
Real Time vs. Real Fast
Paul E. McKenney

IBM Distinguished Engineer

Overview

 Confessions of a Recovering Proprietary Programmer
 What is “Real Time” and “Real Fast”, Anyway???
 Example Real Time Application
 Example Real Fast Application
 Real Time vs. Real Fast
 How to Choose

Proprietary Programming: Requirements

© 2008 Melissa McKenney Creative Commons (Attribution)

Proprietary Programming: “Solution”

© 2008 Melissa McKenney Creative Commons (Attribution)

FOSS Programming: Requirements

© 2008 Melissa McKenney Creative Commons (Attribution)

Just Another Day on LKML...

© 2008 Melissa McKenney Creative Commons (Attribution)

But Sometimes Consensus is Achieved

© 2008 Melissa McKenney Creative Commons (Attribution)

And a Good Solution Produced Thereby

© 2008 Melissa McKenney Creative Commons (Attribution)

What is “Real Time”, Anyway?

Review of Definitions
(Taken from January 2007 Linux Journal article.)

What is “Real Time”, Anyway? (Definition #1)

A hard realtime system will
always

meet its deadlines

Problem With Definition #1
If you have a hard realtime system...

I have a hammer that will make it miss its deadlines!

© 2006 Melissa McKenney Creative Commons (Attribution)

What is “Real Time”, Anyway? (Definition #2)

A hard realtime system will
either:

(1) meet its deadlines, or
(2) give a timely failure indication

Problem With Definition #2

I have a “hard realtime” system
It simply always fails!

© 2006 Melissa McKenney Creative Commons (Attribution)

What is “Real Time”, Anyway? (Definition #3)

A hard realtime system will
meet all its deadlines!!!

(But only in absence of hardware failure.)

(Never mind that handling hardware failures is an important software task!!!)

Problem With Definition #3
“Rest assured, sir, that if your life support fails, your death will

most certainly not have been due to a software problem!!!”

© 2006 Melissa McKenney Creative Commons (Attribution)

What is “Real Time”, Anyway? (Definition #4)

A hard realtime system will
pass a specified test suite.

(This definition can cause purists severe heartburn.)

(But is actually used in real life.)

But One Other Question on Definitions 1-3...

What is the Deadline???

What guarantees can an RTOS make?

Real Time and Real Fast: Definitions

Real Time
OS: “how long before work starts?”

Real Fast
Application: “once started, how quickly is work completed?”

This Separation Can Result in Confusion!

Real Time Real Fast

What Users Care About

Example Real Time Application: Fuel Injection

Example Real-Time Application: Fuel Injection

Mid-sized industrial engine
Fuel injection within one degree surrounding “top dead center”

1500 RPM rotation rate
1500 RPM / 60 sec/min = 25 RPS

25 RPS * 360 degrees/round = 9000 degrees/second

About 111 microseconds per degree

Hence need to schedule to within about 100 microseconds

Fuel Injection: Conceptual Operation

Top Dead Center Bottom Dead Center

Fuel Injection: Too Early and Too Late Are Bad

Injecting Too Early
(Exaggerated)

Injecting Too Late
(Exaggerated)

Fuel Injection: Fanciful Code Operating Injectors

struct timespec timewait;

angle = crank_position();
timewait.tv_sec = 0;
timewait.tv_nsec = 1000 * 1000 * 1000 * angle / 9000;
nanosleep(&timewait, NULL);
inject();

Fuel Injection: Test Program

if (clock_gettime(CLOCK_REALTIME, ×tart) != 0) {
 perror("clock_gettime 1");
 exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
 perror("nanosleep");
 exit(-1);
}
if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {
 perror("clock_gettime 2");
 exit(-1);
}

Bad results, even on -rt kernel build!!! Why?

Fuel Injection: Test Program Needs MONOTONIC

if (clock_gettime(CLOCK_MONOTONIC, ×tart) != 0) {
 perror("clock_gettime 1");
 exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
 perror("nanosleep");
 exit(-1);
}
if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {
 perror("clock_gettime 2");
 exit(-1);
}

Still bad results, even on -rt kernel build!!! Why?

Fuel Injection: Test Program Needs RT Priority

Still sometimes bad results, even on -rt kernel build!!! Why?

struct sched_param sp;

sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sp.sched_priority == -1) {
 perror("sched_get_priority_max");
 exit(-1);
}
if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) {
 perror("sched_setscheduler");
 exit(-1);
}

Fuel Injection: Test Program Needs mlockall()

Better results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13us
(4-CPU 2.2GHz x86 system with RT firmware – your mileage will vary)

More than 3 milliseconds on non-realtime kernel!!!

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
 perror("mlockall");
 exit(-1);
}

Fuel Injection: Further Tuning Possible

On multicore systems:
Affinity time-critical tasks onto private CPU

(Can often safely share with non-realtime tasks)

Affinity IRQ handlers away from time-critical tasks

Carefully select hardware and drivers

Carefully select kernel configuration
Depends on hardware in some cases

Example Real Fast Application: Kernel Build

Real-Time Magic to Non-Real-Time Application

Kernel build

tar -xjf linux-2.6.24.tar.bz2
cd linux-2.6.24
make allyesconfig > /dev/null
time make -j8 > Make.out 2>&1
cd ..
rm -rf linux-2.6.24

Kernel Build: Performance Results

Real Fast(s) Real Time (s) Speedup

real
Average 1332.6 1556.2 0.86
Std. Dev. 14.6 22.4

user
Average 3012.2 2964.7 1.02
Std. Dev. 12.7 17.5

sys
Average 316.6 657 0.48
Std. Dev. 1.4 9.2

Smaller is better, real-time kernel not helping...

Comparison of Real Time vs. Real Fast

Real Time vs. Real Fast: Throughput Comparison

Real-time system starts more quickly
Proverbial hare

Real-fast system has opportunity to catch up
Proverbial tortoise

Tradeoff based on task duration

The Dark Side of Real Time

© 2008 Sarah McKenney Creative Commons (Attribution)

The Dark Side of Real Fast

© 2008 Sarah McKenney Creative Commons (Attribution)

Real Time vs. Real Fast Throughput: No Penalty

For example, heavy floating-point workloads

Real Time vs. Real Fast Throughput: “real” Penalty

Mixed workloads

Real Time vs. Real Fast Throughput: “sys” Penalty

Filesystem I/O workloads: “don't do that”

Real-Time Latency vs. CPU Utilization
CPU Utilization by Real-Time Tasks

Can be avoided by time-slotting
Which happens naturally in piston engines

Sources of Real-Time Overhead

Memory utilization due to mlockall()

Increased locking overhead
Context switches, priority inheritance, preemptable RCU

Increased irq overhead
Threaded irqs (context switches)

Added delay (and interactions with rotating mass storage)

Increased overhead of scheduling real-time tasks
Global distribution of high-priority real-time tasks

High-resolution timers

Real Time vs. Real Fast: How to Choose

Real Time vs. Real Fast: How to Choose

N

N

N

Y

Y

Y

Y

Y

N

N

Real
Fast

Throughput
only goal?

Peak Loads
Degrade

Response?

Memory
Pressure?

Virtualization
Required?

(RT Guests)

Basic
Work Item
> 100ms?

Real
Fast

Real
Time

Longer Term: Avoiding the Need to Choose

Reduce Overhead of Real-Time Linux!
Easy to say, but...

Reduce locking overhead (adaptive locks)

Reduce scheduler overhead (ongoing work)

Optimize threaded irq handlers

Eliminate networking reader-writer-lock bottlenecks (ongoing MV work)

Note that partial progress is beneficial
Reduces the need to choose

Harvest the low-hanging fruit

Low-Hanging Fruit

Harvest it.
Don't trip over it!

© 2008 Sarah McKenney Creative Commons (Attribution)

Acknowledgments

Ingo Molnar

Thomas Gleixner

Sven Deitrich

K. R. Foley

Gene Heskett

Bill Huey

Esben Neilsen

Nick Piggin

Steve Rostedt

Michal Schmidt

Daniel Walker

Karsten Wiese

Gregory Haskins

And many many more...

Legal Statement

This work represents the views of the authors and does not necessarily
represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be trademarks or
service marks of others.

