
linux.conf.au 2008 Mel8ourne

February 1, 2008 © 2006, 2007 IBM Corporation

After 25 Years, C/C++ Understands Concurrency

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What This Talk is Not...

 Not introducing new synchronization mechanisms
• The point of standardization is to codify existing practice

 Not introducing new uses of or ways to test
synchronization mechanisms
• The point of standardization is to codify existing practice

 Not a comprehensive overview of c++0x
• For that see http://open-std.org/jtc1/sc22/wg21/docs/papers/

 This talk is about concurrency features of c++0x,
focused mainly on memory ordering

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Why C Programmers Should Care About C++...

 Both C and C++ lack support for concurrency in the
standard

 Both groups desire compatibility
• So C standards-committee members are participating in C++

concurrency standards effort

• When C++ standard is complete, it will be adapted for C

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards...

 Was working on a C++ project for the US Defense
Advanced Research Projects Agency (DARPA)
• Embedded communications application based on Mach

• Needed to influence the C++ standard due to shortcomings in
the language

• Heavily marked up a copy of C++ documentation
► But the committee took it reasonably well

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards...

 But wait... That was back in 1990!!!
• Fast-forwarding to 2005...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards Again...

 In May 2005, I hear rumors of C/C++ standardizing
memory ordering models
• Not a surprise, as Java recently did the same

• But quick Google search turns up nothing

• Besides, was tearing hair out trying to implement realtime RCU

 Fast-forward to late 2006...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How I Ended Up Messing With Standards Again...

 More persistent rumors surface
• Along with complaints that proposed standard favors Itanium

 But this time the group was evident, including email list
 I joined the mailing list, planning to lurk for a few weeks

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What I Learned While Lurking...

 Concurrency subgroup had high opinion of Linux:
• “So read_barrier_depends() stuff in Linux is also totally busted.

(Just like refcounting, etc.)” (2005)
• “And I don't believe that the semantics of

read_barrier_depends() are actually definable” (2006)

 I was only able to remain in lurk mode for about 3 days

 Though this high opinion persisted for some time:
• “And I think that does work for RCU, at least for conventional

optimizations. But the more I think about, the less I'm convinced
that it's 100% reliable.” (2007)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

But Don't C/C++ Already Handle Concurrency???

 And I have been doing parallel C for about 17 years
 But I have always used non-standard extensions

• Linux kernel uses non-standard asms for memory barriers,
atomic operations, RCU, ...

• Compiler writers generally don't worry about concurrency
► “The standard says that the result is undefined!!! So I can do anything!!!”
► Things can break easily...
► Which might well explain the concurrency subgroup's skepticism!!!

 So, what real problems can arise?
• Refetching variables (as in mce_log() needing rmb()...)
• Fetch variables piece at a time, or merge stores
• Stores clobber adjacent variables, compiler does additional

stores to “fix things up” -- too bad if shared variables!!!
• Re-order code (e.g., pulling critical section ahead of lock)

 Can fix these, but requires constant attention

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Refetching Variables

 Consider following code:
p = head;
do_something(p->a);
do_something_else(p->b);

 Compiler might handle register pressure by refetching:
p = head;
do_something(p->a);
do_something_else(head->b);

 If some other task modified “head” in the meantime, the
code might see inconsistent values

 Why???
• The compiler might run out of registers on some machines
• Like the 32-bit x86...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Refetching Variables

p = head;
do_something(p->a);
do_something_else(head->b);

->a = 10
->b = 100

->a = 16
->b = 256

head

p = head;
do_something(p->a);
do_something_else(p->b);

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Piece-at-a-Time Variable References

 Consider following code:
p = head;
do_something(p->a);
do_something_else(p->b);

 Compiler might fetch piece-at-a-time:
char *cp1 = (char *)&head;
char *cp2 = (char *)&p;
for (i = 0; i < sizeof(head); i++)
 cp2[i] = cp1[i];
do_something(p->a);
do_something_else(p->b);

 If some other task modified “head” in the meantime,
might see bitwise mash-up of the old and new values

 Why???
• Consider an 8-bit CPU, which the C language must handle
• Fortunately, the Linux kernel prohibits such throwbacks

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Piece-at-a-Time Variable Reference

head

head

head'

head'

p = head;
do_something(p->a);
do_something_else(p->b);

char *cp1 = (char *)&head;
char *cp2 = (char *)&p;
for (i = 0; i < sizeof(head); i++)
 cp2[i] = cp1[i];
do_something(p->a);
do_something_else(p->b);

head
???

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Clobbering Adjacent Variables

 Consider following code:
struct foo {
 short a, b;
} f = { 1, 2 };
f.a = 0;
f.b = 42;

 Compiler might clobber whole structure:
f = 0;
f.b = 42;

 If some other task is watching, it might see f.b==0
• Despite the fact that this value logically never occurs!

 Why???
• Consider a 32-bit CPU with expensive 16-bit memory references

► Or some vector machines...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Clobbering Adjacent Variables

->a = 1
->b = 2

->a = 0
->b = 2

->a = 0
->b = 42

As Coded

->a = 1
->b = 2

->a = 0
->b = 0

->a = 0
->b = 42

As Compiled

Some other thread
might see this!!!

The compiler assumes that there are no other threads!!!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Re-Ordering Code

 Consider following code:
f.a = 1;
f.b = 2;
global_f = f;

 Compiler might re-order assignments:
global_f = f;
f.a = 1;
f.b = 2;

 If some irq handler or some other task is watching, it
might see uninitialized values for f.a and f.b!!!
• Linux kernel uses barrier() to prevent this (asm with “memory”)
• But it is also necessary to prevent the CPU from reordering!

► smp_mb() and friends

 Why??? Consider a CPU with few registers...
• Like 32-bit x86...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Re-Ordering Code

->a = ?
->b = ?

->a = 1
->b = ?

->a = 1
->b = 2

As Coded As Compiled

->a = 1
->b = 2

->a = ?
->b = ?

->a = ?
->b = ?

->a = 1
->b = ?

->a = 1
->b = 2

global_f

Some other thread
might see this!!!

The compiler assumes that there are no other threads!!!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Why Does C/C++ Allow Such Things???

 Optimization, performance, existing compilers, strange
CPUs (8-bit CPUs, CPUs with no byte operations, ...)
• Approach: define “atomic” type restricting optimizations
• Sort of like “volatile”, but with well-defined semantics in multi-

threaded environments
• Non-atomic variables undefined in presence of “data races”

► Where at least one thread updates concurrently with other threads
accessing—protect non-atomic variables with locks, &c

 Logical next step would be to define memory barriers
• However, this proved surprisingly controversial
• Though not without reason: the Linux community is not the

only group who find the semantics of memory barriers to be
rather obscure

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does One Use Instead of Memory Barriers?

 Store-release and load-acquire on a variable
• My initial reaction: “What do you think you are doing

attempting to write Itanium instructions into the standard???”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does One Use Instead of Memory Barriers?

 Store-release and load-acquire on a variable
• My initial reaction: “What do you think you are doing

attempting to write Itanium instructions into the standard???”
• To be fair, I suspect that a few other members were concerned

that I was attempting to write IBM's RCU patents into the
standard
► I (just barely) resisted the temptation to point out that the first RCU

patents are likely to expire before highly reliable compilers conforming to
the new c++0x standard see the light of day

► I instead pointed out that garbage collectors (is in progress for C++),
hazard pointers, or type-safe memory could take the place of RCU

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Does Store-Release and Load-Acquire Work?

 Store-release and load-acquire work nicely on all
parallel architectures, including POWER
• Prohibits all reorderings except the important store-buffer

store-load case, permitting light-weight barrier instructions:
► x86: nothing (given new Intel and AMD memory models)
► POWER/PowerPC: lwsync for store, bc;isync for load
► Itanium: ld,acq & st,rel
► s390: nothing

 Store-release and load-acquire easy (easier) to explain
• Store-release is “publish” operation for prior stores
• Load-acquire is “subscribe” operation for later accesses

► Which are guaranteed to see stores published by the store-release

 Roughly half of Linux smp_mb() convert trivially
• Others might require more work
• But would likely make the code much easier to understand

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Store-Release and Load-Acquire Semantics

Before Barrier
LOAD STORE

LOAD Ordered Unordered
STORE Ordered Ordered

After
Barrier

f.store(1,memory_order_release);
/* Subsequent loads may be reordered to precede f.store() */
/* Subsequent stores as well (by the compiler and Itanium) */

/* Prior stores may be reordered to follow f.load() */
/* Prior loads as well (by the compiler and Itanium). */
r1 = f.load(memory_order_acquire);

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Store-Release and Load-Acquire Example: POWER

a = 1;
b = 2;
f.store(1,memory_order_release);

a = 1;
b = 2;
lwsync();
f = 1;

if (f.load(memory_order_acquire)) {
 t1 = a;
 t2 = b;
}

if (f) {
 isync();
 t1 = a;
 t2 = b;
} else {
 isync();
}

“Synchronizes-with” relationship

“Publish”

“Subscribe”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Can We Dispense With Raw Memory Barriers?

 Probably not, though many committee members tried
• Large amount of existing usage, corner cases
• Bjarne Stroustrup had to intervene to keep memory-barriers

► Existing software? Who cares about existing software???

 Some distributed-shared-memory folks hate barriers!!!
• Some distributed-memory guys use variable as “tag”

► Idea seems to be to ship groups of variables instead of pages, limiting
communications intensity

► Not all distributed-memory people see this as a critical issue
– Unfortunately, this group was not represented on the committee

• After some debate, invented mythical global variable with very
long name for unadorned memory barriers
► Which conventional machines are free to ignore and which programmers

never have to type in
► Except those compiling for such distributed-memory machines

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Should C/C++ Memory Model Be?

 Theoretical group wanted sequential consistency (SC)
• All operations on atomics globally ordered
• On POWER, sync between all pairs of references to atomics

► lwsync in some cases, but still expensive
• See next slide for list of real-world use cases requiring SC

 Committee-style compromise:
• SC is default for atomic variables
• Weaker operations are available, including “relaxed” access

that has no memory-ordering semantics
• It will likely be possible to relax SC semantics in practice – but

theory of near-SC still quite immature
 Semi-formal semantics finalized

• Except for data-dependency ordering, which is still in progress
• Despite a very rocky start...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Real-World SC Use Cases

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Atomic Operations

 Atomic operations
• If CPU does not support atomic operation, auto-generate locking

► For example, compare-and-swap (AKA cmpxchg) on a large struct
► Each type has a flag stating whether it is natively atomic

• C++ templates used for atomic operation definitions
• Can select degree of memory ordering desired

► memory_order_relaxed: no ordering
► memory_order_depends: dependency ordering (proposed)
► memory_order_acquire: “acquire” ordering
► memory_order_release: “release” ordering
► memory_order_acq_rel: both “acquire” and “release” ordering
► memory_order_seq_cst: full ordering with all seq_cst operations across all CPUs

• Numerous operations: load, store, arithmetic, boolean, compare-and-swap, ...

 Use of atomic variables in signal handlers
• But only atomic variables of primitive types!!!
• (Current restriction is sig_atomic_t)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Other Concurrency Features Being Considered

 Boost.Threads library functions
• Threads, mutexes/locks, condition variables, call-once functions
• Thread cancellation caused much debate: strange interactions with

destructors & exception handlers in some implementations
► Voluntary cancellation particularly problematic

• Garbage collection (proposed)
 Some complications:

• Destructors running concurrently with constructors for same object
• Destructors running concurrently with exit() or atexit() handlers

► Simplification: terminate all threads before exiting!!!
► New quick_exit() exits without executing destructors (but invokes

at_quick_exit() handlers)
– And at_quick_exit() handlers can register at_quick_exit() handlers...

• Code relying on destructors running in reverse order of constructors
• Garbage collector with finalization

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

What Does All This Mean For F/OSS?

 Multithreaded software actually favors F/OSS!!!
• Multithreaded SW requires global design constraints

► Deadlock avoidance
► Data structure partitioning
► Reducing lock and memory contention

• F/OSS “shows you the code”, allowing any developer to verify
global design constraints
► Also works in tightly controlled proprietary environments
► But not given mutually proprietary plug-ins sharing the same address space

– Same problem that is posed by Linux-kernel binary modules/drivers!!!

 There is potential to move low-level concurrency code
from system.h, atomic.h, &c to the compiler
• The compiler might be able to generate better code given the

association with variables
• Balanced by the fact that c++0x takes a different approach than

do most existing projects...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Lessons Learned

 Get involved early (see next slide)
• Though in this case, more-recent theoretical work on RCU was

critically important
► Early-2005 RCU nomenclature probably have not been convincing

• But starting in 2005 might have produced an alternative to
sequential consistency

• Fortunately for me, a number of Linux-community members
have been involved for quite some time ☺

 Academia is important
• People listen to academics, even when we practitioners think

that they shouldn't ☺
 When standards people say “it is undefinable”, they

sometimes really mean “I don't understand it”.

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

How You Can Get Involved

 ISO WG21 (C++) Structure

ISO WG21

US
ANSI XJ16

UK
BSI

France
AFNOR

Germany
DIN

Switzerland
SNV

French German Swiss English American

Other

Find/form
your national

standards body

Join
ANSI
XJ16

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Legal Statement

 This work represents the view of the author and does
not necessarily represent the view of IBM.

 IBM, IBM (logo), e-business (logo), pSeries, e (logo)
server, and xSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2006, 2007 IBM CorporationIBM Linux Technology Center

linux.conf.au 2008 Mel8ourne

Questions?

