
© 2009 IBM Corporation

Real-Time Response on Multicore Systems:
It is Bigger Than I Thought

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

linux.conf.au January 31, 2013

© 2009 IBM Corporation2

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

History of Real Time (AKA Preemptible) RCU

 December 2004: realized that I needed to fix RCU...
 March 2005: first hint that solution was possible

– I proposed flawed approach, Esben Neilsen proposed flawed but serviceable approach

 May 2005: first design fixing flaws in Esben's approach
 June 2005: first patch submitted to LKML
 August 2005: patch accepted in -rt
 November 2006: priority boosting patch
 Early 2007: priority boosting accepted into -rt
 September 2007: preemptible RCU w/o atomics
 January 2008: preemptible RCU in mainline
 December 2009: scalable preemptible RCU in mainline
 July 2011: RCU priority boosting in mainline

© 2009 IBM Corporation3

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, and actually using -rt ...

© 2009 IBM Corporation4

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, and actually using -rt …

• And kudos to Linus for actually putting up with us...

© 2009 IBM Corporation5

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, and actually using -rt …

• And kudos to Linus for actually putting up with us... Most of the time,
anyway

© 2009 IBM Corporation6

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, and actually using -rt …

• And kudos to Linus for actually putting up with us... Most of the time,
anyway

But some were not inclined to believe SMP -rt worked, so...

© 2009 IBM Corporation7

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Writeup

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation8

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Limits of Hard Real Time in the Hard Real World

You show me a hard real-time system,
and I will show you a hammer that will cause it to miss its deadlines.

© 2009 IBM Corporation9

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Limits of Hard Real Time in the Hard Real World

You can make your system more robust,
but I can get a bigger hammer.

© 2009 IBM Corporation10

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

But Do Hardware Failures Count?

Rest assured, sir, that should there be a failure,
it will not be due to software!

© 2009 IBM Corporation11

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

“SMP and Embedded Real Time”

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

Despite the cute cartoons, this message was not well-
received in all quarters...

© 2009 IBM Corporation12

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Nevertheless, I Believe That “SMP and Embedded
Real Time” Has Stood the Test of Time

© 2009 IBM Corporation13

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Nevertheless, I Believe That “SMP and Embedded
Real Time” Has Stood the Test of Time

Except For One Really Big Error...

© 2009 IBM Corporation14

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Big Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”

© 2009 IBM Corporation15

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Big Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

© 2009 IBM Corporation16

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Big Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

My big error: I was thinking in terms of 4-8 CPUs, maybe
eventually as many as 16-32 CPUs

–More than two orders of magnitude too small!!!

© 2009 IBM Corporation17

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

RCU Initialization

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

© 2009 IBM Corporation18

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

But Who Cares About Such Huge Systems?

© 2009 IBM Corporation19

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

But Who Cares About Such Huge Systems?

Their users do! :-)

And you need to care about them as well

© 2009 IBM Corporation20

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

But Who Cares About Such Huge Systems?

Their users do! :-)

And you need to care about them as well

Systems are still getting larger
–I do remember 8-CPU systems being called “huge” only ten years ago
–Today, laptops with 8 CPUs are readily available
–And CONFIG_SMP=n is now inadequate for many smartphones
–And the guys with huge systems provide valuable testing services

Some Linux distributions build with NR_CPUS=4096
–Something about only wanting to provide a single binary...
–RCU must adjust, for example, increasing CONFIG_RCU_FANOUT

© 2009 IBM Corporation21

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

RCU Initialization, CONFIG_RCU_FANOUT=64

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 63

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4032

Level 0: 1 rcu_node

Level 2: 64 rcu_nodes

Total: 65 rcu_nodes

Decreases latency
from 200+ to 60-70
microseconds.
“Barely acceptable”
to users. But...

© 2009 IBM Corporation22

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

CONFIG_RCU_FANOUT=64 Consequences

Scalability vs.
Energy Efficiency:

Round 1

© 2009 IBM Corporation23

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

CONFIG_RCU_FANOUT=64 Consequences

Huge systems want 64 CPUs per leaf rcu_node structure

Smaller energy-efficient systems want scheduling-clock
interrupts delivered to each socket simultaneously

–Reduces the number of per-socket power transitions under light load

 If all 64 CPUs attempt to acquire their leaf rcu_node
structure's lock concurrently: Massive lock contention

© 2009 IBM Corporation24

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Issues With Scheduler-Clock Synchronization

Six-CPU package
with single power

domain

Time

Synchronized: energy
efficiency great,
lock contention bad

Unsynchronized: lock
contention great,energy
efficiency horribleP

ow
er

 C
o

ns
u

m
pt

i o
n

© 2009 IBM Corporation25

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

CONFIG_RCU_FANOUT=64 Consequences

Huge systems want 64 CPUs per leaf rcu_node structure

Smaller energy-efficient systems want scheduling-clock
interrupts delivered to each socket simultaneously

–Reduces the number of per-socket power transitions under light load

 If all 64 CPUs attempt to acquire their leaf rcu_node
structure's lock concurrently: Massive lock contention

Solution: Mike Galbraith added a boot parameter controlling
scheduling-clock-interrupt skew

–Later, Frederic Weisbecker's patch should help, but still have the
possibility of all CPUs taking scheduling-clock interrupts

Longer term: schedule events for energy and scalability

© 2009 IBM Corporation26

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Unintended Consequences

RCU polls CPUs to learn which are in dyntick-idle mode
–force_quiescent_state() samples per-CPU counter

Only one force_quiescent_state() at a time per RCU flavor
–Mediated by trylock

When 4096 CPUs trylock the same lock simultaneously, the
results are not pretty: massive memory contention

 Immediate solution (Dimitri Sivanic):
–Better mapping of rcu_state fields onto cachelines
–Longer delay between force_quiescent_state() invocations, but...

© 2009 IBM Corporation27

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Longer Polling Delay Consequences

Scalability vs.
Grace-Period Latency:

Round 1

© 2009 IBM Corporation28

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Increased Polling Interval Consequences

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

© 2009 IBM Corporation29

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Increased Polling Interval Consequences

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

Short-term solution: Control polling interval via boot
parameter/sysfs; people can choose what works for them

© 2009 IBM Corporation30

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Increased Polling Interval Consequences

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

Short-term solution: Control polling interval via boot
parameter/sysfs; people can choose what works for them

Longer-term solution: Move grace period startup, polling, and
cleanup to kthread, eliminating force_quiescent_state()'s lock

–But this does not come for free...
–And there are force_quiescent_state() calls from RCU_FAST_NO_HZ

© 2009 IBM Corporation31

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Grace-Period kthread Issues

 Increases binding between RCU and the scheduler

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

© 2009 IBM Corporation32

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Grace-Period kthread Issues and Potential Benefits

 Increases binding between RCU and the scheduler

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

Estimate of latency reduction:
–Reducing rcu_node structures from 261 to 65 resulted in latency

reduction from roughly 200 to 70 microseconds
–Reducing rcu_node structures to one per preemption opportunity might

reduce latency to about 30 microseconds (linear extrapolation)
–But why not just run the test?

© 2009 IBM Corporation33

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Grace-Period kthread Issues and Potential Benefits

 Increases binding between RCU and the scheduler

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

Estimate of latency reduction:
–Reducing rcu_node structures from 261 to 65 resulted in latency

reduction from roughly 200 to 70 microseconds
–Reducing rcu_node structures to one per preemption opportunity might

reduce latency to about 30 microseconds (linear extrapolation)
–But why not just run the test?

• Because time on a 4096-CPU system is hard to come by
• Fortunately, I have a very long history of relevant experience...

© 2009 IBM Corporation34

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Coping With 4096-CPU System Scarcity

© 2009 IBM Corporation35

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

About That Single Global Lock...

© 2009 IBM Corporation36

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

About That Single Global Lock...

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

© 2009 IBM Corporation37

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

About That Single Global Lock...

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

–A variation that does not share the poor performance noted by
Graunke and Thakkar

© 2009 IBM Corporation38

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conditional Tournament Lock

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

gp_flags

Checked at
each level

spin_trylock() at each level,
release at next level

© 2009 IBM Corporation39

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

© 2009 IBM Corporation40

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

Effectiveness TBD

© 2009 IBM Corporation41

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Other Possible Issues

© 2009 IBM Corporation42

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Other Possible Issues

 The synchronize_*_expedited() primitives loop over all CPUs
– Parallelize? Optimize for dyntick-idle state?

 The rcu_barrier() primitives loop over all CPUs
– Parallelize? Avoid running on other CPUs?

 Should force_quiescent_state() use state in non-leaf rcu_nodes?
– This actually degrades worst-case behavior

 Lots of force_quiescent_state() use from RCU_FAST_NO_HZ
– Use callback numbering to (hopefully) get rid of this

 Grace-period initialization/cleanup hits all rcu_node structures
– Parallelize?

 NR_CPUS=4096 on small systems (RCU handles at boot)

 And, perhaps most important...

© 2009 IBM Corporation43

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Possible Issue With RCU in a kthread

Scheduler vs.
RCU???

© 2009 IBM Corporation44

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Possible Issue With RCU in a kthread

Scheduler vs.
RCU???

When these two fight, they both lose!

© 2009 IBM Corporation45

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Possible Issue With RCU in a kthread

Scheduler vs.
RCU???

When these two fight, they both lose!
Much better if they both win!!!

© 2009 IBM Corporation46

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Linux Scheduler and RCU

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

© 2009 IBM Corporation47

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Linux Scheduler and RCU

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK

© 2009 IBM Corporation48

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Linux Scheduler and RCU

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths

© 2009 IBM Corporation49

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Linux Scheduler and RCU

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths: Either directly or indirectly

© 2009 IBM Corporation50

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

The Linux Scheduler and RCU

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths: Either directly or indirectly
–And as long as the scheduler doesn't exit an RCU read-side critical

section while holding a runqueue or pi lock if that RCU read-side
critical section had any chance of being preempted

Driving RCU's graces periods kthread simplifies RCU:
–dyntick-idle: No more stalls due to sleeping CPUs
–force_quiescent_state(): no more races with grace-period completion

© 2009 IBM Corporation51

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

© 2009 IBM Corporation52

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it

© 2009 IBM Corporation53

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

© 2009 IBM Corporation54

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible

© 2009 IBM Corporation55

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible: It will only require a little mind crushing ;-)

© 2009 IBM Corporation56

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible: It will only require a little mind crushing ;-)

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level

© 2009 IBM Corporation57

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Conclusions

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible: It will only require a little mind crushing ;-)

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level

Sometimes taking on crazy requirements simplifies things!!!

© 2009 IBM Corporation58

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation59

Real-Time Response on Multicore Systems: It is Bigger Than I Thought

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

