);
17 }

Figure 1: Loop to Validate nanosleep()

It is important to use clock_gettime () with
the CLOCK_MONOTONIC argument. The more-
intuitive CLOCK_REALTIME argument to clock_
gettime () means “real” as in real-world wall-clock
time, not as in real-time. System administrators and
NTP can adjust real-world wall-clock time. If you incor-
rectly use gettimeofday () or CLOCK_REALTIME
and the systems administrator sets the time back one
minute, your program might fail to actuate the fuel in-
jectors for a full minute, which will cause the engine to
stop. You have been warned!

Of course, before executing this validation code, it is
first necessary to set a real-time scheduling priority, as
shown in Figure 2. Line 2-5 invokes sched_get_
priority_max () to obtain the highest possible real-
time (SCHED_FIFO) priority (or print an error) and
lines 6-9 set the current process’s priority. Of course,
you must have appropriate privileges to switch to a real-
time priority: either super-user or CAP_SYS_NICE.
There is also a sched_get_priority_min () that
gives the lowest priority for a given scheduler pol-
icy, so that sched_get_priority_min (SCHED_
FIFO) returns the lowest real-time priority, allowing
applications to allocate multiple priority levels in an
implementation-independent manner, if desired.

However, real-time priority is not sufficient to obtain
real-time behavior, because the program might still take
page faults. The fix is to lock all of the pages into

memory, as shown in Figure 3. The mlockall ()
system call will lock all of the process’s current mem-
ory down (MCL_CURRENT), and all future mappings as
well (MCL_FUTURE).

Of course, hardware irq handlers will preempt this code.
However, the -rt Linux kernel has threaded irq han-
dlers, which appear in the ps listing with names re-
sembling “IRQ-16". You can check their priority us-
ing the sched_getscheduler () system call, or by
looking at the second-to-last field in /proc/<PID>
/stat, where “<PID>" is replaced by the actual pro-
cess ID of the irq thread of interest. It is possible to run
your real-time application at a higher priority than that
of the threaded irq handlers, but be warned that an infi-
nite loop in such an application can lock out your irgs,
which can cause your system to hang.

If you are running on a multi-core system, another way
to get rid of hardware-irq latencies is to direct them
to a specific CPU (also known as "hardware thread").
You can do this using /proc/irqg/<IRQ>/smp_
affinity, where “<IRQ>" is replaced by the irq
number. You can then affinity your real-time program
to some other CPU, thereby insulating your program
from interrupt latency. It may be necessary to pin vari-
ous kernel daemons to subsets of the CPUs as well, and
the schedutils taskset command may be used for this
purpose (though care is required, as some of the per-
CPU kernel daemons really do need to run on the cor-

if (sp.sched_priority == -1) {

exit (-1);

}

if (sched_setscheduler (0,
perror ("sched_setscheduler");
exit (=-1);

O 0 J o O b W N

SCHED_FIFO,

sp.sched_priority = sched_get_priority_max (SCHED_FIFO);

perror ("sched_get_priority_max");

&sp) !'= 0) {

Figure 2: Setting Real-Time Priority

if (mlockall (MCL_CURRENT |
perror ("mlockall");
exit (-1);

DSw N

MCL_FUTURE)

= 0) {

Figure 3: Preventing Page Faults

responding CPU). Of course, this has the downside of
prohibiting your real-time program from using all of the
CPUs, thereby limiting its performance. This technique
is nonetheless useful in some cases.

Once we have shut down these sources of non-real-time
behavior, we can run the program on both a real-time
and a non-real-time Linux system. In both cases, we run
on a four-CPU 2.2GHz x86 system running with low-
latency firmware.

Even after taking all of these precautions, the non-real-
time Linux fails miserably, missing the mark by up to
3 milliseconds. Non-real-time Linux systems are there-
fore completely inappropriate for this fuel-injection ap-
plication.

As one might hope, real-time Linux does much better.
Nanosleep always gets within 20 microseconds of the
requested value, and 99.999% of the time within 13 mi-
croseconds in a run of 10,000,000 trials. Please note
that the results in this paper are from a lightly tuned
system: more careful configuration (for example, using
dedicated CPUs) might well produce better results.

If real-time Linux can so easily meet such an aggressive
real-time response goal, it should do extremely well for
more typical workloads, right? This question is taken up
in the next section.

tar -x3jf linux-2.6.24.tar.bz2
cd linux—-2.6.24

make allyesconfig > /dev/null
time make —-3j8 > Make.out 2>&1
cd ..

rm -rf linux-2.6.24

o Ok W N

Figure 4: Kernel Build Script

2.2 Kernel Build

Since the canonical kernel-hacking workload is a ker-
nel build, this section runs a kernel build on both a
real-time and a non-real-time Linux. The script used
for this purpose is shown in Figure 4, featuring an 8-
way parallel build of the 2.6.24 Linux kernel given an
allyesconfig kernel configuration. The results (in
decimal seconds) are shown on Table 1, and as you can
see, real-time Linux is not helping this workload. The
non-real-time Linux not only completed the build on av-
erage more than 15% faster than did the real-time Linux,
but did so using less than half of the kernel-mode CPU
time. Although there is much work in progress to nar-
row this gap, some of which will likely be complete be-
fore this paper is published, there is no getting around
the fact that this is a large gap.

Clearly, there are jobs for which real-time Linux is not
the right tool!

Real Fast (s) | Real Time (s)

1350.4 1524.6

Raw Data 1332.7 1574.2

real 1314.5 1569.8
Average 1332.6 1556.2

Std. Dev. 14.6 224
3027.2 2940.9

Raw Data 3013.1 2982.2

user 2996.1 2971.2
Average 3012.2 2964.7

Std. Dev. 12.7 17.5

314.7 644.3

Raw Data 317.3 660.9

Sys 317.9 665.9
Average 316.6 657.0

Std. Dev. 14 9.2

Table 1: Kernel Build Timings

2.3 Discussion

A key difference between these two applications is the
duration of the computation: fuel injection takes place
in microseconds, while kernel builds take many seconds
or minutes. In the fuel-injection scenario, we are there-
fore willing to sacrifice considerable performance in or-
der to meet microsecond-scale deadlines. In contrast,
even on a very fast and heavily tuned machine, handfuls
of milliseconds are simply irrelevant on the kernel-build
timescale.

The next section will look more closely at these issues.

3 Factors Governing Real Time and Real Fast

In the previous section, we saw that the duration of the
work is a critical factor: although there are a few ex-
ceptions, real-time response is usually only useful when
performing very short units of work in response to a
given real-time event. If the work unit is going to take
three weeks to complete, then starting the work a few
milliseconds late is unlikely to matter much. This re-
lationship is displayed in Figure 5 for work-unit dura-
tions varying from one microsecond on the far left to
100 millisecond on the far right, where smaller latencies
are better. The y-axis shows the total delay, including
the scheduling latency and the time required to perform
the unit of work. If the unit of work to be done is quite

le+86

1p0oue

leppe
real fast

1800 | L]
109 | e d

real time

Latency (Microseconds)

1 ! 1 ! !
1 10 180 1900 160ge 10080¢

Duration of Task {(Microseconds>

Figure 5: Real Time vs. Real Fast Against Work-Unit
Duration for User-Mode Computation

letB6

1606886

10608

real fast
1080 | ey 4
108 | e 4

i real time 1
18 o E

Latency (Microseconds?

1 . P P P P L
1 10 1808 1860 160BE 168088t

Duration of Task {(Microseconds?’

Figure 6: Real Time vs. Real Fast Against Work-Unit
Duration for Kernel Build

small, a real-time system will out-perform a non-real-
time system by orders of magnitude. However, when
the duration of the unit of work exceeds a few tens of
milliseconds, there is no discernable difference between
the two.

Furthermore, Figure 5 favors the real-time system be-
cause it assumes that the real-time system processes the
unit of work at the same rate as does the non-real-time
system. However, in the kernel-build scenario discussed
in Section 2.2, the non-real-time Linux built the kernel
16.78% faster than did the real-time Linux. If we fac-
tor in this real-time slowdown, the non-real-time kernel
offers slightly better overall latency than does the real-
time kernel for units of work requiring more than about
ten milliseconds of processing, as shown in Figure 6. Of
course, this breakeven would vary depending on the type
of work. For example, floating-point processing speed

18486

1vebee -

logde -

real fast
10680 L -
180 - .

real time

Latency (Microseconds)

1 1 ! 1 !
1 18 100 1008 19008 190081

Duration of Task {(Microseconds>

Figure 7: Real Time vs. Real Fast Against Work-Unit
Duration for Heavy I/O

oa T T

S8 -

38 -
99.999%

2e -

1@ - average B
L

nanosleep{} jitter {(microseconds?

2 I 1 1 I I
15} =4 4 = 8 18 12

Number of Parallel Tasks

Figure 8: Nanosleep Jitter With Increased Load

would be largely independent of the type of kernel (and
hence represented accurately by Figure 5), while heavy
I/0 workloads would likely be profoundly affected by
the kernel type, as shown in Figure 7, which uses the 2-
to-1 increase in kernel-build system time as an estimate
of the slowdown. In this case, the crossover occurs at
about one millisecond.

In addition, of course, a concern with worst-case behav-
ior should steer one towards real time, while a concern
with throughput or efficiency should steer one towards
real fast. In short, use real-time systems when the work
to be done is both time-critical and of short duration.
There are exceptions to this rule, but they are rare.

CPU utilization is another critical factor. To show this,
we run a number of the nanosleep () test programs
in parallel, with each program running 100,000 calls to
nanosleep in a loop (code shown in Figure 1). Fig-

ure 8 shows the resulting average, 99.999 percentile de-
lay, and maximum delay. The average jitter changes
very little as we add tasks, which indicates that we are
getting good scalability from a real-fast viewpoint. The
99.999 percentile and maximum delays tell a different
story, as both increase by more than a factor of three as
we go from a single task to 12 parallel tasks.

This is a key point: obtaining the best possible real-time
response usually requires that the real-time system be
run at low utilization. This is of course in direct conflict
with the desire to conserve energy and reduce system
footprint. In some cases, it is possible to get around
this conflict by putting both real-time and non-realtime
workload on the same system, but some care is still re-
quired. To illustrate this, run four parallel downloads of
a kernel source tree onto the system, then unpack one of
them and do a kernel build. When the nanosleep test
program runs at maximum priority concurrently with
this kernel-build workload, we see the 99.999% jitter at
59 microseconds with the worst case at 146 microsec-
onds, which is worse than the parallel runs—but still
much better than the multi-millisecond jitters from the
non-real-time kernel.

Advancing technology can be expected to improve real-
time Linux’s ability to maintain real-time latencies in
face of increasing CPU utilization, and careful choice
of drivers and hardware might further improve the sit-
uation. Also, more-aggressive tuning might well pro-
duce better results. For example, this workload does
not control the periodicity of the nanosleep () test
programs, so that all 12 instances might well try to run
simultaneously on a system that has but four CPUs. In
real-world systems, mechanical constraints often limit
the number of events that can occur simultaneously, in
particular, engines are configured so that it is impossible
for all cylinders to fire simultaneously. That said, sites
requiring the best possible utilization will often need to
sacrifice some real-time response.

Similarly, if you need to use virtualization to run mul-
tiple operating-system instances on a single server, you
most likely need real fast as opposed to real time. Again,
technology is advancing quite quickly in this area, es-
pecially in the embedded space, so we may soon see
production-quality virtualization environments that can
simultaneously support both real-time and real-fast op-
erating systems. This is especially likely to work well
if either: (1) CPUs and memory can be dedicated to
a given operating instance or (2) the hypervisor (e.g.,

Linux with KVM) gives real-time response, but the
guest operating systems need not do so. Longer term,
it is quite possible that both the hypervisor and the guest
OSes will offer real-time response.

4 Sources of Real-Time Overhead

The nanosleep() test program used the
mlockall () system call to pin down memory
in order to avoid page-fault latencies. This is great for
this test program’s latency, but has the side-effect of
removing a chunk of memory from the VM system’s
control, which limits the system’s ability to optimize
memory usage. This can degrade throughput for some
workloads.

Real-time Linux’s more-aggressive preemption in-
creases the overhead of locking and interrupts [2]. The
reason for the increased locking overhead is that the cor-
responding critical sections may be preempted. Now,
suppose that a given lock’s critical section is preempted,
and that each CPU subsequently attempts to acquire
the lock. Non-real-time spinlocks would deadlock at
this point: the CPUs would each spin until they ac-
quired the lock, but the lock could not be released un-
til the lock holder got a chance to run. Therefore,
spinlock-acquisition primitives must block if they can-
not immediately acquire the lock, resulting in increased
overhead. The need to avoid priority inversion further
increases locking overhead. This overhead results in
particularly severe performance degradation for some
disk-I/O benchmarks, however, real-time adaptive spin-
locks may provide substantial improvements [4]. In ad-
dition, the performance of the user-level pthread_
mutex_lock () primitives may be helped by private
futexes [5].

Threaded interrupts permit long-running interrupt han-
dlers to be preempted by high-priority real-time pro-
cesses, greatly improving these processes’ real-time la-
tency. However, this adds a pair of context switches
to each interrupt even in absence of preemption, one
to awaken the handler thread and another when it goes
back to sleep, and furthermore increases interrupt la-
tency. Devices with very short interrupt handlers can
specify IRQF_NODELAY in the flags field of their
struct irgaction to retain the old hardirq behav-
ior, but this is not acceptable for handlers that run for
more than a small handful of microseconds.

Linux’s O(1) scheduler is extremely efficient on SMP
systems, as a given CPU need only look at its own
queue. This locality reduces cache thrashing, yield-
ing extremely good performance and scalability, aside
from infrequent load-balancing operations. However,
real-time systems often impose the constraint that the N
highest-priority runnable tasks be running at any given
point in time, where N is the number of online CPUs.
This constraint cannot be met without global schedul-
ing, which re-introduces cache thrashing and lock con-
tention, degrading performance, especially on work-
loads with large numbers of runnable real-time tasks.
In the future, real-time Linux is likely to partition large
SMP systems, so that this expensive global scheduling
constraint will apply only within each partition rather
than across the entire system.

Real-time Linux requires high-resolution timers with
tens-of-microseconds accuracy and precision, resulting
in higher-overhead timer management [3, 6]. However,
these high-resolution timers are implemented on a per-
CPU basis, so that it is unlikely that this overhead will
be visible at the system level for most workloads. In
addition, real-time Linux distinguishes between real-
time “timers” and non-real-time “timeouts”, and only
the real-time timers use new and more-expensive high-
resolution-timer infrastructure. Timeouts, for exam-
ple, TCP/IP retransmission timeouts, continue to use
the original high-efficiency timer-wheel implementa-
tion, further reducing the likelihood of problematic
timer overheads.

Real-time Linux uses preemptible RCU, which has
slightly higher read-side overhead than does Classic
RCU [8]. However, the read-side difference is unlikely
to be visible at the system level for most workloads. In
contrast, preemptible RCU’s update-side “grace-period”
latency is significantly higher than that of RCU clas-
sic [7]. If this becomes a problem, it should be possi-
ble to expedite RCU grace period, albeit incurring ad-
ditional overhead. It may then be possible to retire the
Classic RCU implementation [9], but given that Classic
RCU’s read-side overhead is exactly zero, careful anal-
ysis will be required before such retirement can be ap-
propriate.

In summary, the major contributors to the higher over-
head of real-time Linux include increased overhead of
locking, threaded interrupts, real-time task scheduling,
and increased RCU grace-period latency. The next sec-
tion gives some simple rules that help choose between

the real fast non-real-time Linux kernel and the real-time
Linux kernel.

5 How to Choose

The choice of real time vs. real fast is eased by consid-
ering the following principles:

1. Consider whether the goal is to get a lot of work
done (real fast throughput), or to get a little bit of
work done in a predictable and deterministic time-
frame (real-time latency).

2. Consider whether the hardware and software can
accommodate the heaviest possible peak load with-
out missing deadlines (real time), or whether occa-
sional peak loads will degrade response times (real
fast). It is common real-time practice to reserve
some fraction of resources, for example, to limit
CPU utilization to 50%.

3. Consider memory utilization: if your workload
oversubscribes memory, so that page faults will oc-
cur, you cannot expect real-time response.

4. If you use virtualization, you are unlikely to get
real-time response—though this may be changing.

5. Consider the workload: a process that executes
normal instructions in user mode will incur a
smaller real-time average-overhead penalty than
will a process that makes heavy use of kernel ser-
vices.

6. Focus on work-item completion time instead of on
start time: the longer the work item’s execution
time, the less helpful real-time Linux will be.

The need to focus on deterministic work-item comple-
tion cannot be stressed enough. Common practice in the
real-time arena is to focus on when the work-item starts,
in other words, on scheduling latency. This is under-
standable, given the historic separation of the real-time
community into RTOS and real-time application devel-
opers, both working on proprietary products. It is hoped
that the advent of open-source real-time operating sys-
tems will make it easier for developers to take the more
global viewpoint, focusing on the time required for the
application to both start and finish its work. Please note

Throughput Y
Only Goal?

YN

Peak Loads %
Degrade
Response Time?

YN

All Memory Y
Consumed?

YN

Virtualization Y
Required?

N

Basic Work Item Y
>100ms?

> Real Fast

YN

Real Time

Figure 9: Real Time vs. Real Fast Decision Flow

that it is important to focus on the proper level of de-
tail, for example, event-driven systems should analyze
deadlines on a per-event basis.

A rough rule-of-thumb decision flow is shown in Fig-
ure 9. If you only care about throughput—the amount of
work completed per unit time—then you want real fast.
If cost, efficiency, or environmental concerns force you
to run at high CPU utilization so that peak loads degrade
response times, then you again want real fast—and as a
rough rule of thumb, the more aggressive your real-time
workload, the lower your CPU utilization must be. One
exception to this occurs in some scientific barrier-based
computations, where real-time Linux can reduce OS jit-
ter, allowing the barrier computations to complete more
quickly—and in this case, because floating point runs at
full speed on real-time Linux, this is one of those rare
cases where you get both real fast and real time simul-
taneously. If your workload will fill all of memory, then
themlockall () system call becomes infeasible, forc-
ing you to either purchase more memory or allow the re-
sulting page faults force you to go with real fast. Given
the current state of the art, if you need virtualization,
you are most likely in real-fast territory—though this
may soon be changing, especially for carefully config-

ured systems. Finally, if each basic item of work takes
hundreds of milliseconds, any scheduling-latency bene-
fit from real-time Linux is likely to be lost in the noise.

If you reach the real-time bubble in Figure 9, you may
need some benchmarking to see which of real time or
real fast works best for your workload. Of course, no
benchmarking is needed to see that a workload requir-
ing (say) 100 microseconds of processing with a 250-
microsecond deadline will require real-time Linux, and
there appears to be no shortage of applications of this
type. In fact, it appears that real-time processing is be-
coming more mainstream. This is due to the fact that the
availability of real-time Linux has made it easier to in-
tegrate real-time systems into enterprise workloads [1],
which are starting to require increasing amounts of real-
time behavior. Where traditional real-time systems were
stand-alone systems, modern workloads increasingly re-
quire that the real-time systems be wired into the larger
enterprise.

6 Concluding Remarks

If you remember only one thing from this paper, let it be
this: “use the right tool for the job!!!”

Of course, ongoing work to reduce the overhead of
real-time Linux will hopefully reduce the performance
penalty imposed by the real-time kernel, which will in
turn make real-time Linux the right tool for a greater
variety of workloads.

Might real-time Linux’s performance penalty eventually
be reduced to the point that real-time Linux is used for
all workloads? This outcome might seem quite impossi-
ble. On the other hand, any number of impossible things
have come to pass in my lifetime, including space flight,
computers beating humans at chess, my grandparents
using computers on a daily basis, and a single operating-
system-kernel source base scaling from cell phones to
supercomputers. I have since learned to be exceedingly
careful about labeling things “impossible”.

Impossible or not, here are some challenging but rea-
sonable intermediate steps for the Linux kernel, some
of which are already in progress:

1. Reduce the real-time performance penalty for mul-
tiple communications streams.

2. Reduce the real-time performance penalty for
mass-storage 1/0. (This becomes more urgent with
the advent of solid-state disks.)

3. Reduce the preemptable RCU grace-period latency
penalty.

4. Where feasible, adjust implementation so that per-
formance penalties are incurred only when there
are actually real-time tasks in the system.

It will also likely be possible to further optimize some
of the real-time implementations. In any case, real-time
Linux promises to remain an exciting and challenging
area for some time to come.

Acknowledgements

No article mentioning the -rt patchset would be com-
plete without a note of thanks to Ingo Molnar, Thomas
Gleixner, Sven Deitrich, K. R. Foley, Gene Heskett,
Bill Huey, Esben Neilsen, Nick Piggin, Steven Rost-
edt, Michal Schmidt, Daniel Walker, and Karsten Wiese.
We all owe Ankita Garg, Vara Prasad, Ananth Mav-
inakayanahalli, Chirag Jog, and especially Darren Hart
and Paul Giangarra a debt of gratitude for their help in
making this paper human-readable. I am grateful to Paul
Clarke for the use of his machines, and the ABAT team
for providing easy access to these machines. Finally, I
owe thanks to Daniel Frye and Kathy Bennett for their
support of this effort.

Legal Statement

This work represents the views of the authors and does not necessarily rep-
resent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be trademarks or service

marks of others.

References

[1] BERRY, R. F., MCKENNEY, P. E., AND PARR,
F. N. Responsive systems: An introduction. /BM
Systems Journal 47, 2 (April 2008), 197-206.

[2] CORBET, J. Approaches to realtime Linux.
Available: http://lwn.net/Articles/
106010/ [Viewed March 25, 2008], October
2004.

(3]

[10]

CORBET, J. A new approach to kernel timers.
Available: http://lwn.net/Articles/
152436/ [Viewed April 14, 2008], September
2005.

CORBET, J. Realtime adaptive locks. Available:
http://lwn.net/Articles/271817/
[Viewed April 14, 2008], March 2008.

DUMAZET, E. [PATCH] FUTEX : new PRI-
VATE futexes. Available: http://lkml.
org/1lkml/2007/4/5/236 [Viewed April 18,
2008], April 2007.

GLEIXNER, T., AND MOLNAR, I. [announce]
ktimers subsystem. Available: http://lwn.
net/Articles/152363/ [Viewed April 14,
2008], September 2005.

GUNIGUNTALA, D., MCKENNEY, P. E.,
TRIPLETT, J., AND WALPOLE, J. The
read-copy-update mechanism for supporting
real-time applications on shared-memory mul-
tiprocessor systems with Linux. [IBM Systems
Journal 47, 2 (May 2008), 221-236. Avail-
able: http://www.research.ibm.com/
journal/sj/472/guniguntala.pdf
[Viewed April 24, 2008].

MCKENNEY, P. E. The design of preemptible
read-copy-update. Available: http://lwn.
net/Articles/253651/ [Viewed October
25, 2007], October 2007.

MCKENNEY, P. E., SARMA, D., MOLNAR,
I., AND BHATTACHARYA, S. Extending
RCU for realtime and embedded workloads.
In Ottawa Linux Symposium (July 2006),
pp. v2 123-138. Available: http://www.
linuxsymposium.org/2006/view_
abstract.php?content_key=184 http:
//www.rdrop.com/users/paulmck/
RCU/OLSrtRCU.2006.08.11a.pdf
[Viewed January 1, 2007].

MOLNAR, I. Index of /mingo/realtime-preempt.
Available: http://www.kernel.org/pub/
linux/kernel/projects/rt/ [Viewed
February 15, 2005], February 2005.

