“Real Time” vs. “Real Fast™:

How to Choose?

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

 |2008OtawalinuxSymposum . EIEF.

Overview

"= What is “Real Time” and “Real Fast”, Anyway???
= Example Real Time Application

= Example Real Fast Application

= Real Time vs. Real Fast

= How to Choose

What is “Real Time”, Anyway?

Review of Definitions

(Taken from January 2007 Linux Journal article.)

What is “Real Time”, Anyway? (Definition #1)

A hard realtime system will
always

meet its deadlines

@

| 2008 Ottawa Linux Symposium

Problem With Definition #1

* If you have a hard realtime system...

* | have a hammer that will make it miss its deadlines!

IBM Linux Technology Center © 2006, 2007 IBM Corporation

 |2008OtawaLinuxSymposum . EEEL.
What is “Real Time”, Anyway? (Definition #2)

A hard realtime system will
either:
(1) meet its deadlines, or
(2) give a timely failure indication

| 2008 Ottawa Linux Symposium

Problem With Definition #2

* | have a “hard realtime” system
* It simply always fails!

LY
)]

IBM Linux Technology Center

© 2006, 2007 IBM Corporation

 |2008Ottawalinux Symposiom . EEEE.
What is “Real Time”, Anyway? (Definition #3)

A hard realtime system will
meet all its deadlines!!!

(But only in absence of hardware failure.)

(Never mind that handling hardware failures is an important software task!!!)

@

| 2008 Ottawa Linux Symposium

Problem With Definition #3

= “Rest assured, sir, that if your life support fails, your death will
most certainly not have been due to a software problem!!!”

IBM Linux Technology Center © 2006, 2007 IBM Corporation

 |2008OtawaLinuxSymposum . EEEL.
What is “Real Time”, Anyway? (Definition #4)

A hard realtime system will
pass a specified test suite.

(This definition can cause purists severe heartburn.)

(But is actually used in real life.)

But One Other Question on Definitions 1-3...

What is the Deadline???

What guarantees can an RTOS make?

 |2008 Ottawa Linux Symposium ~ EE=E,
Real Time and Real Fast: Definitions

* Real Time
* OS: “how long before work starts?”

= Real Fast
 Application: “once started, how quickly is work completed?”

* This Separation Can Result in Confusion!

et >|< —
Real Time Real Fast

] o

What Users Care About

Example Real Time Application: Fuel Injection

 |2008Ottawalinux Symposiom . EEEE.
Example Real-Time Application: Fuel Injection

" Mid-sized industrial engine
 Fuel injection within one degree surrounding “top dead center”

= 1500 RPM rotation rate
+ 1500 RPM / 60 sec/min = 25 RPS
« 25 RPS * 360 degrees/round = 9000 degrees/second
* About 111 microseconds per degree
* Hence need to schedule to within about 100 microseconds

 |2008OtawalinuxSymposum . EIEF.

Fuel Injection: Conceptual Operation

-ogm = oy -

Top Dead Center Bottom Dead Center

 |2008OtawalinuxSymposum . EIEF.

Fuel Injection: Too Early and Too Late Are Bad

— i —

L N yom =

Injecting Too Early Injecting Too Late
(Exaggerated) (Exaggerated)

Fuel Injection: Fanciful Code to Operate Injectors

struct timespec timewait;

angle = crank position();

timewait.tv_sec = 0;

timewait.tv _nsec = 1000 * 1000 * 1000 * angle / 9000;
nanosleep (&timewait, NULL) ;

inject() ;

Fuel Injection: Test Program

if (clock_gettime (CLOCK REALTIME, ×tart) !'= 0) {
perror ("clock gettime 1");
exit(-1);

}

if (nanosleep(&timewait, NULL) != 0) {
perror ("nanosleep") ;
exit(-1);

}

if (clock gettime (CLOCK REALTIME, &timeend) != 0) ({
perror ("clock gettime 2");
exit(-1);

Bad results, even on -rt kernel build!!! Why?

Fuel Injection: Test Program Needs MONOTONIC

if (clock_gettime (CLOCK MONOTONIC, ×tart) != 0) {
perror ("clock gettime 1");
exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
perror ("nanosleep") ;
exit(-1);

}
if (clock gettime (CLOCK MONOTONIC, &timeend) != 0) ({

perror ("clock gettime 2");
exit(-1);

Still bad results, even on -rt kernel build!!! Why?

Fuel Injection: Test Program Needs RT Priority

struct sched param sp;

sp.sched priority = sched get priority max(SCHED_ FIFO) ;

if (sp.sched priority == -1) {
perror ("sched get priority max");
exit(-1);

}

if (sched setscheduler (0, SCHED FIFO, &sp) '= 0) {
perror ("sched setscheduler");
exit(-1);

Still sometimes bad results, even on -rt kernel build!!! Why?

Fuel Injection: Test Program Needs mlockall()

if (mlockall (MCL CURRENT | MCL FUTURE) != 0) ({
perror ("mlockall") ;
exit(-1);

Better results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13us
(4-CPU 2.2GHz x86 system — your mileage will vary)

More than 3 milliseconds on non-realtime kernel!!!

 |2008OtawaLinuxSymposum . EEEL.
Fuel Injection: Further Tuning Possible

= On multicore systems:

* Affinity time-critical tasks onto private CPU
» (Can often safely share with non-realtime tasks)
* Affinity IRQ handlers away from time-critical tasks

= Carefully select hardware and drivers

= Carefully select kernel configuration

» Depends on hardware in some cases

 |2008Ottawalinux Symposiom . EEEE.
Example Real Fast Application: Kernel Build

Real-Time Magic to Non-Real-Time Application

= Kernel build

tar -xjf linux-2.6.24.tar.bz2
cd linux-2.6.24

make allyesconfig > /dev/null
time make -3j8 > Make.out 2>&l
cd ..

rm -rf linux-2.6.24

Kernel Build: Performance Results

Real Fast(s)
1332.6 1556.2

14.6 22.4

3012.2 2964.7

12.7 17.5

Average
Std. Dev.

Average
Std. Dev.

Average
Std. Dev.

user

Sys

Smaller is better, real-time kernel not helping...

Real Time (s)fl Speedup

Comparison of Real Time vs. Real Fast

 |2008Ottawa Linux Symposium . EEE&.
Real Time vs. Real Fast: Throughput Comparison

* Real-time system starts more quickly
* Proverbial hare

= Real-fast system has opportunity to catch up
* Proverbial tortoise

= Tradeoff based on task duration

LY
)]

| 2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: No Penalty

conds?

10000

]

O sEE

1BE

o

Cy

M

Lat

14 18G4

Duration of Task

For example, heavy floating-point workloads

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

@

| 2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: “real” Penalty

nds)

10000

R el |

S

1BE

o

ncy

Lat

14 18G4 1B E 1808 E

Duration of Task (Micr

Mixed workloads

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

LY
)]

| 2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: “sys” Penalty

conds?

10000

]

O sEE

1BE

o

Cy

M

Lat

14 18G4

Duration of Task

Filesystem I/O workloads: “don't do that”

| IBM Linux Technology Center © 2006, 2007 IBM Corporation

| 2008 Ottawa Linux Symposium
Real-Time Latency vs. CPU Utilization

= CPU Utilization by Real-Time Tasks
» Can be avoided by time-slotting
« Which happens naturally in piston engines

Mumber of Parallel Tasks

IBM Linux Technology Center

@

© 2006, 2007 IBM Corporation

| 2008 Ottawa Linux Symposium

Sources of Real-Time Overhead

= Memory utilization due to mlockall()

" Increased locking overhead
« Context switches, priority inheritance, preemptable RCU

" Increased irq overhead
* Threaded irgs (context switches)
* Added delay (and interactions with rotating mass storage)

* Increased overhead of scheduling real-time tasks
 Global distribution of high-priority real-time tasks

= High-resolution timers

IBM Linux Technology Center © 2006, 2007 IBM Corporation

Real Time vs. Real Fast: How to Choose

2008 Ottawa Linux Symposium

Real Time vs. Real Fast: How to Choose

Throughput
only goal?

Virtualization
Required?
(RT Guests)

Peak Loads
Degrade

? .
Response” Basic

Work Item
> 100ms?

Pressure?

 |2008OtawalinuxSymposum . EIEF.

Longer Term: Avoiding the Need to Choose

* Reduce Overhead of Real-Time Linux!
- Easy to say, but...
» Reduce locking overhead (adaptive locks)
* Reduce scheduler overhead (ongoing work)
* Optimize threaded irqg handlers

= Note that partial progress is beneficial
 Reduces the need to choose

| 2008 Ottawa Linux Symposium

Acknowledgments

* Ingo Molnar

* Thomas Gleixner
= Sven Deitrich

" K. R. Foley

* Gene Heskett

= Bill Huey

= Esben Neilsen

IBM Linux Technology Center

* Nick Piggin

= Steve Rostedt
* Michal Schmidt
= Daniel Walker

= Karsten Wiese

= Gregory Haskins

* And many many more...

© 2006, 2007 IBM Corporation

 |2008Ottawa Linux Symposium . EEE&.
Legal Statement

= This work represents the views of the authors and does not
necessarily represent the view of IBM.

= Linux is a copyright of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

2008 Ottawa Linux Symposium

Use
the right tool
for the job!!!

Image copyright © 2004 Melissa McKenney

IBM Linux Technology Center © 2006, 2007 IBM Corporation

