Paul E. McKenney, IBM Distinguished Engineer, CTO Linux
October 24, 2010

When Do Real Time Systems Need
Multiple CPUs?

© 2009 IBM Corporation

When Do Real Time Systems Need Multiple CPUs?

Overview

" SMP Real Time Systems: Inevitable?

"Very Brief Overview of Parallelization

" Two Basic Modes of Control-Loop Parallelism

" Evaluation

"“Real Time Theory Depression” and How to Fight It
"What to do with Leftover CPUs?

"Summary

© 2009 IBM Corporation

SMP Real Time Systems: Inevitable?

© 2009 IBM Corporation

When Do Real Time Systems Need Multiple CPUs?

SMP Inevitability: The Party Line

10000

L)
=t

1000

v MIPS

100

C
ii
=
=y
L
LL
i

-
-

PU

-
"t

4 © 2009 IBM Corporation

Real-World Evidence for SMP Inevitabllity...

" Multi-core ARM CPUs: a few tens of dollars per chip
" SMP support in -rt patchset for the Linux kernel

" SMP real-time systems in use, including financial military
applications

5 © 2009 IBM Corporation

More Real-World Evidence for SMP Inevitabllity...

" Multi-core ARM CPUs: a few tens of dollars per chip
" SMP support in -rt patchset for the Linux kernel

" SMP real-time systems in use, including financial military
applications

"But is SMP real time the right answer in all cases?

6 © 2009 IBM Corporation

SMP Real Time Systems: The Case Against

" Most software (especially real-time software is still single-threaded
" Many algorithms and workloads lack high-quality parallel implementations

" Parallel implementations often larger and more complex than their single-
threaded counterparts

" Parallel implementations more difficult to validate than their single-
threaded counterparts

" RT theory still tied to uniprocessor models and algorithms

= Parallel hardware is here. Parallel software? Not so much...

" Need a reason for RT parallelism: default answer is single-threaded

7 © 2009 IBM Corporation

SMP Real Time Systems: The Case Against

" Most software (especially real-time software is still single-threaded
" Many algorithms and workloads lack high-quality parallel implementations

" Parallel implementations often larger and more complex than their single-
threaded counterparts

" Parallel implementations more difficult to validate than their single-
threaded counterparts

" RT theory still tied to uniprocessor models and algorithms

" Parallel hardware is here. Parallel software? Not so much...
" Need a reason for RT parallelism: default answer is single-threaded

" Blindly replicating UP RT in an SMP environment: not a winning strategy!

8 © 2009 IBM Corporation

Very Brief Overview of Parallelization

© 2009 IBM Corporation

Parallelization: First, Partition the Datal

Data
Code Data Code Data
Data
Data

Just a quick overview: there are full textbooks on this topic, for example:
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.nhtml

10 © 2009 IBM Corporation

Parallelization: General Process

Work

Partitioning \

Resource
Parallel

Access Control

Partitioning
& Replication

Interacting \

With Hardware

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

11 © 2009 IBM Corporation

12

Two Basic Modes of Control-Loop Parallelism

© 2009 IBM Corporation

Two Basic Modes of Parallelism

Pipelining Data Parallelism

Partition 1 Partition 2 Partition 3

Which to use? And when?

13 © 2009 IBM Corporation

14

Evaluation

© 2009 IBM Corporation

Test With Randomly Chosen Synthetic Workload

void nmung(int *x, int n)

{

int i;

for (I =0; i < n; |++)
x[i] =10 + x[i] [/ 10;

15 © 2009 IBM Corporation

Pipelining Test Setup

" User-mode tests
" Synchronization via pthread mutex t

" Overhead of pthread_create() and pthread_join() counted
against pipelining

" Flow of control:
—Record start time
—Process the first half of the data
—Create a child thread using pthread create()
—Child processes second half of the data
—Use pthread_join() to synchronize with child thread
—Record end time

16 © 2009 IBM Corporation

Pipelining Parallel Control Flow

Process First
—
Record Start Time Half of Data

Create Child
Thread

_ Synchronize With
Record End Time Child Thread

17

Process Second
Half of Data

© 2009 IBM Corporation

Latency Results for Pipelining: Not Good!!!

a1

0.0

@.001

0.0001

gl
a
—
=
i
i
(]
]
E
-

1e-05

1e-06
10 100 1000 10000

Size of Lnit of Waork

Always Faster To Run a Single Thread!!! © 2009 IBM Corporation

18

Pipelining Test Setup: Pre-Existing Threads

" User-mode tests
" Synchronization via pthread mutex t

" Create threads at initialization:
—QOverhead of pthread _create() and pthread_join() not
counted against pipelining

" Lock threads down to specific CPUs

" Downstream thread spins waiting for work from upstream
thread

19 © 2009 IBM Corporation

Pipelining Parallel Control Flow: Pre-existing Threads

_ Process First
—>
Record Start Time Half of Data
Notify Child
Thread

Notify Parent
Thread

Process Second
Half of Data

Y

Record End Time s W.a.'t qu -
Notification

20 © 2009 IBM Corporation

Latency Results for Pipelining With Pre-Existing Threads...

0.0001

o
|I:|
n

gl
a
—
=
i
i
(]
]
E
-

1e-06
10

Size of Lnit of Waork

21 WE”, It |Sn't qUIte aS bad aS before, but... © 2009 IBM Corporation

Why Bother With Parallel Pipelines???

22 © 2009 IBM Corporation

Good Use of Parallel Pipelines: Overlap Successive Work Units

Work Unit 1 Work Unit 1

IS = W= W=

g _ — >

: Wait ' Execute :

‘e >

! Total '
I\« Unit 1A Work Unit 2A —p CPU O

Wait : Execute :

Total '

S G GaE b

23 © 2009 IBM Corporation

Data Parallel Test Setup

" User-mode tests
" Synchronization via pthread mutex t

" Overhead of pthread_create() and pthread_join() counted
against pipelining

24 © 2009 IBM Corporation

Data Parallel Control Flow

Sl St e e cUcele Gl
Thread

Half of Data

|

Process Second
Half of Data

: Synchronize With
Record End Time Child Thread -

25

© 2009 IBM Corporation

Latency Results for Data Parallelism: Not Great, But OK...

26

gl
a
—
=
i
i
(]
]
E
-

0.1
0.0
@.001
0.0001
1e-05
1e-06

10 100 1000 10000

Size of Lnit of Waork

© 2009 IBM Corporation

Data Parallel Test Setup: Pre-Existing Threads

" User-mode tests
" Synchronization via pthread mutex t

" Create threads at initialization:
—QOverhead of pthread _create() and pthread_join() not
counted against pipelining

" Lock threads down to specific CPUs

" Downstream thread spins waiting for work from upstream
thread

27 © 2009 IBM Corporation

Data Parallel Control Flow: Pre-Existing Threads

Sl S e e oW Cille
Thread

Process First
Half of Data

: Synchronize With

28

Process Second
Half of Data

v

Notify Parent
Thread

© 2009 IBM Corporation

Latency Results for Pipelining With Pre-Existing Threads...

0.0001

gl
a
—
=
i
i
(]
]
E
-

1a-06
10 100

Size of Lnit of Waork

20 Semi-respectable speedup! What can be achieved? © 2009 TBM Corporation

30

“Real Time Theory Depression” and How to Fight It

© 2009 IBM Corporation

When In Doubt, Normalize!!!

" T: Time required to complete unit of work in single-threaded environment

" C: Communications overhead (of all kinds) incurred in SMP environment

" N: Number of CPUs/threads

" S: Speedup: sequential time divided by SMP time (yes, can be less than 1!)

" Plot S against T/C...

31 © 2009 IBM Corporation

Theoretical Limits For Data Parallelism

32 Murphy Strikes Again!!! (And CS Theory is Depressing!) 200 ieu corporaton

Suppose That You Need a Specific Speedup

" Solve prior expression for T/C:

" Plug in values for S & N:
—40% speedup (S=1.4)
* N=2: T/C>=4.7
« N=3: T/C>=2.6
« N=4: T/C>=2.2
—100% speedup (S=2.0)
* N=2: T/C infinite
* N=3: T/C>=6
* N=4: T/C>=4
—200% speedup (S=3.0)
* N=3: T/C infinite
* N=4: T/C>=12

" The tighter your RT deadlines, the less helpful parallelism will be!!!

33 © 2009 IBM Corporation

How Can You Fight Theoretical RT Parallel Depression???

Apply parallelism at the highest possible level
— The larger your units of work, the more benefit you will get from parallelization

Use interleaving (crypto, compression, encoding)
— Some difficulties applying to audio
— Consider splitting the display for video: but too bad about existing standards...

Ditch parallelism: hand-optimize sequential control loops
— Real men will hand-code them in assembly
— Real women will hand-code them in hexadecimal

Ditch parallelism: hardware acceleration for standard transformations

Ditch parallelism: FPGAs for non-standard transformations
— Which won't necessarily be any easier than coding in parallel
— But some workloads are better suited to FPGAs and vice versa

* And if the original sequential implementation was fast enough, why did you even bother reading this
far???

34 © 2009 IBM Corporation

How Can You Fight Theoretical RT Parallel Depression???

Apply parallelism at the highest possible level
— The larger your units of work, the more benefit you will get from parallelization

Use interleaving (crypto, compression, encoding)
— Some difficulties applying to audio
— Consider splitting the display for video: but too bad about existing standards...

Ditch parallelism: hand-optimize sequential control loops
— Real men will hand-code them in assembly
— Real women will hand-code them in hexadecimal

Ditch parallelism: hardware acceleration for standard transformations

Ditch parallelism: FPGAs for non-standard transformations
— Which won't necessarily be any easier than coding in parallel
— But some workloads are better suited to FPGAs and vice versa

* And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs...

35 © 2009 IBM Corporation

How Can You Fight Theoretical RT Parallel Depression???

Apply parallelism at the highest possible level
— The larger your units of work, the more benefit you will get from parallelization

Use interleaving (crypto, compression, encoding)
— Some difficulties applying to audio
— Consider splitting the display for video: but too bad about existing standards...

Ditch parallelism: hand-optimize sequential control loops
— Real men will hand-code them in assembly
— Real women will hand-code them in hexadecimal

Ditch parallelism: hardware acceleration for standard transformations

Ditch parallelism: FPGAs for non-standard transformations
— Which won't necessarily be any easier than coding in parallel
— But some workloads are better suited to FPGAs and vice versa

* And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs... Such a tragedy!!!

36 © 2009 IBM Corporation

37

What to do with Leftover CPUS?

© 2009 IBM Corporation

What To Do With Leftover CPUs???

" Get a system with fewer CPUs
" Power off the leftover CPUs
" Use leftover CPUs to run any needed Ul or reporting

" For enterprise real time, run part of the enterprise portion of the
application on the leftover CPUs

" These last two imply RT-to-non-RT communication...

38 © 2009 IBM Corporation

Enterprise Real Time: RT Reflexes and Enterprise Processing

Lolgisgcs Enterprise Resource Planning (ERP)

Manufacturing Execution System (MES) Supply Chain Inv&mwg .

SCADA Transport Materials
logistics warehousing

Factory Automation System / DCS

Work
Setup Routing

Machine tool 1 Machine tool 2 Sensors (on-site_ _stocks)
Print/Verify/Ship Application Factory conditions

Per-domain RT QoS:
RFID RFID conveyor white: enterprise-like

print read actuator silver: soft, 1-5s

SCADA: supervisory/system control and data acquisition gold: harder, <1s
red: hard, sub-reflex

39 © 2009 IBM Corporation

How To Do RT-To-Non-RT Communication???

" Messaging:
—Real-time implementations of linked queues
—User-mode equivalents of kfifo ring buffer
—Simple shared-memory “mailboxes”
—Numerous real-time messaging projects and products

" Lookups (read-mostly hash tables, lists, search trees):
—RCU!l

" Other communications might use locking
—And you might want priority boosting...

40

© 2009 IBM Corporation

Thread Placement Can Be Critical!l!

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Clockperiod [04 = 1

CAS cache miss(off-socket)

4 © 2009 IBM Corporation

-

Summary

=" SMP hardware is here — SMP software, not so much

" SMP for real time can make sense In control loops
—Pipelining: reduce queuing delays
—Data parallelism: reduce execution delays
—However, the most aggressive control loop deadlines are
hurt most by SMP communications overhead...

" Leftover CPUs have many uses
—But don't be afraid to simply refuse to use them

"Thread placement is critically important
—Something about the finite speed of light and atomic nature
of matter — and lack of theory of SMP real time!

42 © 2009 IBM Corporation

43

Questions?

© 2009 IBM Corporation

