
© 2002 IBM Corporation

Performance, Scalability, and Real-Time Response From the Linux Kernel

ACACES July 16, 2009 Copyright © 2009 IBM

Real-Time Technologies in the Linux KernelReal-Time Technologies in the Linux Kernel

Paul E. McKenneyPaul E. McKenney
IBM Distinguished Engineer & CTO LinuxIBM Distinguished Engineer & CTO Linux
Linux Technology CenterLinux Technology Center

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 2

Course Objectives and GoalsCourse Objectives and Goals

 Introduction to Performance, Scalability, and Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard, Hardware: Is Parallel Programming Hard,
And If So, Why?And If So, Why?

Performance and Scalability Technologies in Performance and Scalability Technologies in
the Linux Kernelthe Linux Kernel

Creating Performant and Scalable Linux Creating Performant and Scalable Linux
ApplicationsApplications

Real-Time Technologies in the Linux Kernel
Creating Real-Time Linux ApplicationsCreating Real-Time Linux Applications

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 3

OverviewOverview

Why Parallel Real-Time Programming?Why Parallel Real-Time Programming?
Towards a Real-Time Linux KernelTowards a Real-Time Linux Kernel
Real-Time Linux TechnologiesReal-Time Linux Technologies
Priority-Boosting Reader-Writer LocksPriority-Boosting Reader-Writer Locks
ConclusionsConclusions

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 4

Why Parallel Real-Time Programming?Why Parallel Real-Time Programming?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 5

Advent of SMP Embedded Realtime SystemsAdvent of SMP Embedded Realtime Systems

OR

Traditional Realtime:
Few CPUs

Latency Guarantees
Non-Standard

Traditional SMP:
Many CPUs

No Guarantees
Standard (and OSS)

SMP Realtime:
Many CPUs

Latency Guarantees
Standard (and OSS)

ConvergenceConvergence

•User Demand (DoD, Financial, Gaming, ...)User Demand (DoD, Financial, Gaming, ...)
•Techological Changes Leading to Commodity SMPTechological Changes Leading to Commodity SMP

•Commodity Hardware MultithreadingCommodity Hardware Multithreading
•Commodity Multi-Core DiesCommodity Multi-Core Dies
•Tens to Hundreds of CPUs per Die – Or MoreTens to Hundreds of CPUs per Die – Or More

Traditional Systems

Emerging Systems

But Not Both!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 6

Regimes of SMP Embedded Realtime SystemsRegimes of SMP Embedded Realtime Systems

1s1s

100ms100ms
10ms10ms

1us1us

100ns100ns
10ns10ns

1ns1ns

100ps100ps

Non-Realtime JavaNon-Realtime Java

Linux 2.4 KernelLinux 2.4 Kernel

Realtime Java (w/GC)Realtime Java (w/GC)

Linux 2.6 KernelLinux 2.6 Kernel
Realtime Java (no GC)Realtime Java (no GC)

Linux -rt PatchsetLinux -rt Patchset
Specialty RTOSesSpecialty RTOSes

Hand-Coded AssemblyHand-Coded Assembly

Custom Digital HardwareCustom Digital Hardware

Custom Analog HardwareCustom Analog Hardware

1ms1ms

100us100us
10us10us

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 7

Towards a Real-Time Linux KernelTowards a Real-Time Linux Kernel

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 8

2004: Prototype Multi-Core ARM Chip!!!2004: Prototype Multi-Core ARM Chip!!!

Core 0 Core 1

Core 2 Core 3

Realtime workRealtime work

Non-realtime workNon-realtime workRealtime workRealtime work

Realtime workRealtime work

Submitted simple patch to Linux-kernel mailing list in 2004...Submitted simple patch to Linux-kernel mailing list in 2004...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 9

2004: Prototype Multi-Core ARM Chip!!!2004: Prototype Multi-Core ARM Chip!!!

Core 0 Core 1

Core 2 Core 3

Realtime workRealtime work

Non-realtime workNon-realtime workRealtime workRealtime work

Realtime workRealtime work

Submitted simple patch to Linux-kernel mailing list in 2004...Submitted simple patch to Linux-kernel mailing list in 2004...
And convinced my VP that real-time Linux was feasible.And convinced my VP that real-time Linux was feasible.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 10

Leveraging SMP Systems for RealtimeLeveraging SMP Systems for Realtime

Useful approach in many cases – but not so good if Useful approach in many cases – but not so good if allall CPUs must do realtime... CPUs must do realtime...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 11

Therefore Joined Ingo Molnar's RT Linux ProjectTherefore Joined Ingo Molnar's RT Linux Project

+ /*+ /*
+ * PREEMPT_RT semantics: different-type read-locks+ * PREEMPT_RT semantics: different-type read-locks
+ * dont nest that easily:+ * dont nest that easily:
+ */+ */
+// rcu_read_lock_read(&ptype_lock);+// rcu_read_lock_read(&ptype_lock);

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 12

Preemptable RCUPreemptable RCU

 December 2004: realized that I fix RCU...December 2004: realized that I fix RCU...
 March 2005: first hint that solution was possibleMarch 2005: first hint that solution was possible

 Esben Neilsen proposed flawed but serviceable Esben Neilsen proposed flawed but serviceable
approachapproach

 May 2005: first design fixing Esben's flawsMay 2005: first design fixing Esben's flaws
 June 2005: first patch submitted to LKMLJune 2005: first patch submitted to LKML
 August 2005: patch accepted in -rtAugust 2005: patch accepted in -rt
 November 2006: priority boosting patchNovember 2006: priority boosting patch
 Early 2007: priority boosting accepted into -rtEarly 2007: priority boosting accepted into -rt
 September 2007: preemptable RCU w/o atomicsSeptember 2007: preemptable RCU w/o atomics
 January 2008: preemptable RCU in mainlineJanuary 2008: preemptable RCU in mainline
 Next: “evil plan” on later slide.Next: “evil plan” on later slide.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 13

Vanilla Linux KernelVanilla Linux Kernel

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux Kernel

CPU 0

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 14

Linux Kernel CONFIG_PREEMPT BuildLinux Kernel CONFIG_PREEMPT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 15

Linux Kernel CONFIG_PREEMPT_RT BuildLinux Kernel CONFIG_PREEMPT_RT Build

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

ReducedReduced

10s of microseconds scheduling latency10s of microseconds scheduling latency

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 16

Real-Time Linux TechnologiesReal-Time Linux Technologies

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 17

Non-Real-Time “Timer Wheels”Non-Real-Time “Timer Wheels”

tvec_bases

tvec_base_t *tvec_base_t *

tvec_basestvec_basestvec_bases

lock
running_timer
timer_jiffies
tv1
tv2
tv3
tv4
tv5

tv
ec

_b
as

e_
t

tv
ec

_b
as

e_
t

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[63]

list_head[0]
list_head[1]
list_head[2]

. . .

list_head[255]

Cascade

Cascade

Cascade
Cascade

Cascade

struct timer_list

Timer wheel advances once per clock tickTimer wheel advances once per clock tick

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 18

Timer Wheels: Advantages and DisadvantagesTimer Wheels: Advantages and Disadvantages

 Advantages:Advantages:
– O(1) insertion and removal operationsO(1) insertion and removal operations

– Batching of cascade operations improves throughputBatching of cascade operations improves throughput

– Simple, well tested (both in Linux and elsewhere)Simple, well tested (both in Linux and elsewhere)

 Disadvantages:Disadvantages:
– Cascading operations Cascading operations majormajor latency hit!!! latency hit!!!

– Unforgiving tradeoff between accuracy and overheadUnforgiving tradeoff between accuracy and overhead

• But when you need tens-of-microseconds latencies for But when you need tens-of-microseconds latencies for
some applications...some applications...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 19

Linux Timer Wheel at 1KHzLinux Timer Wheel at 1KHz

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 20

Linux Timer Wheel at 100KHzLinux Timer Wheel at 100KHz

Any Questions?Any Questions?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 21

Solution: High-Resolution TimersSolution: High-Resolution Timers

High-Resolution
Timers

Red-Black Tree

TimeoutsTimeouts: approximation OK, likely cancelled: approximation OK, likely cancelled

TimersTimers: must be exact, rarely cancelled: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),
hrtimer_cancel(), hrtimer_forward(), ...hrtimer_cancel(), hrtimer_forward(), ...

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 22

Preemptible SpinlocksPreemptible Spinlocks

 Threads can be preempted while holding spinlocksThreads can be preempted while holding spinlocks
 Threads must therefore be permitted to block while Threads must therefore be permitted to block while

acquiring spinlocksacquiring spinlocks
– Necessary to avoid self-deadlock scenarioNecessary to avoid self-deadlock scenario

 spinlock_t acquisition primitives can therefore blockspinlock_t acquisition primitives can therefore block
 raw_spinlock_t provides “true spinlock” that raw_spinlock_t provides “true spinlock” that

disables preemption for special cases: scheduler, disables preemption for special cases: scheduler,
scheduling-clock interruptscheduling-clock interrupt

 Note that one uses the same primitives (e.g., Note that one uses the same primitives (e.g.,
spin_lock()) on both spinlock_t and raw_spinlock_tspin_lock()) on both spinlock_t and raw_spinlock_t

 Requires threaded interrupt handlers...Requires threaded interrupt handlers...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 23

Linux's Non-Threaded Interrupt HandlersLinux's Non-Threaded Interrupt Handlers

R
e

tu
rn

 F
ro

m
In

te
rr

u
pt

Mainline
Code

In
te

rr
u

pt
IRQ Handler

Mainline
Code

Long latency:Long latency:
Degrades Response TimeDegrades Response Time

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 24

-rt Patchset Threaded Interrupt Handlers-rt Patchset Threaded Interrupt Handlers

R
et

ur
n

F

ro
m

In
te

rr
u

pt

Mainline
Code

In
te

rr
up

t

IRQ Handler

Mainline
Code

IRQ

IRQ
Thread

Short latency:Short latency:
Better Response TimeBetter Response Time

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 25

-rt Patchset Threaded Interrupt Handlers-rt Patchset Threaded Interrupt Handlers

R
e

tu
rn

F

ro
m

In
te

rr
u

pt

Mainline
Code

In
te

rr
up

t

IRQ Handler

Mainline
Code

IRQ IRQ
Thread

Preemption by Realtime User Thread

Can get old hardirq behavior by specifying IRQ_NODELAY for given IRQ,Can get old hardirq behavior by specifying IRQ_NODELAY for given IRQ,
but need very special handler: raw spinlocks, etc.but need very special handler: raw spinlocks, etc.

““Spiderman Principle”Spiderman Principle”

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 26

Priority InheritancePriority Inheritance

 ““Trapdoor” Metaphor:Trapdoor” Metaphor:
 A dance floor...A dance floor...

• CPUs dance with highest priority tasks (Tuxes)CPUs dance with highest priority tasks (Tuxes)

 Warning: any attempt to apply this metaphor in Warning: any attempt to apply this metaphor in
reverse will probably not end well...reverse will probably not end well...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 27

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 28

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 29

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 30

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 31

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 32

Priority Inversion Outside the Dance HallPriority Inversion Outside the Dance Hall

 Process P1 needs Lock L1, held by P2Process P1 needs Lock L1, held by P2
 Process P2 has been preempted by medium-priority Process P2 has been preempted by medium-priority

processesprocesses
– Consuming all available CPUsConsuming all available CPUs

 Process P1 is blocked by lower-priority processesProcess P1 is blocked by lower-priority processes

High-Priority
Process P1

Lock 1AcquireAcquire
Low-Priority
Process P2HoldHold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)(One Per CPU)

PreemptPreempt

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 33

Preventing Priority InversionPreventing Priority Inversion

 Trivial solution: Prohibit preemption while holding locksTrivial solution: Prohibit preemption while holding locks
– But degrades latency!!! Especially for sleeplocks!!!!But degrades latency!!! Especially for sleeplocks!!!!

 Simple solution: “Priority Inheritance”: P2 “inherits” P1's prioritySimple solution: “Priority Inheritance”: P2 “inherits” P1's priority
– But only while holding a lock that P1 is attempting to acquireBut only while holding a lock that P1 is attempting to acquire
– Standard solution, very heavily usedStandard solution, very heavily used

 Either way, prevent the low-priority process from being preemptedEither way, prevent the low-priority process from being preempted

High-Priority
Process P1

Lock 1AcquireAcquire
Low-Priority
Process P2HoldHold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)(One Per CPU)

PreemptPreempt

Priority InheritancePriority Inheritance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 34

Limits to Priority BoostingLimits to Priority Boosting

 Inappropriate for ultimate in responsivenessInappropriate for ultimate in responsiveness
– Then again, the same is true for digital hardwareThen again, the same is true for digital hardware

 Does not work for events – who will raise the event?Does not work for events – who will raise the event?
 Does not work for memory exhaustion – who will Does not work for memory exhaustion – who will

free memory?free memory?
 Does not work for mass storage – make the disk Does not work for mass storage – make the disk

spin faster???spin faster???
 Does not work for network receives – boostee on Does not work for network receives – boostee on

other machine!other machine!
– CouldCould do cross-system boosting do cross-system boosting
– But there are limits (see next slide)But there are limits (see next slide)

 Does not work for reader-writer lockingDoes not work for reader-writer locking
– At least not very well (see following section)At least not very well (see following section)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 35

In Some Cases, Priority Boosting Undesirable...In Some Cases, Priority Boosting Undesirable...

...Or At Least Uncomfortable!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 36

Priority-Boosting Reader-Writer LocksPriority-Boosting Reader-Writer Locks

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 37

Back at the Dance Hall...Back at the Dance Hall...

...Our High-Priority CPU May Have to Wait Awhile!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 38

Priority Inheritance and Reader-Writer LockingPriority Inheritance and Reader-Writer Locking

 Real-time operating systems have taken the following approaches to writer-to-Real-time operating systems have taken the following approaches to writer-to-
reader priority boosting:reader priority boosting:
– Boost only one reader at a timeBoost only one reader at a time
• Reasonable on a single-CPU machine, except in presence of readers that can Reasonable on a single-CPU machine, except in presence of readers that can

block for other reasons.block for other reasons.
• Extremely ineffective on an SMP machine, as the writer must wait for readers Extremely ineffective on an SMP machine, as the writer must wait for readers

to complete serially rather than in parallelto complete serially rather than in parallel
– Boost a number of readers equal to the number of CPUsBoost a number of readers equal to the number of CPUs
• Works well even on SMP, except in presence of readers that can block for Works well even on SMP, except in presence of readers that can block for

other reasons (e.g., acquiring other locks)other reasons (e.g., acquiring other locks)
– Permit only one task at a time to read-hold a lock (PREEMPT_RT)Permit only one task at a time to read-hold a lock (PREEMPT_RT)
• Very fast priority boosting, but severe read-side locking bottlenecksVery fast priority boosting, but severe read-side locking bottlenecks

 All of these approaches have heavy bookkeeping costsAll of these approaches have heavy bookkeeping costs
– Priority boost propagates transitively through multiple locksPriority boost propagates transitively through multiple locks
– Processes holding multiple locks may receive multiple priority boosts to Processes holding multiple locks may receive multiple priority boosts to

different priority levels, actual boost must be to maximum leveldifferent priority levels, actual boost must be to maximum level
– Priority boost reduced (perhaps to intermediate level) when locks releasedPriority boost reduced (perhaps to intermediate level) when locks released

 So -rt patchset permits only one reading task at a time on a given lockSo -rt patchset permits only one reading task at a time on a given lock
– How to deal with this scalability limitation???How to deal with this scalability limitation???

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 39

Analogy: Reader-Writer Lock vs. RCUAnalogy: Reader-Writer Lock vs. RCU

Readers

ReclaimerRemover

ReadersReadersReaders

Lock
ReadRead

AcquireAcquire Writer
WriteWrite

AcquireAcquire

WriterWriter

Lock Acquire Acquire

ReaderReaderReaderReader

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Readers Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

Readers Indicate When Done:Readers Indicate When Done:
Realtime FocusRealtime Focus

(Balance low reader(Balance low reader
overhead w/memoryoverhead w/memory

and preemption)and preemption)

List Update
Free

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 40

Priority Inversion and RCUPriority Inversion and RCU

 Process P1 needs Lock L1, but P2, P3, and P4 now use RCUProcess P1 needs Lock L1, but P2, P3, and P4 now use RCU
– P2, P3, and P4 therefore need not hold L1P2, P3, and P4 therefore need not hold L1
– Process P1 thus immediately acquires this lockProcess P1 thus immediately acquires this lock
– Even though P2, P3, and P4 are preempted by the per-CPU medium-priority Even though P2, P3, and P4 are preempted by the per-CPU medium-priority

processesprocesses
 No priority inheritance requiredNo priority inheritance required
– Except if low on memory: permit reclaimer to free up memoryExcept if low on memory: permit reclaimer to free up memory

 Excellent realtime latencies: medium-priority processes can runExcellent realtime latencies: medium-priority processes can run
– High-priority process proceeds despite low-priority process preemptionHigh-priority process proceeds despite low-priority process preemption
– If sufficient memory...If sufficient memory...

AcquireAcquire

RCURCU

RCURCU

RCURCU

WriteWrite
AcquireAcquire

WriteWrite
AcquireAcquire

WriteWrite
AcquireAcquire

RCURCU

RCURCU

RCURCU

RCURCU

RCURCU

RCURCU

Preempt Preempt

High-Priority
Process P1

Lock 1
Low-Priority
Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Lock 2

Lock 4

Lock 3

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 41

Priority Inversion and RCUPriority Inversion and RCU

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 42

Priority Inversion and RCUPriority Inversion and RCU

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 43

Priority Inversion and RCUPriority Inversion and RCU

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 44

Priority Inversion and RCUPriority Inversion and RCU

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 45

Realtime and RCURealtime and RCU

 RCU exploited in PREEMPT_RT patchset to reduce latenciesRCU exploited in PREEMPT_RT patchset to reduce latencies
– ““kill()” system-call RCU provided large reduction in latencykill()” system-call RCU provided large reduction in latency
– Expect similar benefits for pthread_cond_broadcast() and Expect similar benefits for pthread_cond_broadcast() and

pthread_cond_signal()pthread_cond_signal()
– Work ongoing in protocol stacksWork ongoing in protocol stacks

• Which is requiring an expedited-grace-period RCU implementationWhich is requiring an expedited-grace-period RCU implementation
 Current PREEMPT_RT realtime Linux provides relatively few realtime Current PREEMPT_RT realtime Linux provides relatively few realtime

servicesservices
– Process scheduling, interrupts, some signalsProcess scheduling, interrupts, some signals

 Increasing the number of realtime services will likely require Increasing the number of realtime services will likely require
additional exploitation of RCUadditional exploitation of RCU
– And will likely require that RCU readers be priority-boosted when low on memoryAnd will likely require that RCU readers be priority-boosted when low on memory

 But “Classic RCU” has realtime-latency problems of its own!!!But “Classic RCU” has realtime-latency problems of its own!!!
– Classic RCU disables preemption across read-side critical sections...Classic RCU disables preemption across read-side critical sections...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 46

What is Needed From Realtime RCU?What is Needed From Realtime RCU?

 ReliableReliable
 Callable from IRQCallable from IRQ
 Preemptible read-side critical sectionsPreemptible read-side critical sections
 Small memory footprintSmall memory footprint
 Synchronization-free read sideSynchronization-free read side
 Independent of memory-allocator data structuresIndependent of memory-allocator data structures
 Freely nestable read sideFreely nestable read side
 Unconditional read-to-write upgradeUnconditional read-to-write upgrade
 API compatible with “Classic RCU”API compatible with “Classic RCU”

Why small memory footprint???Why small memory footprint???

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 47

But Can't But Can't JustJust Make RCU Preemptible...Make RCU Preemptible...

Small memory footprint means timely grace-period processing...Small memory footprint means timely grace-period processing...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 48

Overhead of RT RCU Read-Side....Overhead of RT RCU Read-Side....

 Heavier weight than the classic RCU implementationsHeavier weight than the classic RCU implementations
 But still:But still:
– No locksNo locks

– No loopsNo loops

– No atomic instructionsNo atomic instructions

– No memory barriersNo memory barriers
 So still lightweight with So still lightweight with O(1)O(1) worst-case execution time worst-case execution time
– And many implementations have And many implementations have fixedfixed execution time execution time

Accepted into 2.6.25 on January 25, 2008Accepted into 2.6.25 on January 25, 2008

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 49

Real-Time rcu_read_lock()Real-Time rcu_read_lock()

void rcu_read_lock(void)void rcu_read_lock(void)
{{
 int idx;int idx;
 struct task_struct *t = current;struct task_struct *t = current;
 int nesting;int nesting;

 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
 if (nesting != 0) {if (nesting != 0) {
 t->rcu_read_lock_nesting = nesting + 1;t->rcu_read_lock_nesting = nesting + 1;
 } else {} else {
 unsigned long flags;unsigned long flags;

 local_irq_save(flags);local_irq_save(flags);
 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
 local_irq_restore(oldirq);local_irq_restore(oldirq);
 }}
}}

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 50

Real-Time rcu_read_unlock()Real-Time rcu_read_unlock()

void __rcu_read_unlock(void)void __rcu_read_unlock(void)
{{
 int idx;int idx;
 struct task_struct *t = current;struct task_struct *t = current;
 int nesting;int nesting;

 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
 if (nesting > 1) {if (nesting > 1) {
 t->rcu_read_lock_nesting = nesting - 1;t->rcu_read_lock_nesting = nesting - 1;
 } else {} else {
 unsigned long flags;unsigned long flags;

 local_irq_save(flags);local_irq_save(flags);
 idx = ACCESS_ONCE(t->rcu_flipctr_idx);idx = ACCESS_ONCE(t->rcu_flipctr_idx);
 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
 local_irq_restore(flags);local_irq_restore(flags);
 }}
}}

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 51

Evil Plan for Real-Time rcu_read_{,un}lock()Evil Plan for Real-Time rcu_read_{,un}lock()

void _rcu_read_lock(void)void _rcu_read_lock(void)
{ {
 ACCESS_ONCE(current->rcu_read_lock_nesting)++;ACCESS_ONCE(current->rcu_read_lock_nesting)++;
 barrier();barrier();
} }

void _rcu_read_unlock(void)void _rcu_read_unlock(void)
{ {
 struct task_struct *t = current;struct task_struct *t = current;

 barrier();barrier();
 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
 _rcu_read_unlock_special(t);_rcu_read_unlock_special(t);
}}

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 52

ConclusionsConclusions

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 53

ConclusionsConclusions

1s1s

100ms100ms
10ms10ms

1us1us

100ns100ns
10ns10ns

1ns1ns

100ps100ps

Non-Realtime JavaNon-Realtime Java

Linux 2.4 KernelLinux 2.4 Kernel

Realtime Java (w/GC)Realtime Java (w/GC)

Linux 2.6 KernelLinux 2.6 Kernel
Realtime Java (no GC)Realtime Java (no GC)

Linux -rt PatchsetLinux -rt Patchset
Specialty RTOSesSpecialty RTOSes

Hand-Coded AssemblyHand-Coded Assembly

Custom Digital HardwareCustom Digital Hardware

Custom Analog HardwareCustom Analog Hardware

1ms1ms

100us100us
10us10us

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 54

Legal StatementLegal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines trademarks of International Business Machines
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be
trademarks or service marks of others.trademarks or service marks of others.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 55

Questions?Questions?

To probe further:To probe further:

 General Information:General Information:
 http://rt.wiki.kernel.org/index.php/Main_Page (-rt wiki)http://rt.wiki.kernel.org/index.php/Main_Page (-rt wiki)
 http://www.kernel.org/pub/linux/kernel/projects/rt/ (-rt downloads)http://www.kernel.org/pub/linux/kernel/projects/rt/ (-rt downloads)
 http://lwn.net/Articles/310391/ (new -rt tree)http://lwn.net/Articles/310391/ (new -rt tree)

 Offerings:Offerings:
 people.redhat.com/bche/presentations/realtime-linux-summit08.pdfpeople.redhat.com/bche/presentations/realtime-linux-summit08.pdf
 http://news.com.com/Novell+to+launch+quick-response+Linux/2100-7344_3-6117479.htmlhttp://news.com.com/Novell+to+launch+quick-response+Linux/2100-7344_3-6117479.html
 http://www.mvista.com/products/realtime.htmlhttp://www.mvista.com/products/realtime.html
 http://www.linutronix.de/http://www.linutronix.de/
 http://www.ibm.com/software/webservers/realtime/http://www.ibm.com/software/webservers/realtime/

 Locking:Locking:
 http://lwn.net/Articles/271817/ (Adaptive spinlocks)http://lwn.net/Articles/271817/ (Adaptive spinlocks)
 http://lwn.net/Articles/267968/ (Ticket locks for determinism)http://lwn.net/Articles/267968/ (Ticket locks for determinism)
 http://lwn.net/Articles/178253/ (Priority inheritance in the Linux kernel)http://lwn.net/Articles/178253/ (Priority inheritance in the Linux kernel)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own "Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, I have no way. So if you want to use Linux to control an industrial welding laser, I have no
problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 56

Questions?Questions?

To probe further:To probe further:

 Threaded Interrupt Handlers:Threaded Interrupt Handlers:
 http://lwn.net/Articles/106010/ (Approaches, October 2004)http://lwn.net/Articles/106010/ (Approaches, October 2004)
 http://lwn.net/Articles/138174/ (Debate, June 2005)http://lwn.net/Articles/138174/ (Debate, June 2005)
 http://lwn.net/Articles/139062/ (softirq splitting, June 2005)http://lwn.net/Articles/139062/ (softirq splitting, June 2005)
 http://lwn.net/Articles/302043/ (Moving interrupts to threads, October 2008)http://lwn.net/Articles/302043/ (Moving interrupts to threads, October 2008)
 http://lwn.net/Articles/321663/ (Threaded interrupts and lockdep, March 2009)http://lwn.net/Articles/321663/ (Threaded interrupts and lockdep, March 2009)

 Timers:Timers:
 http://lwn.net/Articles/152363/ (rationale for timer/hrtimer split)http://lwn.net/Articles/152363/ (rationale for timer/hrtimer split)
 http://lwn.net/Articles/152436/ (timer implementation)http://lwn.net/Articles/152436/ (timer implementation)
 http://lwn.net/Articles/167897/ (high-resolution timer API – dated)http://lwn.net/Articles/167897/ (high-resolution timer API – dated)
 http://lwn.net/Articles/228143/ (deferrable timers)http://lwn.net/Articles/228143/ (deferrable timers)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own "Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, I have no way. So if you want to use Linux to control an industrial welding laser, I have no
problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 57

Questions?Questions?

To probe further:To probe further:

 Real-Time RCU:Real-Time RCU:
 http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2004.06.12a.pdfhttp://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2004.06.12a.pdf

• Making RCU Safe for Deep Sub-Millisecond Response Realtime Applications, Making RCU Safe for Deep Sub-Millisecond Response Realtime Applications,
Sarma & McKenneySarma & McKenney

 http://lkml.org/lkml/2004/8/30/87 (Jim Houston's implementation)http://lkml.org/lkml/2004/8/30/87 (Jim Houston's implementation)
 http://lwn.net/Articles/107269/ (Need for real-time RCU noted, October 2004)http://lwn.net/Articles/107269/ (Need for real-time RCU noted, October 2004)
 http://lwn.net/Articles/129511/ (First limping real-time RCU, March 2005)http://lwn.net/Articles/129511/ (First limping real-time RCU, March 2005)
 http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2005.04.23a.pdfhttp://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2005.04.23a.pdf

• Towards Hard Realtime Response from the Linux Kernel on SMP Hardware, Towards Hard Realtime Response from the Linux Kernel on SMP Hardware,
McKenney & SarmaMcKenney & Sarma

 http://lwn.net/Articles/220677/ (RCU priority boosting, February 2007)http://lwn.net/Articles/220677/ (RCU priority boosting, February 2007)
 http://lwn.net/Articles/253651/ (Design of preemptible RCU, October 2007)http://lwn.net/Articles/253651/ (Design of preemptible RCU, October 2007)
 http://lwn.net/Articles/279077/ (dynticks and preemptible RCU)http://lwn.net/Articles/279077/ (dynticks and preemptible RCU)
 The read-copy-update mechanism for supporting real-time applications on shared-The read-copy-update mechanism for supporting real-time applications on shared-

memory multiprocessor systems with Linux, Guniguntala, McKenney, Triplett, and memory multiprocessor systems with Linux, Guniguntala, McKenney, Triplett, and
Walpole, IBM Systems Journal, April 2008Walpole, IBM Systems Journal, April 2008

