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Overview

Back in the old days...

From dyntick-idle to NO_HZ_FULL

Achieving ubiquity: Two of my adventures

Lessons (Re)Learned

Additional NO_HZ_FULL issues

Cheat sheets
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Back In The Old Days...
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Back In The Old Days...

Mainstream CPUs had no energy-efficiency features
–Which meant that idle state was often the least energy efficient
–No cache misses, so full utilization of the power-hungry ALU
–Which meant that scheduling-clock interrupts to idle CPUs actually 

improved energy efficiency

Things have changed: Idle often means powered-off CPU
–So scheduling-clock interrupts to an idle CPU are now very bad

• Especially on battery-powered systems!!!
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There Used To Be Things You Could Count On...
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There Used To Be Things You Could Count On...
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What We Need Instead...
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Before Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Busy Period
Ends

But CPU Remains
in High-Power State
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Before Linux's dyntick-idle System
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Linux's dyntick-idle System: NO_HZ

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode
At End Of Busy Period

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

Very Good For Energy Efficiency!!!
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Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if 
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why 
interrupt it?

 If another task shows up, then we can interrupt the CPU

Until then, interrupting it only slows it down
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Also: Avoid Unnecessary Usermode Interrupts
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Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if 
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why 
interrupt it?  All that will do is slow things down!!!

 If another task shows up, then we can interrupt the CPU

Josh Triplett prototyped CONFIG_NO_HZ_FULL in 2009
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Benchmark Results Before (Anton Blanchard)
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Benchmark Results After (Anton Blanchard)

Well worth going after...
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But There Were A Few Small Drawbacks...

User applications can monopolize CPU
– But if there is only one runnable task, so what???
– If new task awakens, interrupt the CPU, restart scheduling-clock interrrupts
– In the meantime, we have an “adaptive ticks usermode” CPU

No process accounting
– Use delta-based accounting, based on when process started running
– One CPU retains scheduling-clock interrupts for timekeeping purposes

RCU grace periods go forever, running system out of memory
– Inform RCU of adaptive-ticks usermode execution so that it ignores adaptive-

ticks user-mode CPUs, similar to its handling of dyntick-ticks CPUs

Frederic Weisbecker took on the task of fixing this (for x86-64)
– Geoff Levand and Kevin Hilman: Port to ARM
– Li Zhong: Port to PowerPC
– I was able to provide a bit of help with RCU
– We now have NO_HZ_FULL!
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How Well Does NO_HZ_FULL Work?

KernelIdle Usermode Kernel Usermode

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

Adaptive
Ticks

Second task awakens

One task per CPU

NO_HZ_FULL

NO_HZ
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Accepted Into Linux-Kernel Mainline v3.10
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Accepted Into Linux-Kernel Mainline v3.10
Enabled by Default in RHEL7
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Accepted Into Linux-Kernel Mainline v3.10
Enabled by Default in RHEL7

Thus Used By Everyone, Not Just HPC and RT

And So The Real Validation Begins!!!
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Rik van Riel: rcu_sched at More Than 40% CPU!!!
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Rik van Riel: rcu_sched at More Than 40% CPU!!!

Say What???
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Rik van Riel: rcu_sched at More Than 40% CPU!!!

80-CPU x86 system with NO_HZ_FULL

Context-switch-heavy workload
–Which NO_HZ_FULL was not optimized for!!!

So maybe grace periods are completing very quickly, 
resulting in high CPU load on RCU's grace-period kthread

–So artificially slow down the loop in the rcu_sched task
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Rik van Riel: rcu_sched at More Than 40% CPU!!!

80-CPU x86 system with NO_HZ_FULL

Context-switch-heavy workload
–Which NO_HZ_FULL was not optimized for!!!

So maybe grace periods are completing very quickly, 
resulting in high CPU load on RCU's grace-period kthread

–So artificially slow down the loop in the rcu_sched task
–Which unfortunately doesn't help
–So need to actually analyze the problem!  :-)
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Combining Tree
(scalability)

Rough Diagram of Vanilla RCU Components Involved

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 4
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

RCU
grace-period

kthread
(rcu_preempt)

Start

End

Low rcu_preempt CPU utilization
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Combining Tree
(scalability)

Rough Diagram of RCU Components With Bare Metal

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 4
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

RCU
grace-period

kthread
(rcu_preempt)

Start

End

RCU offload
kthreads

(rcuo)RCU callbacks

N
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d
G

P

G
P
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Excessive rcu_preempt CPU utilization
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But Why Offload RCU Callbacks???

But first, what are RCU callbacks and why are they needed?
–For an overview, see http://lwn.net/Articles/262464/ 

For the purposes of this presentation, think of RCU as 
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after grace period
–Deferring the work a bit longer than needed is OK, deferring too long is 

bad – but failing to defer long enough is fatal
–Allow extremely fast and scalable read-side access to shared data

rcu_datarcu_datarcu_data

Per-CPU
rcu_data
structure

rcu_head

    ->next

    ->func

rcu_head

    ->next

    ->func

rcu_head

    ->next

    ->func
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How Are RCU Callbacks Invoked?

RCU uses a state machine driven out of the scheduling-clock 
interrupt to determine when it is safe to invoke callbacks

Actual callback invocation is done from softirq

RCU: Tapping the awesome power of procrastination for 
more than two decades!!!

Scheduling-Clock
Interrupts

softirq Callback
Invocation

CPU 0

Callback
Queued
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How Are RCU Callbacks Invoked?

RCU uses a state machine driven out of the scheduling-clock 
interrupt to determine when it is safe to invoke callbacks

Actual callback invocation is done from softirq

RCU: Tapping the awesome power of procrastination for 
more than two decades!!!   But...

Scheduling-Clock
Interrupts

softirq Callback
Invocation

CPU 0

Callback
Queued
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Procrastination's Dark Side: Eventually Must Do Work

CPU 0
Callback Invoked

Grace Period

Likely disrupting whatever was 
intended to execute at about this time...

call_rcu():
Queue Callback
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Offload RCU Callbacks: Inspired by Houston/Korty

CPU 2

Callback Invoked

Grace Period

rcuo kthread

No disruption!

CPU 1

Callback Invoked

Grace Period

rcuo kthread

call_rcu()

call_rcu()

Scheduler controls placement,
or can place manually
(NO_HZ_FULL now places on housekeeping CPUs)
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Reducing Disruption Great, But Not At 40% CPU!!!
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Reducing Disruption Great, But Not At 40% CPU!!!
Especially Not For Users Not Caring About Disruption

Hey, I was hoping...
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First, Stop Bleeding For Innocent Bystanders!!!

RCU's callback offloading is resulting in high CPU overhead 
for some workloads on large systems

And Rik's setup enables callback offloading unconditionally
–CONFIG_RCU_NOCB_CPU_ALL=y implied by 

CONFIG_NO_HZ_FULL=y, which is enabled by default
–Each and every system uses expensive callback offloading, thus 

penalizing all users for something actually needed by only a few
–Ubiquity strikes again!!!

 Initial bandaid:
–Don't imply CONFIG_RCU_NOCB_CPU_ALL=y from 

CONFIG_NO_HZ_FULL=y
–Offload only from CPUs specified by nohz_full= boot parameter
–Stops the bleeding for normal users who don't care about bare metal

• b58cc46c5f6b: Don't offload callbacks unless specifically requested)
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Industry Experience: 1 of 6 Fixes Introduces Bug
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Industry Experience: 1 of 6 Fixes Introduces Bug

And this was in the “1” category!

RCU is used very early in boot, including posting callbacks
–Which was news to me, I figured call_rcu() didn't happen until later

• And it didn't happen until later in my testing...
–Ubiquity strikes again!!!

Callbacks posted before RCU decides that a given CPU is to 
be offloaded are lost, which can result in hangs

–Simple fix: decide earlier on which CPUs are to be offloaded
–f4579fc57cf4: Fix attempt to avoid unsolicited offloading of callbacks
–Thus stopping the bleeding caused by the earlier bandage...
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OK, Stopped the Bleeding, Now Fix the Bug!

Rik van Riel determined CPU overhead due to grace-period 
kthread waking up rcuo callback-offload kthreads

And this will just get worse with increasing numbers of CPUs
–If wakeups on 80 CPUs consume 40% of a CPU, for 4096 CPUs 

wakeups will consume 2048% of the grace-period kthread's CPU
• This will mean gross delays of grace-period completion, unacceptable

One solution: Make some of the rcuo kthreads wake up the 
rest, thus spreading (AKA “hiding”) the overhead

–And parallelizing the wakeups
–fbce7497ee5a: Parallelize and economize NOCB kthread wakeups
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RCU
grace-period

kthreads
(rcuo)

RCU
grace-period

kthreads
(rcuo)

RCU
grace-period

kthreads
(rcuo)

Combining Tree
(scalability)

Back to the Rough Diagram of RCU Components

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 0
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

CPU 4
Quiescent states (QS)
   (context switch)
Extended QS:
   Idle, Offline, or User

RCU
grace-period

kthread
(rcu_preempt)

Start

End

RCU offload
kthreads

(rcuo)
RCU callbacks
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Rough Diagram Focusing on rcuo Wakeups, 20 CPUs
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Rough Diagram Focusing on rcuo Wakeups, 20 CPUs
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Serendipity: Reduces Number of Wakeups!

Assume busy system, where each CPU has at least one 
callback per grace period

Old way:
–Each of rcuo/0 through rcuo/19 awakened when first callback posted
–Each of rcuo/0 through rcuo/19 awakened when grace period ends
–Total of 40 wakeups, 2 per rcuo kthread, 20 by grace-period kthread

New way:
–Each of rcuo/0, rcuo/5, rcuo/10, and rcuo/15 awakened when first 

callback posted
–Each of rcuo/0 through rcuo/19 awakened when grace period ends
–Total of only 24 wakeups, 4 by grace-period kthread
–40% reduction in total wakeups, and 80% reduction in wakeups by 

grace-period kthread

 (See next slide)
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Rough Diagram Focusing on rcuo Wakeups, 20 CPUs
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More CPUs, Greater Reductions in Leader Wakeups!
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But More Leader CPU Load For “Switchy” Workloads

Might someday need an additional level of hierarchy,
but other Linux scalability issues will strike first
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Overall, Looks Pretty Good!!!

Not only spreads out the overhead, but also reduces it!

Systems with lots of CPUs unlikely to run “switchy” workloads

What is not to like?
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Overall, Looks Pretty Good!!!

Not only spreads out the overhead, but also reduces it!

Systems with lots of CPUs unlikely to run “switchy” workloads

What is not to like?

 “Industry Experience: 1 of 6 Fixes Introduces Bug”
–System hang, also due to callbacks being posted early
–Reported by Amit Shah, fixed by Pranith Kumar
–11ed7f934cb8: Make nocb leader kthreads process pending callbacks 

after spawning
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Overall, Looks Pretty Good!!!

Not only spreads out the overhead, but also reduces it!

Systems with lots of CPUs unlikely to run “switchy” workloads

What is not to like?

 “Industry Experience: 1 of 6 Fixes Introduces Bug”
–System hang, also due to callbacks being posted early
–Reported by Amit Shah, fixed by Pranith Kumar
–11ed7f934cb8: Make nocb leader kthreads process pending callbacks 

after spawning

So it is all good, right?
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Paul Gortmaker: Why So Many rcuo kthreads???
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Paul Gortmaker: Why So Many rcuo kthreads???

A handful of CPUs, but hundreds of rcuo kthreads!!!
–Supposed to be at most three rcuo kthreads per offloaded CPU
–rcu_bh, rcu_sched, and if CONFIG_PREEMPT=y, rcu_preempt

• (One for each “flavor” of RCU.)

 It seems that some firmware tells lies about number of CPUs
–And RCU was stupid enough to believe these lies 

(http://paulmck.livejournal.com/37494.html)
–FW said lots and lots of CPUs, so RCU created 100s of rcuo kthreads

• Which just sat idle, consuming memory and clogging ps listings

Easy fix: Just don't create rcuo until CPUs come online
–9386c0b75dda: Rationalize kthread spawning
–35ce7f29a44a: Create rcuo kthreads only for onlined CPUs
–Passed tests with flying colors!!!
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But The Only Reason It Passed The Tests Was...

Neither Paul Gortmaker or I had enabled modules
–Plus my firmware doesn't lie about the number of CPUs!

 It turns out that module removal often uses rcu_barrier()...
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What The Heck is rcu_barrier()???

Consider the following sequence of events:
–Kernel module does call_rcu(&p->rcu, my_func)
–This means that my_func() will be invoked after a grace period

• If RCU is very busy on that CPU, maybe a long time after a grace period
–Suppose that the kernel module is unloaded in the meantime

• And that any grace periods use a lightly loaded CPU
–The module might be completely unloaded by the time my_func() is 

finally invoked
–Which would be an embarrassing and fatal surprise, because 

my_func() is no longer in memory!!!
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What The Heck is rcu_barrier()???

Consider the following sequence of events:
–Kernel module does call_rcu(&p->rcu, my_func)
–This means that my_func() will be invoked after a grace period

• If RCU is very busy on that CPU, maybe a long time after a grace period
–Suppose that the kernel module is unloaded in the meantime

• And that any grace periods use a lightly loaded CPU
–The module might be completely unloaded by the time my_func() is 

finally invoked
–Which would be an embarrassing and fatal surprise, because 

my_func() is no longer in memory!!!

Use rcu_barrier() to prevent this by waiting for all previous 
callbacks to be invoked (see next slide)
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Using rcu_barrier() to Avoid Function Gone AWOL

New sequence of events using rcu_barrier():
–Kernel module does call_rcu(&p->rcu, my_func)
–This means that my_func() will be invoked after a grace period

• If RCU is very busy on that CPU, maybe a long time after a grace period
–Suppose that the kernel module is unloaded in the meantime

• But the module invokes rcu_barrier(), which means that my_func has been 
invoked by the time that rcu_barrier() has returned

–The module may now be safely unloaded, because my_func() is no 
longer required

Two principles behind rcu_barrier() design:
–Post a callback on each CPU with callbacks, wait for all of them
–Any given CPU's callbacks are always invoked in order
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Old rcu_barrier() Pseudocode, Before Offloading

get_online_cpus()

Set counter to one

 for_each_online_cpu()
–If CPU has callbacks, post a callback and atomically increment counter

• (Callback will atomically decrement counter, wake us if zero)

put_online_cpus()

Atomically decrement counter

Wait for counter to reach zero

But with offloading, offline CPUs can still have callbacks!!!
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New rcu_barrier() Pseudocode, Given Offloading

get_online_cpus()

Set counter to one

 for_each_online_cpu()
–If CPU has callbacks or if CPU's callbacks are offloaded, post a 

callback and atomically increment counter
• (Callback will atomically decrement counter, wake us if zero)

put_online_cpus()

Atomically decrement counter

Wait for counter to reach zero

But never-onlined CPUs don't have rcuo kthread!!!
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Fixed rcu_barrier() Pseudocode, Given Offloading

get_online_cpus()

Set counter to one

 for_each_online_cpu()
–If CPU has callbacks on the one hand, or if CPU's callbacks are 

offloaded and the CPU has an rcuo kthread on the other, post a 
callback and atomically increment counter

• (Callback will atomically decrement counter, wake us if zero)

put_online_cpus()

Atomically decrement counter

Wait for counter to reach zero

d7e29933969e: Make rcu_barrier() understand about missing 
rcuo kthreads
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But There Was Another Bug...

 If the CPUs came online out of order, the leader/follower lists 
could drop followers from the list

Found by inspection, easy fix:
–bbe5d7a93a39: Fix for rcuo online-time-creation reorganization bug
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But There Was Another Bug...

 If the CPUs came online out of order, the leader/follower lists 
could drop followers from the list

Found by inspection, easy fix:
–bbe5d7a93a39: Fix for rcuo online-time-creation reorganization bug

Which prompted me to do an exhaustive usermode test
–Which I should have done in the first place!
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Lessons (Re)Learned

Limit the scope of any changes
–Don't put innocent bystanders at risk

Linux has an amazing range of workloads and hardware
–You cannot hope to test them all

Fixes can generate additional bugs
–Murphy says that fixes will generate additional bugs
–But sometimes serendipity happens!

Fixes for bugs that are minor and that most users don't see 
require more caution

–Unlike a deterministic boot-time panic, there is something to lose!
–And this is why we have rules about what is accepted when
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Lessons (Re)Learned

Limit the scope of any changes
–Don't put innocent bystanders at risk

Linux has an amazing range of workloads and hardware
–You cannot hope to test them all

Fixes can generate additional bugs
–Murphy says that fixes will generate additional bugs
–But sometimes serendipity happens!

Fixes for bugs that are minor and that most users don't see 
require more caution

–Unlike a deterministic boot-time panic, there is something to lose!
–And this is why we have rules about what is accepted when

People probably trust me more than they should
–Though this experience might well have fixed that problem!
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Most Important Lesson (Re)Learned

 It is not enough to check your assumptions

 If you have a long-held assumption, you may have:
–Built towers of logic on that assumption
–Adopted processes based on those towers of logic
–Formed habits based on those processes

• Habits of thought, words, and deeds

Fixing a false assumption requires also fixing logic, 
processes, and, hardest of all, habits

False assumption: NO_HZ_FULL users build their kernels
–Proven false when distros planned NO_HZ_FULL kernels
–My habit was “dont' worry, but fix bugs if and when they arise”
–Falsification should have motivated aggressive validation

• And did, eventually...
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Additional Issues With Bare-Metal Operation

 1Hz residual tick:
– Just in case something we haven't found yet needs interrupts...
– Kevin Hilman has a patch series that turns this off: Use at your own risk!

 Timer wheel:
– Suppose that the application occasionally enters the kernel
– Current timer-wheel code will proceed jiffy-by-jiffy to catch up: latency spikes!
– “Bandaid” patches in mainline as of 3.15
– Thomas Gleixner working on more general solution

 Precise delta-time process accounting causes some delays
– Perhaps an option for coarse process accounting?

 “Whack-a-mole” with other problems as they arise!
– Issues whacked thus far include workqueues, automating kthread placement, eliminating 

vmstat activity, interactions with time, …
– Lots of work from lots of people, with Frederic doing much of the heavy lifting
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To Probe More Deeply Into Adaptive Ticks

Documentation/timers/NO_HZ.txt

 Is the whole system idle?
– http://lwn.net/Articles/558284/

 (Nearly) full tickless operation in 3.10
– http://lwn.net/Articles/549580/

 “The 2012 realtime minisummit” (LWN, CPU isolation discussion)
– http://lwn.net/Articles/520704/

 “Interruption timer périodique” (Kernel Recipes, in French)
– https://kernel-recipes.org/?page_id=410

 “What Is New In RCU for Real Time” (RTLWS 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.10.19e.pdf

• Slides 31-32

 “TODO”
– https://github.com/fweisbec/linux-dynticks/wiki/TODO

 “NoHZ tasks” (LWN)
– http://lwn.net/Articles/420544/
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Configuration Cheat Sheet (Subject to Change!)

CONFIG_NO_HZ_FULL=y Kconfig: enable adaptive ticks
–Implies dyntick-idle mode (specify separately via CONFIG_NO_HZ_IDLE=y)
–Specify which CPUs at compile time: CONFIG_NO_HZ_FULL_ALL=y

• But boot CPU is excluded, used as timekeeping CPU
–“full_nohz=” boot parameter: Specify adaptive-tick CPUs, overriding build-time Kconfig

• “full_nohz=1,3-7” says CPUs 1, 3, 4, 5, 6, and 7 are adaptive-tick
• Omitting “full_nohz=”: No CPUs are adaptive-tick unless CONFIG_NO_HZ_FULL_ALL=y
• Boot CPU cannot be adaptive-ticks, it will be used as timekeeping CPU regardless

–PMQOS to reduce idle-to-nonidle latency
• X86 can also use “idle=mwait” and “idle=poll” boot parameters, but note that these can cause thermal 

problems and degrade energy efficiency, especially “idle=poll”

CONFIG_RCU_NOCB_CPU=y Kconfig: enable RCU offload
–Specify which CPUs to offload at build time:

• RCU_NOCB_CPU_NONE=y Kconfig: No offloaded CPUs (specify at boot time)
• RCU_NOCB_CPU_ZERO=y Kconfig: Offload CPU 0 (intended for randconfig testing)
• RCU_NOCB_CPU_ALL=y Kconfig: Offload all CPUs

–“rcu_nocbs=” boot parameter: Specify additional offloaded CPUs

CONFIG_NO_HZ_FULL_SYSIDLE=y: enable system-wide idle detection
–Still needs more plumbing from Frederic: https://lkml.org/lkml/2014/7/28/540

Also: CONFIG_HIGH_RES_TIMERS=y, CONFIG_DEBUG_PREEMPT=n, 
CONFIG_TRACING=n, CONFIG_DEBUG_LIST=n, ...
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Boot/Doc Cheat Sheet (Subject to Change!)

Boot:
–nosoftlockup:  Decrease soft-lockup checking overhead, and also 

remove the corresponding diagnostics.  (Decisions, decisions!)
–isolcpus=n-m: Tell the Linux kernel to isolate the specified CPUs.  

(Some consider this to be obsolete, others swear by it.)
–elevator=noop: Disable complex block I/O schedulers.  (Some prefer 

compiling with CONFIG_IOSCHED_NOOP=n, 
CONFIG_IOSCHED_DEADLINE=n, and 
CONFIG_IOSCHED_CFQ=n.)

Documentation:
–How-to info for kthreads: Documentation/kernel-per-CPU-kthreads.txt
–Available in 3.10, see Documentation/timers/NO_HZ.txt for more info
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Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick 
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us
• Whack-a-mole with various other issues, patches in flight

–And can maintain energy efficiency as well!
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Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick 
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us
• Whack-a-mole with various other issues, patches in flight

–And can maintain energy efficiency as well!

Extending Linux's reach further into extreme computing!!!



© 2015 IBM Corporation69

linux.conf.au, Auckland, New Zealand, January 15, 2015

Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.
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Questions?
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