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Course Objectives and Goals

" Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard,
And If So, Why?

=" Performance and Scalability Technologies in
the Linux Kernel

= Creating Performant and Scalable Linux
Applications

= Real-Time Technologies in the Linux Kernel

= Creating Real-Time Linux Applications




Overview

= Why Parallel Real-Time Programming?
=" Towards a Real-Time Linux Kernel

= Real-Time Linux Technologies

= Priority-Boosting Reader-Writer Locks
= Conclusions
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Why Parallel Real-Time Programming?




Advent of SMP Embedded Realtime Systems

Traditional Systems

Traditional Realtime:
Few CPUs
Latency Guarantees
Non-Standard

Emerging Systems

Convergence SMP Realtime:
Many CPUs
Latency Guarantees
Traditional SMP: Standard (and OSS)
Many CPUs

No Guarantees

Standard (and OSS) User Demand (DoD, Financial, Gaming, ...)

Techological Changes Leading to Commodity SMP
But Not Both!!! Commodity Hardware Multithreading

Commodity Multi-Core Dies
Tens to Hundreds of CPUs per Die — Or More
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Towards a Real-Time Linux Kernel




2004: Prototype Multi-Core ARM Chip!!!

Realtime work Realtime work

Realtime work Non-realtime work

Submitted simple patch to Linux-kernel mailing list in 2004...




2004: Prototype Multi-Core ARM Chip!!!

Realtime work Realtime work

Realtime work Non-realtime work

Submitted simple patch to Linux-kernel mailing list in 2004...
And convinced my VP that real-time Linux was feasible.
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Therefore Joined Ingo Molnar's RT Linux Project

+ /*
+
+
+

* PREEMPT RT semantics: different-type read-locks
* dont nest that easily:

*/

+// rcu read lock read(&ptype lock);




Preemptable RCU

" December 2004: realized that | fix RCU...

= March 2005: first hint that solution was possible
+ Esben Neilsen proposed flawed but serviceable
approach

= May 2005: first design fixing Esben'’s flaws

= June 2005: first patch submitted to LKML

= August 2005: patch accepted in -rt

= November 2006: priority boosting patch

= Early 2007: priority boosting accepted into -rt

= September 2007: preemptable RCU w/o atomics
= January 2008: preemptable RCU in mainline

= Next: “evil plan” on later slide.
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Vanilla Linux Kernel
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Linux Kernel CONFIG_PREEMPT Build

Linux Process

Linux Process

Linux Process
RT Linux Process
RT Linux Process
RT Linux Process

Linux Critical Sections

Kernel Interrupt Handlers

Sched-Clock Interrupt-Disable
Interrupt | Preempt-Disable

CPU 0 CPU 1




Linux Kernel CONFIG_PREEMPT_RT Build

Linux Process

Linux Process

Linux Process
RT Linux Process
RT Linux Process
RT Linux Process

Linux Critical Sections Reduced
Kernel Interrupt Handlers

Sched-Clock Interrupt-Disable
Interrupt | Preempt-Disable

CPUO CPU 1

10s of microseconds scheduling latency




Real-Time Linux Technologies




Non-Real-Time “Timer Wheels”

tvec base t

tvec base t*

tvec _bases

lock
running_timer
timer_jiffies
tv1

tv2

tv3

tv4

tvd

list head[O]
list head[1]
list_head[2]

list_head[63]

v

Cascade

list_head|[O]

list head[1]
list_head[2]

list_head[255]

struct timer_list

list head[O]
list head[1]
list_head|[2]
list_ head[63]

Cascade

g list head[0]
list head[1]
list_head[2]

list_head[63]

Cascade

__ ¢

g list head[0]
list head[1]
list_head|[2]

list_head[63]

Cascade

4

al list head[O]

list head[1]
list_head[2]

list_head[63]

Cascade

Timer wheel advances once per clock tick




Timer Wheels: Advantages and Disadvantages

= Advantages:
- O(1) insertion and removal operations

- Batching of cascade operations improves throughput

- Simple, well tested (both in Linux and elsewhere)
= Disadvantages:
- Cascading operations major latency hit!!!

- Unforgiving tradeoff between accuracy and overhead

* But when you need tens-of-microseconds latencies for
some applications...
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Any Questions?
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Solution: High-Resolution Timers

Timeouts: approximation OK, likely cancelled

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...

Timers: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),
hrtimer_cancel(), hrtimer_forward(), ...

High-Resolution
Timers
Red-Black Tree




Preemptible Spinlocks

®" Threads can be preempted while holding spinlocks
= Threads must therefore be permitted to block while
acquiring spinlocks
- Necessary to avoid self-deadlock scenario
= spinlock_t acquisition primitives can therefore block
= raw_spinlock _t provides “true spinlock” that
disables preemption for special cases: scheduler,
scheduling-clock interrupt
= Note that one uses the same primitives (e.g.,
spin_lock()) on both spinlock t and raw_spinlock_t
= Requires threaded interrupt handlers...




Linux's Non-Threaded Interrupt Handlers

Mainline
Code

Mainline
Code

Interrupt
Return From
Interrupt

Long latency:
Degrades Response Time




-rt Patchset Threaded Interrupt Handlers

Mainline
Code

Mainline
Code

Interrupt
Return
From
Interrupt

IRQ
Thread

/

IRQ Handler

Short latency:
Better Response Time




-rt Patchset Threaded Interrupt Handlers

Mainline

Mainline IRQ
Code

Code Thread

g

Interrupt
Return
From
Interrupt

IRQ Handler

~

Preemption by Realtime User Thread

Can get old hardirg behavior by specifying IRQ_NODELAY for given IRQ,
but need very special handler: raw spinlocks, etc.

“Spiderman Principle”




Priority Inheritance

= “Trapdoor” Metaphor:
+ A dance floor...
» CPUs dance with highest priority tasks (Tuxes)

<+ Warning: any attempt to apply this metaphor in
reverse will probably not end well...
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Priority Inversion Outside the Dance Hall

= Process P1 needs Lock L1, held by P2

" Process P2 has been preempted by medium-priority

processes
- Consuming all available CPUs

= Process P1 is blocked by lower-priority processes

High-Priority . . Low-Priority
D o Q)

Preémpt

Za =\
Medium-Priority
Processes

(One Per CPU)




Preventing Priority Inversion

= Trivial solution: Prohibit preemption while holding locks
- But degrades latency!!! Especially for sleeplocks!!!!

= Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
- But only while holding a lock that P1 is attempting to acquire
- Standard solution, very heavily used

= Either way, prevent the low-priority process from being preempted
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Limits to Priority Boosting

= Inappropriate for ultimate in responsiveness
- Then again, the same is true for digital hardware

= Does not work for events — who will raise the event?

= Does not work for memory exhaustion — who will
free memory?

= Does not work for mass storage — make the disk
spin faster???

= Does not work for network receives — boostee on
other machine!

- Could do cross-system boosting
- But there are limits (see next slide)
= Does not work for reader-writer locking
- At least not very well (see following section)
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Priority-Boosting Reader-Writer Locks




...Our High-Priority CPU May Have to Wait Awhile!!!

Back at the Dance Hall...




Priority Inheritance and Reader-Writer Locking

= Real-time operating systems have taken the following approaches to writer-to-
reader priority boosting:
- Boost only one reader at a time

* Reasonable on a single-CPU machine, except in presence of readers that can
block for other reasons.

* Extremely ineffective on an SMP machine, as the writer must wait for readers
to complete serially rather than in parallel

- Boost a number of readers equal to the number of CPUs

* Works well even on SMP, except in presence of readers that can block for
other reasons (e.g., acquiring other locks)

- Permit only one task at a time to read-hold a lock (PREEMPT_RT)
* Very fast priority boosting, but severe read-side locking bottlenecks
= All of these approaches have heavy bookkeeping costs
- Priority boost propagates transitively through multiple locks
- Processes holding multiple locks may receive multiple priority boosts to
different priority levels, actual boost must be to maximum level
- Priority boost reduced (perhaps to intermediate level) when locks released
= So -rt patchset permits only one reading task at a time on a given lock
- How to deal with this scalability limitation???




Analogy: Reader-Writer Lock vs. RCU

Read
Acquire

<t @)

‘ Readers Indicate When Done:
Realtime Focus

Readers Use Memory Barriers (Balance low reader

As Needed by CPU overhead w/memory
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Priority Inversion and RCU

= Process P1 needs Lock L1, but P2, P3, and P4 now use RCU
- P2, P3, and P4 therefore need not hold L1
- Process P1 thus immediately acquires this lock
- Even though P2, P3, and P4 are preempted by the per-CPU medium-priority
processes
= No priority inheritance required
- Except if low on memory: permit reclaimer to free up memory

= Excellent realtime latencies: medium-priority processes can run
- High-priority process proceeds despite low-priority process preemption

- If sufficient memory...
Low- Prlorlty - @<i§:/
ngh Priority Process P2 Acquire e
Process P1
Low-Priority Write <;‘e‘5/
Process P3 Acquire Gl
eF()jlum Priority P \ Low-Priority Write
rocesses Process P4 Acquwe‘
GU\
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Realtime and RCU

RCU exploited in PREEMPT_RT patchset to reduce latencies
- “kill()” system-call RCU provided large reduction in latency
- Expect similar benefits for pthread_cond_broadcast() and

pthread_cond_signal()
- Work ongoing in protocol stacks

* Which is requiring an expedited-grace-period RCU implementation

Current PREEMPT _RT realtime Linux provides relatively few realtime
services
- Process scheduling, interrupts, some signals
Increasing the number of realtime services will likely require
additional exploitation of RCU
- And will likely require that RCU readers be priority-boosted when low on memory
But “Classic RCU” has realtime-latency problems of its own!!!
- Classic RCU disables preemption across read-side critical sections...




What is Needed From Realtime RCU?

= Reliable

= Callable from IRQ

= Preemptible read-side critical sections

= Small memory footprint

= Synchronization-free read side

" Independent of memory-allocator data structures
=" Freely nestable read side

= Unconditional read-to-write upgrade

= AP| compatible with “Classic RCU”

Why small memory footprint???




But Can't Just Make RCU Preemptible...




Overhead of RT RCU Read-Side....

= Heavier weight than the classic RCU implementations
= But still:

- No locks
- No loops
- No atomic instructions

- No memory barriers
= So still lightweight with O(7) worst-case execution time
- And many implementations have fixed execution time

Accepted into 2.6.25 on January 25, 2008
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Real-Time rcu_read_lock()

void rcu_read lock (void)

{
int idx;
struct task_struct *t = current;
int nesting;

nesting = ACCESS_ONCE (t->rcu_read lock nesting);

if (nesting !'= 0) {

t->rcu_read lock nesting = nesting + 1;

} else {
unsigned long flags;

local irqgq save(flags);
idx = ACCESS_ONCE (rcu_ctrlblk.completed) & O0x1;
ACCESS_ONCE (RCU_DATA ME ()->rcu_flipctr[idx])++;
ACCESS_ONCE (t->rcu_read lock nesting)
ACCESS_ONCE (t->rcu fllpctr idx) = idx;
local irqgq restore(oldirq);

= nesting + 1;



Real-Time rcu_read_unlock()

void _ rcu_read unlock (void)

{
int idx;
struct task struct *t = current;
int nesting;

nesting = ACCESS_ONCE (t->rcu_read lock nesting);
if (nesting > 1) {

t->rcu read lock nesting = nesting - 1;
} else {

unsigned long flags;

local irq save(flags);

idx = ACCESS_ONCE (t->rcu_flipctr idx);

ACCESS_ONCE (t->rcu_read lock nesting) = nesting - 1;
ACCESS_ONCE (RCU_DATA ME ()->rcu_flipctr[idx])--;
local irq restore(flags);




Evil Plan for Real-Time rcu_read_{,un}lock()

void _rcu read lock(void)

{
ACCESS_ONCE (current->rcu _read lock nesting)++;

barrier () ;

}

void rcu read unlock(void)

{

struct task struct *t = current;

barrier () ;
if (--ACCESS_ONCE (t->rcu_read lock nesting) == 0 &&
unlikely (ACCESS_ ONCE (t->rcu_read unlock special)))
_rcu read unlock special(t);




Conclusions
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Legal Statement

= This work represents the view of the author and does not
necessarily represent the view of IBM.

= |IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

= Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.




Questions?

To probe further:

= General Information:
http://rt.wiki.kernel.org/index.php/Main_Page (-rt wiki)
http://www.kernel.org/pub/linux/kernel/projects/rt/ (-rt downloads)
http://lwn.net/Articles/310391/ (new -rt tree)

= Offerings:

% people.redhat.com/bche/presentations/realtime-linux-summit08.pdf
http://news.com.com/Novell+to+launch+quick-response+Linux/2100-7344_3-6117479.html
http:/lIwww.mvista.com/products/realtime.html
http://www.linutronix.de/
http://www.ibm.com/software/webservers/realtime/

= Locking:
http://lwn.net/Articles/271817/ (Adaptive spinlocks)
http://lwn.net/Articles/267968/ (Ticket locks for determinism)
http://lwn.net/Articles/178253/ (Priority inheritance in the Linux kernel)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, | have no
problem with your using PREEMPT _RT." -- Linus Torvalds, July 2006



Questions?

To probe further:

= Threaded Interrupt Handlers:
http://lwn.net/Articles/106010/ (Approaches, October 2004)
http://lwn.net/Articles/138174/ (Debate, June 2005)
http://lwn.net/Articles/139062/ (softirq splitting, June 2005)
http://lwn.net/Articles/302043/ (Moving interrupts to threads, October 2008)
http://lwn.net/Articles/321663/ (Threaded interrupts and lockdep, March 2009)
= Timers:
http://lwn.net/Articles/152363/ (rationale for timer/hrtimer split)
http://lwn.net/Articles/152436/ (timer implementation)
http://lwn.net/Articles/167897/ (high-resolution timer API — dated)
http://lwn.net/Articles/228143/ (deferrable timers)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, | have no
problem with your using PREEMPT _RT." -- Linus Torvalds, July 2006




Questions?

To probe further:

= Real-Time RCU:

http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2004.06.12a.pdf
+ Making RCU Safe for Deep Sub-Millisecond Response Realtime Applications,
Sarma & McKenney
http://lkml.org/lkml/2004/8/30/87 (Jim Houston's implementation)
http://lwn.net/Articles/107269/ (Need for real-time RCU noted, October 2004)
http://lwn.net/Articles/129511/ (First limping real-time RCU, March 2005)
http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2005.04.23a.pdf
+ Towards Hard Realtime Response from the Linux Kernel on SMP Hardware,
McKenney & Sarma
http://lwn.net/Articles/220677/ (RCU priority boosting, February 2007)
http://lwn.net/Articles/253651/ (Design of preemptible RCU, October 2007)
http://lwn.net/Articles/279077/ (dynticks and preemptible RCU)
The read-copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with Linux, Guniguntala, McKenney, Triplett, and
Walpole, IBM Systems Journal, April 2008




