
© 2009 IBM Corporation

When Do Real Time Systems Need
Multiple CPUs?

Paul E. McKenney, IBM Distinguished Engineer, CTO Linux

October 24, 2010

© 2009 IBM Corporation2

Overview

When Do Real Time Systems Need Multiple CPUs?

SMP Real Time Systems: Inevitable?

Very Brief Overview of Parallelization

Two Basic Modes of Control-Loop Parallelism

Evaluation

 “Real Time Theory Depression” and How to Fight It

What to do with Leftover CPUs?

Summary

© 2009 IBM Corporation3

SMP Real Time Systems: Inevitable?

© 2009 IBM Corporation4

SMP Inevitability: The Party Line

When Do Real Time Systems Need Multiple CPUs?

© 2009 IBM Corporation5

Real-World Evidence for SMP Inevitability...

Multi-core ARM CPUs: a few tens of dollars per chip

SMP support in -rt patchset for the Linux kernel

SMP real-time systems in use, including financial military
applications

© 2009 IBM Corporation6

More Real-World Evidence for SMP Inevitability...

Multi-core ARM CPUs: a few tens of dollars per chip

SMP support in -rt patchset for the Linux kernel

SMP real-time systems in use, including financial military
applications

But is SMP real time the right answer in all cases?

© 2009 IBM Corporation7

SMP Real Time Systems: The Case Against

 Most software (especially real-time software is still single-threaded

 Many algorithms and workloads lack high-quality parallel implementations

 Parallel implementations often larger and more complex than their single-
threaded counterparts

 Parallel implementations more difficult to validate than their single-
threaded counterparts

 RT theory still tied to uniprocessor models and algorithms

 Parallel hardware is here. Parallel software? Not so much...

 Need a reason for RT parallelism: default answer is single-threaded

© 2009 IBM Corporation8

SMP Real Time Systems: The Case Against

 Most software (especially real-time software is still single-threaded

 Many algorithms and workloads lack high-quality parallel implementations

 Parallel implementations often larger and more complex than their single-
threaded counterparts

 Parallel implementations more difficult to validate than their single-
threaded counterparts

 RT theory still tied to uniprocessor models and algorithms

 Parallel hardware is here. Parallel software? Not so much...

 Need a reason for RT parallelism: default answer is single-threaded

 Blindly replicating UP RT in an SMP environment: not a winning strategy!

© 2009 IBM Corporation9

Very Brief Overview of Parallelization

© 2009 IBM Corporation10

Parallelization: First, Partition the Data!

Code Data Code

Data

Data

Data

Data

Data

Just a quick overview: there are full textbooks on this topic, for example:
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

© 2009 IBM Corporation11

Parallelization: General Process

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

© 2009 IBM Corporation12

Two Basic Modes of Control-Loop Parallelism

© 2009 IBM Corporation13

Two Basic Modes of Parallelism

Stage 1

Stage 2

Stage 3

Pipelining

Partition 1 Partition 2 Partition 3

Data Parallelism

Which to use? And when?

© 2009 IBM Corporation14

Evaluation

© 2009 IBM Corporation15

Test With Randomly Chosen Synthetic Workload

void mung(int *x, int n)
{
 int i;

 for (i = 0; i < n; i++)
 x[i] = 10 + x[i] / 10;
}

© 2009 IBM Corporation16

Pipelining Test Setup

User-mode tests

Synchronization via pthread_mutex_t

Overhead of pthread_create() and pthread_join() counted
against pipelining

Flow of control:
–Record start time
–Process the first half of the data
–Create a child thread using pthread_create()
–Child processes second half of the data
–Use pthread_join() to synchronize with child thread
–Record end time

© 2009 IBM Corporation17

Pipelining Parallel Control Flow

Record Start Time
Process First
Half of Data

Create Child
Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

© 2009 IBM Corporation18

Latency Results for Pipelining: Not Good!!!

Always Faster To Run a Single Thread!!!

© 2009 IBM Corporation19

Pipelining Test Setup: Pre-Existing Threads

User-mode tests

Synchronization via pthread_mutex_t

Create threads at initialization:
–Overhead of pthread_create() and pthread_join() not
counted against pipelining

Lock threads down to specific CPUs

Downstream thread spins waiting for work from upstream
thread

© 2009 IBM Corporation20

Pipelining Parallel Control Flow: Pre-existing Threads

Record Start Time
Process First
Half of Data

Notify Child
Thread

Process Second
Half of Data

Wait For
Notification

Record End Time

Notify Parent
Thread

© 2009 IBM Corporation21

Latency Results for Pipelining With Pre-Existing Threads...

Well, it isn't quite as bad as before, but...

© 2009 IBM Corporation22

Why Bother With Parallel Pipelines???

© 2009 IBM Corporation23

Good Use of Parallel Pipelines: Overlap Successive Work Units

Work Unit 1 Work Unit 1

Wait Execute

Total

Work Unit 1A Work Unit 2A

Work Unit 1B Work Unit 2B

Wait Execute

Total

CPU 0

CPU 1

© 2009 IBM Corporation24

Data Parallel Test Setup

User-mode tests

Synchronization via pthread_mutex_t

Overhead of pthread_create() and pthread_join() counted
against pipelining

© 2009 IBM Corporation25

Data Parallel Control Flow

Record Start Time
Create Child

Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

Process First
Half of Data

© 2009 IBM Corporation26

Latency Results for Data Parallelism: Not Great, But OK...

© 2009 IBM Corporation27

Data Parallel Test Setup: Pre-Existing Threads

User-mode tests

Synchronization via pthread_mutex_t

Create threads at initialization:
–Overhead of pthread_create() and pthread_join() not
counted against pipelining

Lock threads down to specific CPUs

Downstream thread spins waiting for work from upstream
thread

© 2009 IBM Corporation28

Data Parallel Control Flow: Pre-Existing Threads

Record Start Time
Notify Child

Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

Process First
Half of Data

Notify Parent
Thread

© 2009 IBM Corporation29

Latency Results for Pipelining With Pre-Existing Threads...

Semi-respectable speedup! What can be achieved?

© 2009 IBM Corporation30

“Real Time Theory Depression” and How to Fight It

© 2009 IBM Corporation31

When In Doubt, Normalize!!!

 T: Time required to complete unit of work in single-threaded environment

 C: Communications overhead (of all kinds) incurred in SMP environment

 N: Number of CPUs/threads

 S: Speedup: sequential time divided by SMP time (yes, can be less than 1!)

 Plot S against T/C...

S=
T

T
N
C

© 2009 IBM Corporation32

Theoretical Limits For Data Parallelism

Murphy Strikes Again!!! (And CS Theory is Depressing!)

S=
N

T
C

T
C
N

© 2009 IBM Corporation33

Suppose That You Need a Specific Speedup

Solve prior expression for T/C:

Plug in values for S & N:
–40% speedup (S=1.4)

• N=2: T/C>=4.7
• N=3: T/C>=2.6
• N=4: T/C>=2.2

–100% speedup (S=2.0)
• N=2: T/C infinite
• N=3: T/C>=6
• N=4: T/C>=4

–200% speedup (S=3.0)
• N=3: T/C infinite
• N=4: T/C>=12

The tighter your RT deadlines, the less helpful parallelism will be!!!

T
C
=S

N
N−S

© 2009 IBM Corporation34

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far???

© 2009 IBM Corporation35

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs...

© 2009 IBM Corporation36

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs... Such a tragedy!!!

© 2009 IBM Corporation37

What to do with Leftover CPUs?

© 2009 IBM Corporation38

What To Do With Leftover CPUs???

Get a system with fewer CPUs

Power off the leftover CPUs

Use leftover CPUs to run any needed UI or reporting

For enterprise real time, run part of the enterprise portion of the
application on the leftover CPUs

These last two imply RT-to-non-RT communication...

© 2009 IBM Corporation39

Enterprise Real Time: RT Reflexes and Enterprise Processing

Machine tool 1

SCADA

Enterprise Resource Planning (ERP)

Supply Chain Invoicing &
billing

Per-domain RT QoS:
• white: enterprise-like
• silver: soft, 1-5s
• gold: harder, <1s
• red: hard, sub-reflex

Work
Routing

Manufacturing Execution System (MES)

Logistics
ERP

Setup

SCADA: supervisory/system control and data acquisition

Transport
logistics

Materials
warehousing

Factory Automation System / DCSFactory Automation System / DCSFactory Automation System / DCS

Print/Verify/Ship Application
Sensors (on-site stocks)

Factory conditions

RFID
print

RFID
read

conveyor
actuator

PLC

PLC PLC

Machine tool 2

PLC

PLC

© 2009 IBM Corporation40

How To Do RT-To-Non-RT Communication???

Messaging:
–Real-time implementations of linked queues
–User-mode equivalents of kfifo ring buffer
–Simple shared-memory “mailboxes”
–Numerous real-time messaging projects and products

Lookups (read-mostly hash tables, lists, search trees):
–RCU!!!

Other communications might use locking
–And you might want priority boosting...

© 2009 IBM Corporation41

Thread Placement Can Be Critical!!!

Operation Ratio

Clock period 0.4 1

“Best-case” CAS 12.2 33.8

Best-case lock 25.6 71.2

Single cache miss 12.9 35.8

CAS cache miss 7.0 19.4

31.2 86.6

31.2 86.5

92.4 256.7

95.9 266.4

Cost (ns)

Single cache miss (off-core)

CAS cache miss (off-core)

Single cache miss (off-socket)

CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

© 2009 IBM Corporation42

Summary

SMP hardware is here – SMP software, not so much

SMP for real time can make sense In control loops
–Pipelining: reduce queuing delays
–Data parallelism: reduce execution delays
–However, the most aggressive control loop deadlines are
hurt most by SMP communications overhead...

Leftover CPUs have many uses
–But don't be afraid to simply refuse to use them

Thread placement is critically important
–Something about the finite speed of light and atomic nature
of matter – and lack of theory of SMP real time!

© 2009 IBM Corporation43

Questions?

