Real-Time Technologies in the Linux Kernel

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

Course Objectives and Goals

" Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard,
And If So, Why?

=" Performance and Scalability Technologies in
the Linux Kernel

= Creating Performant and Scalable Linux
Applications

= Real-Time Technologies in the Linux Kernel

= Creating Real-Time Linux Applications

Overview

= Why Parallel Real-Time Programming?
=" Towards a Real-Time Linux Kernel

= Real-Time Linux Technologies

= Priority-Boosting Reader-Writer Locks
= Conclusions

izl

Why Parallel Real-Time Programming?

Advent of SMP Embedded Realtime Systems

Traditional Systems

Traditional Realtime:
Few CPUs
Latency Guarantees
Non-Standard

Emerging Systems

Convergence SMP Realtime:
Many CPUs
Latency Guarantees
Traditional SMP: Standard (and OSS)
Many CPUs

No Guarantees

Standard (and OSS) User Demand (DoD, Financial, Gaming, ...)

Techological Changes Leading to Commodity SMP
But Not Both!!! Commodity Hardware Multithreading

Commodity Multi-Core Dies
Tens to Hundreds of CPUs per Die — Or More

Non-Realtirme Java 1s

100ms

‘arnel 10ms
Realtime Java (w/GC 1ms

7

Linux 2.4 ¢

Linux 2.6 ernel

Realtirne Java (no QC) 100us
Linux -rt Paichs | 10us
Specialty R 1us

100ns
10ns

1ns

Custom An

log Hardware 100ps

Towards a Real-Time Linux Kernel

2004: Prototype Multi-Core ARM Chip!!!

Realtime work Realtime work

Realtime work Non-realtime work

Submitted simple patch to Linux-kernel mailing list in 2004...

2004: Prototype Multi-Core ARM Chip!!!

Realtime work Realtime work

Realtime work Non-realtime work

Submitted simple patch to Linux-kernel mailing list in 2004...
And convinced my VP that real-time Linux was feasible.

~- i b e el
e L

Therefore Joined Ingo Molnar's RT Linux Project

+ /*
+
+
+

* PREEMPT RT semantics: different-type read-locks
* dont nest that easily:

*/

+// rcu read lock read(&ptype lock);

Preemptable RCU

" December 2004: realized that | fix RCU...

= March 2005: first hint that solution was possible
+ Esben Neilsen proposed flawed but serviceable
approach

= May 2005: first design fixing Esben'’s flaws

= June 2005: first patch submitted to LKML

= August 2005: patch accepted in -rt

= November 2006: priority boosting patch

= Early 2007: priority boosting accepted into -rt

= September 2007: preemptable RCU w/o atomics
= January 2008: preemptable RCU in mainline

= Next: “evil plan” on later slide.

1B % il SRR
| £ -4!4-4—-4--4-4'--\.---- o e S

Vanilla Linux Kernel

SS920.d XnuI| 1Y

SS920.d XnuI| 1Y

SS920.d XnuI| 1Y

SS920.1d XNnuI

SS920I1d XNuI

SS2201d XhuiT

[T,
-
S
V

A4
X
-

=

]

Linux Kernel CONFIG_PREEMPT Build

Linux Process

Linux Process

Linux Process
RT Linux Process
RT Linux Process
RT Linux Process

Linux Critical Sections

Kernel Interrupt Handlers

Sched-Clock Interrupt-Disable
Interrupt | Preempt-Disable

CPU 0 CPU 1

Linux Kernel CONFIG_PREEMPT_RT Build

Linux Process

Linux Process

Linux Process
RT Linux Process
RT Linux Process
RT Linux Process

Linux Critical Sections Reduced
Kernel Interrupt Handlers

Sched-Clock Interrupt-Disable
Interrupt | Preempt-Disable

CPUO CPU 1

10s of microseconds scheduling latency

Real-Time Linux Technologies

Non-Real-Time “Timer Wheels”

tvec base t

tvec base t*

tvec _bases

lock
running_timer
timer_jiffies
tv1

tv2

tv3

tv4

tvd

list head[O]
list head[1]
list_head[2]

list_head[63]

v

Cascade

list_head|[O]

list head[1]
list_head[2]

list_head[255]

struct timer_list

list head[O]
list head[1]
list_head|[2]
list_ head[63]

Cascade

g list head[0]
list head[1]
list_head[2]

list_head[63]

Cascade

__ ¢

g list head[0]
list head[1]
list_head|[2]

list_head[63]

Cascade

4

al list head[O]

list head[1]
list_head[2]

list_head[63]

Cascade

Timer wheel advances once per clock tick

Timer Wheels: Advantages and Disadvantages

= Advantages:
- O(1) insertion and removal operations

- Batching of cascade operations improves throughput

- Simple, well tested (both in Linux and elsewhere)
= Disadvantages:
- Cascading operations major latency hit!!!

- Unforgiving tradeoff between accuracy and overhead

* But when you need tens-of-microseconds latencies for
some applications...

| i
T’“ _$
‘L,

Any Questions?

ie ¥
RN
a4 1]

Solution: High-Resolution Timers

Timeouts: approximation OK, likely cancelled

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...

Timers: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(),
hrtimer_cancel(), hrtimer_forward(), ...

High-Resolution
Timers
Red-Black Tree

Preemptible Spinlocks

®" Threads can be preempted while holding spinlocks
= Threads must therefore be permitted to block while
acquiring spinlocks
- Necessary to avoid self-deadlock scenario
= spinlock_t acquisition primitives can therefore block
= raw_spinlock _t provides “true spinlock” that
disables preemption for special cases: scheduler,
scheduling-clock interrupt
= Note that one uses the same primitives (e.g.,
spin_lock()) on both spinlock t and raw_spinlock_t
= Requires threaded interrupt handlers...

Linux's Non-Threaded Interrupt Handlers

Mainline
Code

Mainline
Code

Interrupt
Return From
Interrupt

Long latency:
Degrades Response Time

-rt Patchset Threaded Interrupt Handlers

Mainline
Code

Mainline
Code

Interrupt
Return
From
Interrupt

IRQ
Thread

/

IRQ Handler

Short latency:
Better Response Time

-rt Patchset Threaded Interrupt Handlers

Mainline

Mainline IRQ
Code

Code Thread

g

Interrupt
Return
From
Interrupt

IRQ Handler

~

Preemption by Realtime User Thread

Can get old hardirg behavior by specifying IRQ_NODELAY for given IRQ,
but need very special handler: raw spinlocks, etc.

“Spiderman Principle”

Priority Inheritance

= “Trapdoor” Metaphor:
+ A dance floor...
» CPUs dance with highest priority tasks (Tuxes)

<+ Warning: any attempt to apply this metaphor in
reverse will probably not end well...

itance

ty Inher

Jolg

Pr

tance

ty Inher

Jolg

Pr

ty Inheritance

Jolg

Pr

tance

ty Inher

Prior

tance

ty Inher

Jolg

Pr

Priority Inversion Outside the Dance Hall

= Process P1 needs Lock L1, held by P2

" Process P2 has been preempted by medium-priority

processes
- Consuming all available CPUs

= Process P1 is blocked by lower-priority processes

High-Priority . . Low-Priority
D o Q)

Preémpt

Za =\
Medium-Priority
Processes

(One Per CPU)

Preventing Priority Inversion

= Trivial solution: Prohibit preemption while holding locks
- But degrades latency!!! Especially for sleeplocks!!!!

= Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
- But only while holding a lock that P1 is attempting to acquire
- Standard solution, very heavily used

= Either way, prevent the low-priority process from being preempted

/-Br-ieﬁty-lnheﬁtan
High-Priority . . Low-Priority
G e @
P%t
Medlum Prlorlty
Processes

(One Per CPU)

Limits to Priority Boosting

= Inappropriate for ultimate in responsiveness
- Then again, the same is true for digital hardware

= Does not work for events — who will raise the event?

= Does not work for memory exhaustion — who will
free memory?

= Does not work for mass storage — make the disk
spin faster???

= Does not work for network receives — boostee on
other machine!

- Could do cross-system boosting
- But there are limits (see next slide)
= Does not work for reader-writer locking
- At least not very well (see following section)

MR, McKemney You'e o
ING 99 A REALTIME Procgss

!

Priority-Boosting Reader-Writer Locks

...Our High-Priority CPU May Have to Wait Awhile!!!

Back at the Dance Hall...

Priority Inheritance and Reader-Writer Locking

= Real-time operating systems have taken the following approaches to writer-to-
reader priority boosting:
- Boost only one reader at a time

* Reasonable on a single-CPU machine, except in presence of readers that can
block for other reasons.

* Extremely ineffective on an SMP machine, as the writer must wait for readers
to complete serially rather than in parallel

- Boost a number of readers equal to the number of CPUs

* Works well even on SMP, except in presence of readers that can block for
other reasons (e.g., acquiring other locks)

- Permit only one task at a time to read-hold a lock (PREEMPT_RT)
* Very fast priority boosting, but severe read-side locking bottlenecks
= All of these approaches have heavy bookkeeping costs
- Priority boost propagates transitively through multiple locks
- Processes holding multiple locks may receive multiple priority boosts to
different priority levels, actual boost must be to maximum level
- Priority boost reduced (perhaps to intermediate level) when locks released
= So -rt patchset permits only one reading task at a time on a given lock
- How to deal with this scalability limitation???

Analogy: Reader-Writer Lock vs. RCU

Read
Acquire

<t @)

‘ Readers Indicate When Done:
Realtime Focus

Readers Use Memory Barriers (Balance low reader

As Needed by CPU overhead w/memory
y ((Readers and preemption)

Architectures

(Linux Handles This) /
\ Remover Identifies

'Removed Objects

©--CED

/V
List Update erter

Priority Inversion and RCU

= Process P1 needs Lock L1, but P2, P3, and P4 now use RCU
- P2, P3, and P4 therefore need not hold L1
- Process P1 thus immediately acquires this lock
- Even though P2, P3, and P4 are preempted by the per-CPU medium-priority
processes
= No priority inheritance required
- Except if low on memory: permit reclaimer to free up memory

= Excellent realtime latencies: medium-priority processes can run
- High-priority process proceeds despite low-priority process preemption

- If sufficient memory...
Low- Prlorlty - @<i§:/
ngh Priority Process P2 Acquire e
Process P1
Low-Priority Write <;‘e‘5/
Process P3 Acquire Gl
eF()jlum Priority P \ Low-Priority Write
rocesses Process P4 Acquwe‘
GU\

Write,

ion and RCU

ty Invers

Jolg

Pr

ion and RCU

ty Invers

Jolg

Pr

ty Inversion and RCU

Jolg

Pr

ion and RCU

ty Invers

Jolg

Pr

Realtime and RCU

RCU exploited in PREEMPT_RT patchset to reduce latencies
- “kill()” system-call RCU provided large reduction in latency
- Expect similar benefits for pthread_cond_broadcast() and

pthread_cond_signal()
- Work ongoing in protocol stacks

* Which is requiring an expedited-grace-period RCU implementation

Current PREEMPT _RT realtime Linux provides relatively few realtime
services
- Process scheduling, interrupts, some signals
Increasing the number of realtime services will likely require
additional exploitation of RCU
- And will likely require that RCU readers be priority-boosted when low on memory
But “Classic RCU” has realtime-latency problems of its own!!!
- Classic RCU disables preemption across read-side critical sections...

What is Needed From Realtime RCU?

= Reliable

= Callable from IRQ

= Preemptible read-side critical sections

= Small memory footprint

= Synchronization-free read side

" Independent of memory-allocator data structures
=" Freely nestable read side

= Unconditional read-to-write upgrade

= AP| compatible with “Classic RCU”

Why small memory footprint???

But Can't Just Make RCU Preemptible...

Overhead of RT RCU Read-Side....

= Heavier weight than the classic RCU implementations
= But still:

- No locks
- No loops
- No atomic instructions

- No memory barriers
= So still lightweight with O(7) worst-case execution time
- And many implementations have fixed execution time

Accepted into 2.6.25 on January 25, 2008

& SR R

Real-Time rcu_read_lock()

void rcu_read lock (void)

{
int idx;
struct task_struct *t = current;
int nesting;

nesting = ACCESS_ONCE (t->rcu_read lock nesting);

if (nesting !'= 0) {

t->rcu_read lock nesting = nesting + 1;

} else {
unsigned long flags;

local irqgq save(flags);
idx = ACCESS_ONCE (rcu_ctrlblk.completed) & O0x1;
ACCESS_ONCE (RCU_DATA ME ()->rcu_flipctr[idx])++;
ACCESS_ONCE (t->rcu_read lock nesting)
ACCESS_ONCE (t->rcu fllpctr idx) = idx;
local irqgq restore(oldirq);

= nesting + 1;

Real-Time rcu_read_unlock()

void _ rcu_read unlock (void)

{
int idx;
struct task struct *t = current;
int nesting;

nesting = ACCESS_ONCE (t->rcu_read lock nesting);
if (nesting > 1) {

t->rcu read lock nesting = nesting - 1;
} else {

unsigned long flags;

local irq save(flags);

idx = ACCESS_ONCE (t->rcu_flipctr idx);

ACCESS_ONCE (t->rcu_read lock nesting) = nesting - 1;
ACCESS_ONCE (RCU_DATA ME ()->rcu_flipctr[idx])--;
local irq restore(flags);

Evil Plan for Real-Time rcu_read_{,un}lock()

void _rcu read lock(void)

{
ACCESS_ONCE (current->rcu _read lock nesting)++;

barrier () ;

}

void rcu read unlock(void)

{

struct task struct *t = current;

barrier () ;
if (--ACCESS_ONCE (t->rcu_read lock nesting) == 0 &&
unlikely (ACCESS_ ONCE (t->rcu_read unlock special)))
_rcu read unlock special(t);

Conclusions

Non-Realtirme Java 1s

L/ ~

Linux 2.4 Kernel

Realtime Java (w/GC

e~

Linux 2.6 ¥ernel
Realtime Java (no G

Linux -rt Paichset

Specialty RTOSes

Custom An

100ms
10ms
Tms

C) 100us
| 10us
1us

100ns
10ns
1ns

s

log Hardware 100pS

Legal Statement

= This work represents the view of the author and does not
necessarily represent the view of IBM.

= |IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

= Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

Questions?

To probe further:

= General Information:
http://rt.wiki.kernel.org/index.php/Main_Page (-rt wiki)
http://www.kernel.org/pub/linux/kernel/projects/rt/ (-rt downloads)
http://lwn.net/Articles/310391/ (new -rt tree)

= Offerings:

% people.redhat.com/bche/presentations/realtime-linux-summit08.pdf
http://news.com.com/Novell+to+launch+quick-response+Linux/2100-7344_3-6117479.html
http:/lIwww.mvista.com/products/realtime.html
http://www.linutronix.de/
http://www.ibm.com/software/webservers/realtime/

= Locking:
http://lwn.net/Articles/271817/ (Adaptive spinlocks)
http://lwn.net/Articles/267968/ (Ticket locks for determinism)
http://lwn.net/Articles/178253/ (Priority inheritance in the Linux kernel)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, | have no
problem with your using PREEMPT _RT." -- Linus Torvalds, July 2006

Questions?

To probe further:

= Threaded Interrupt Handlers:
http://lwn.net/Articles/106010/ (Approaches, October 2004)
http://lwn.net/Articles/138174/ (Debate, June 2005)
http://lwn.net/Articles/139062/ (softirq splitting, June 2005)
http://lwn.net/Articles/302043/ (Moving interrupts to threads, October 2008)
http://lwn.net/Articles/321663/ (Threaded interrupts and lockdep, March 2009)
= Timers:
http://lwn.net/Articles/152363/ (rationale for timer/hrtimer split)
http://lwn.net/Articles/152436/ (timer implementation)
http://lwn.net/Articles/167897/ (high-resolution timer API — dated)
http://lwn.net/Articles/228143/ (deferrable timers)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own
way. So if you want to use Linux to control an industrial welding laser, | have no
problem with your using PREEMPT _RT." -- Linus Torvalds, July 2006

Questions?

To probe further:

= Real-Time RCU:

http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2004.06.12a.pdf
+ Making RCU Safe for Deep Sub-Millisecond Response Realtime Applications,
Sarma & McKenney
http://lkml.org/lkml/2004/8/30/87 (Jim Houston's implementation)
http://lwn.net/Articles/107269/ (Need for real-time RCU noted, October 2004)
http://lwn.net/Articles/129511/ (First limping real-time RCU, March 2005)
http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2005.04.23a.pdf
+ Towards Hard Realtime Response from the Linux Kernel on SMP Hardware,
McKenney & Sarma
http://lwn.net/Articles/220677/ (RCU priority boosting, February 2007)
http://lwn.net/Articles/253651/ (Design of preemptible RCU, October 2007)
http://lwn.net/Articles/279077/ (dynticks and preemptible RCU)
The read-copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with Linux, Guniguntala, McKenney, Triplett, and
Walpole, IBM Systems Journal, April 2008

