
linux.conf.au 2008 Mel8ourne

February 1, 2008 © 2006, 2007 IBM Corporation

After 25 Years, C/C++ Understands Concurrency

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What This Talk is Not...

 Not introducing new synchronization mechanisms
• The point of standardization is to codify existing practice

 Not introducing new uses of or ways to test
synchronization mechanisms
• The point of standardization is to codify existing practice

 Not a comprehensive overview of c++0x
• For that see http://open-std.org/jtc1/sc22/wg21/docs/papers/

 This talk is about concurrency features of c++0x,
focused mainly on memory ordering

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Why C Programmers Should Care About C++...

 Both C and C++ lack support for concurrency in the
standard

 Both groups desire compatibility
• So C standards-committee members are participating in C++

concurrency standards effort

• When C++ standard is complete, it will be adapted for C

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards...

 Was working on a C++ project for the US Defense
Advanced Research Projects Agency (DARPA)
• Embedded communications application based on Mach

• Needed to influence the C++ standard due to shortcomings in
the language

• Heavily marked up a copy of C++ documentation
► But the committee took it reasonably well

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards...

 But wait... That was back in 1990!!!
• Fast-forwarding to 2005...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards Again...

 In May 2005, I hear rumors of C/C++ standardizing
memory ordering models
• Not a surprise, as Java recently did the same

• But quick Google search turns up nothing

• Besides, was tearing hair out trying to implement realtime RCU

 Fast-forward to late 2006...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards Again...

 More persistent rumors surface
• Along with complaints that proposed standard favors Itanium

 But this time the group was evident, including email list
 I joined the mailing list, planning to lurk for a few weeks

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What I Learned While Lurking...

 Concurrency subgroup had high opinion of Linux:
• “So read_barrier_depends() stuff in Linux is also totally busted.

(Just like refcounting, etc.)” (2005)
• “And I don't believe that the semantics of

read_barrier_depends() are actually definable” (2006)

 I was only able to remain in lurk mode for about 3 days

 Though this high opinion persisted for some time:
• “And I think that does work for RCU, at least for conventional

optimizations. But the more I think about, the less I'm convinced
that it's 100% reliable.” (2007)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

But Don't C/C++ Already Handle Concurrency???

 And I have been doing parallel C for about 17 years
 But I have always used non-standard extensions

• Linux kernel uses non-standard asms for memory barriers,
atomic operations, RCU, ...

• Compiler writers generally don't worry about concurrency
► “The standard says that the result is undefined!!! So I can do anything!!!”
► Things can break easily...
► Which might well explain the concurrency subgroup's skepticism!!!

 So, what real problems can arise?
• Refetching variables (as in mce_log() needing rmb()...)
• Fetch variables piece at a time, or merge stores
• Stores clobber adjacent variables, compiler does additional

stores to “fix things up” -- too bad if shared variables!!!
• Re-order code (e.g., pulling critical section ahead of lock)

 Can fix these, but requires constant attention

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Refetching Variables

 Consider following code:
p = head;
do_something(p->a);
do_something_else(p->b);

 Compiler might handle register pressure by refetching:
p = head;
do_something(p->a);
do_something_else(head->b);

 If some other task modified “head” in the meantime, the
code might see inconsistent values

 Why???
• The compiler might run out of registers on some machines
• Like the 32-bit x86...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Refetching Variables

p = head;
do_something(p->a);
do_something_else(head->b);

->a = 10
->b = 100

->a = 16
->b = 256

head

p = head;
do_something(p->a);
do_something_else(p->b);

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Piece-at-a-Time Variable References

 Consider following code:
p = head;
do_something(p->a);
do_something_else(p->b);

 Compiler might fetch piece-at-a-time:
char *cp1 = (char *)&head;
char *cp2 = (char *)&p;
for (i = 0; i < sizeof(head); i++)
 cp2[i] = cp1[i];
do_something(p->a);
do_something_else(p->b);

 If some other task modified “head” in the meantime,
might see bitwise mash-up of the old and new values

 Why???
• Consider an 8-bit CPU, which the C language must handle
• Fortunately, the Linux kernel prohibits such throwbacks

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Piece-at-a-Time Variable Reference

head

head

head'

head'

p = head;
do_something(p->a);
do_something_else(p->b);

char *cp1 = (char *)&head;
char *cp2 = (char *)&p;
for (i = 0; i < sizeof(head); i++)
 cp2[i] = cp1[i];
do_something(p->a);
do_something_else(p->b);

head
???

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Clobbering Adjacent Variables

 Consider following code:
struct foo {
 short a, b;
} f = { 1, 2 };
f.a = 0;
f.b = 42;

 Compiler might clobber whole structure:
f = 0;
f.b = 42;

 If some other task is watching, it might see f.b==0
• Despite the fact that this value logically never occurs!

 Why???
• Consider a 32-bit CPU with expensive 16-bit memory references

► Or some vector machines...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Clobbering Adjacent Variables

->a = 1
->b = 2

->a = 0
->b = 2

->a = 0
->b = 42

As Coded

->a = 1
->b = 2

->a = 0
->b = 0

->a = 0
->b = 42

As Compiled

Some other thread
might see this!!!

The compiler assumes that there are no other threads!!!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Re-Ordering Code

 Consider following code:
f.a = 1;
f.b = 2;
global_f = f;

 Compiler might re-order assignments:
global_f = f;
f.a = 1;
f.b = 2;

 If some irq handler or some other task is watching, it
might see uninitialized values for f.a and f.b!!!
• Linux kernel uses barrier() to prevent this (asm with “memory”)
• But it is also necessary to prevent the CPU from reordering!

► smp_mb() and friends

 Why??? Consider a CPU with few registers...
• Like 32-bit x86...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Re-Ordering Code

->a = ?
->b = ?

->a = 1
->b = ?

->a = 1
->b = 2

As Coded As Compiled

->a = 1
->b = 2

->a = ?
->b = ?

->a = ?
->b = ?

->a = 1
->b = ?

->a = 1
->b = 2

global_f

Some other thread
might see this!!!

The compiler assumes that there are no other threads!!!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Why Does C/C++ Allow Such Things???

 Optimization, performance, existing compilers, strange
CPUs (8-bit CPUs, CPUs with no byte operations, ...)
• Approach: define “atomic” type restricting optimizations
• Sort of like “volatile”, but with well-defined semantics in multi-

threaded environments
• Non-atomic variables undefined in presence of “data races”

► Where at least one thread updates concurrently with other threads
accessing—protect non-atomic variables with locks, &c

 Logical next step would be to define memory barriers
• However, this proved surprisingly controversial
• Though not without reason: the Linux community is not the

only group who find the semantics of memory barriers to be
rather obscure

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does One Use Instead of Memory Barriers?

 Store-release and load-acquire on a variable
• My initial reaction: “What do you think you are doing

attempting to write Itanium instructions into the standard???”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does One Use Instead of Memory Barriers?

 Store-release and load-acquire on a variable
• My initial reaction: “What do you think you are doing

attempting to write Itanium instructions into the standard???”
• To be fair, I suspect that a few other members were concerned

that I was attempting to write IBM's RCU patents into the
standard
► I (just barely) resisted the temptation to point out that the first RCU

patents are likely to expire before highly reliable compilers conforming to
the new c++0x standard see the light of day

► I instead pointed out that garbage collectors (is in progress for C++),
hazard pointers, or type-safe memory could take the place of RCU

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Does Store-Release and Load-Acquire Work?

 Store-release and load-acquire work nicely on all
parallel architectures, including POWER
• Prohibits all reorderings except the important store-buffer

store-load case, permitting light-weight barrier instructions:
► x86: nothing (given new Intel and AMD memory models)
► POWER/PowerPC: lwsync for store, bc;isync for load
► Itanium: ld,acq & st,rel
► s390: nothing

 Store-release and load-acquire easy (easier) to explain
• Store-release is “publish” operation for prior stores
• Load-acquire is “subscribe” operation for later accesses

► Which are guaranteed to see stores published by the store-release

 Roughly half of Linux smp_mb() convert trivially
• Others might require more work
• But would likely make the code much easier to understand

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Store-Release and Load-Acquire Semantics

Before Barrier
LOAD STORE

LOAD Ordered Unordered
STORE Ordered Ordered

After
Barrier

f.store(1,memory_order_release);
/* Subsequent loads may be reordered to precede f.store() */
/* Subsequent stores as well (by the compiler and Itanium) */

/* Prior stores may be reordered to follow f.load() */
/* Prior loads as well (by the compiler and Itanium). */
r1 = f.load(memory_order_acquire);

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Store-Release and Load-Acquire Example: POWER

a = 1;
b = 2;
f.store(1,memory_order_release);

a = 1;
b = 2;
lwsync();
f = 1;

if (f.load(memory_order_acquire)) {
 t1 = a;
 t2 = b;
}

if (f) {
 isync();
 t1 = a;
 t2 = b;
} else {
 isync();
}

“Synchronizes-with” relationship

“Publish”

“Subscribe”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Can We Dispense With Raw Memory Barriers?

 Probably not, though many committee members tried
• Large amount of existing usage, corner cases
• Bjarne Stroustrup had to intervene to keep memory-barriers

► Existing software? Who cares about existing software???

 Some distributed-shared-memory folks hate barriers!!!
• Some distributed-memory guys use variable as “tag”

► Idea seems to be to ship groups of variables instead of pages, limiting
communications intensity

► Not all distributed-memory people see this as a critical issue
– Unfortunately, this group was not represented on the committee

• After some debate, invented mythical global variable with very
long name for unadorned memory barriers
► Which conventional machines are free to ignore and which programmers

never have to type in
► Except those compiling for such distributed-memory machines

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Should C/C++ Memory Model Be?

 Theoretical group wanted sequential consistency (SC)
• All operations on atomics globally ordered
• On POWER, sync between all pairs of references to atomics

► lwsync in some cases, but still expensive
• See next slide for list of real-world use cases requiring SC

 Committee-style compromise:
• SC is default for atomic variables
• Weaker operations are available, including “relaxed” access

that has no memory-ordering semantics
• It will likely be possible to relax SC semantics in practice – but

theory of near-SC still quite immature
 Semi-formal semantics finalized

• Except for data-dependency ordering, which is still in progress
• Despite a very rocky start...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Real-World SC Use Cases

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Atomic Operations

 Atomic operations
• If CPU does not support atomic operation, auto-generate locking

► For example, compare-and-swap (AKA cmpxchg) on a large struct
► Each type has a flag stating whether it is natively atomic

• C++ templates used for atomic operation definitions
• Can select degree of memory ordering desired

► memory_order_relaxed: no ordering
► memory_order_depends: dependency ordering (proposed)
► memory_order_acquire: “acquire” ordering
► memory_order_release: “release” ordering
► memory_order_acq_rel: both “acquire” and “release” ordering
► memory_order_seq_cst: full ordering with all seq_cst operations across all CPUs

• Numerous operations: load, store, arithmetic, boolean, compare-and-swap, ...

 Use of atomic variables in signal handlers
• But only atomic variables of primitive types!!!
• (Current restriction is sig_atomic_t)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Other Concurrency Features Being Considered

 Boost.Threads library functions
• Threads, mutexes/locks, condition variables, call-once functions
• Thread cancellation caused much debate: strange interactions with

destructors & exception handlers in some implementations
► Voluntary cancellation particularly problematic

• Garbage collection (proposed)
 Some complications:

• Destructors running concurrently with constructors for same object
• Destructors running concurrently with exit() or atexit() handlers

► Simplification: terminate all threads before exiting!!!
► New quick_exit() exits without executing destructors (but invokes

at_quick_exit() handlers)
– And at_quick_exit() handlers can register at_quick_exit() handlers...

• Code relying on destructors running in reverse order of constructors
• Garbage collector with finalization

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does All This Mean For F/OSS?

 Multithreaded software actually favors F/OSS!!!
• Multithreaded SW requires global design constraints

► Deadlock avoidance
► Data structure partitioning
► Reducing lock and memory contention

• F/OSS “shows you the code”, allowing any developer to verify
global design constraints
► Also works in tightly controlled proprietary environments
► But not given mutually proprietary plug-ins sharing the same address space

– Same problem that is posed by Linux-kernel binary modules/drivers!!!

 There is potential to move low-level concurrency code
from system.h, atomic.h, &c to the compiler
• The compiler might be able to generate better code given the

association with variables
• Balanced by the fact that c++0x takes a different approach than

do most existing projects...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Lessons Learned

 Get involved early (see next slide)
• Though in this case, more-recent theoretical work on RCU was

critically important
► Early-2005 RCU nomenclature probably have not been convincing

• But starting in 2005 might have produced an alternative to
sequential consistency

• Fortunately for me, a number of Linux-community members
have been involved for quite some time ☺

 Academia is important
• People listen to academics, even when we practitioners think

that they shouldn't ☺
 When standards people say “it is undefinable”, they

sometimes really mean “I don't understand it”.

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How You Can Get Involved

 ISO WG21 (C++) Structure

ISO WG21

US
ANSI XJ16

UK
BSI

France
AFNOR

Germany
DIN

Switzerland
SNV

French German Swiss English American

Other

Find/form
your national

standards body

Join
ANSI
XJ16

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Legal Statement

 This work represents the view of the author and does
not necessarily represent the view of IBM.

 IBM, IBM (logo), e-business (logo), pSeries, e (logo)
server, and xSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Questions?

