
Why The Grass May Not Be Greener On The Other Side:
A Comparison of Locking vs. Transactional Memory

Paul E. McKenney
Linux Technology Center

IBM Beaverton
paulmck@us.ibm.com

Maged M. Michael
IBM Thomas J. Watson Research Center

magedm@us.ibm.com

Jonathan Walpole
Computer Science Department

Portland State University
walpole@cs.pdx.edu

ABSTRACT
The advent of multi-core and multi-threaded processor ar-
chitectures highlights the need to address the well-known
shortcomings of the ubiquitous lock-based synchronization
mechanisms. The emerging transactional-memory synchro-
nization mechanism is viewed as a promising alternative to
locking for high-concurrency environments, including oper-
ating systems. This paper presents a constructive critique
of locking and transactional memory: their strengths, weak-
nesses, and challenges.

1. INTRODUCTION
With the advent of multi-core and multi-threaded CPUs,

high degrees of parallelism will soon become the norm, even
for small systems, bringing the need for synchronization to
the mainstream. Despite its long and enviable record of suc-
cessful production use, locking has well-known shortcomings
obvious to anyone who has used it in an operating system or
a complex application. These shortcomings motivate a con-
structive critique of locking and of alternative synchroniza-
tion techniques that might be incorporated into program-
ming languages. Transactional memory (TM) is viewed as
a promising synchronization mechanism suited for emerging
parallel architectures [3].

TM appears to have the potential for widespread use, but
we argue that locking will continue to dominate. This situa-
tion calls for work directed towards combining use of numer-
ous synchronization methodologies within a single software
artifact, so as to combine the strengths of multiple method-
ologies. The combinatorial nature of such investigation will
provide a large quantity of challenging problems for the fore-
seeable future.

The remainder of this paper is organized as follows. The
paper presents a critique of locking in Section 2, followed by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLOS ’07, October 18, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-922-7/07/0010 ...$5.00.

a critique of TM in Section 3. Section 4 discusses areas in
which TM is most likely to be successful. Finally, Section 5
presents concluding remarks and outlines the path forward.

2. LOCKING CRITIQUE
This section provides a brief overview of the many well-

known properties of locking. Section 2.1 reviews locking’s
key strengths and Section 2.2 reviews locking’s weaknesses.
Section 2.3 decribes how many of these weaknesses can be
addressed, and, finally, Section 2.4 describes the remaining
challenges surrounding locking.

2.1 Locking’s Strengths
The fact that locking is used so pervasively indicates com-

pelling strengths. Chief among these are:

1. Locking is intuitive and easy to use in many common
cases, as evidenced by the large number of lock-based
programs in production use. And in fact, the basic
idea behind locking is exceedingly simple and elegant:
allow only one CPU at a time to manipulate a given
object or set of objects [6].

2. Locking can be used on existing commodity hardware.

3. Well-defined locking APIs are standardized, for exam-
ple the POSIX pthread API. This allows code using
locking to run on multiple platforms.

4. There is a large body of software that uses locking,
and a large group of developers experienced in its use.

5. Contention effects are concentrated within locking prim-
itives, allowing critical sections to run at full speed.
In contrast, in other techniques, contention degrades
critical-section performance.

6. Waiting on a lock minimally degrades performance of
the rest of the system. Several CPUs even have special
instructions and features to further reduce the power-
consumption impact of waiting on locks.

7. Locking can protect a wide range of operations, includ-
ing non-idempotent operations such as I/O.

8. Locking interacts in a natural manner with debuggers
and other software tools.

2.2 Locking’s Weaknesses
Despite locking’s strengths, applying locking to complex

software artifacts uncovers a number of weaknesses, includ-
ing: deadlock, priority inversion, high contention on non-
partitionable data structures, blocking on thread failure,
high synchronization overhead even at low levels of con-
tention, and non-deterministic lock-acquisition latency.

Deadlock issues arise when an application uses more than
one lock in order to attain greater scalability, in which case
multiple threads acquiring locks in opposite orders can re-
sult in deadlock. This susceptibility to deadlock means that
locking is non-composable: it is not possible to use a lock to
guard an arbitrary segment of code.

In addition, software with interrupt or signal handlers can
self-deadlock if a lock acquired by the handler is held at the
time that the interrupt or signal is received.

Priority inversion [9] occurs when a low-priority thread
holding a lock is preempted by a medium-priority thread. If
a high-priority thread attempts to acquire the lock, it will
block until the medium-priority thread releases the CPU,
permitting the low-priority thread to run and release the
lock. This situation could cause the high-priority thread to
miss its real-time scheduling deadline, which is unacceptable
in safety-critical systems.

The standard method of obtaining scalability in lock-based
designs is to partition the data structures, with a separate
lock protecting each partition. Unfortunately, some data
structures, such as unstructured trees and graphs, are diffi-
cult to efficiently partition, making it difficult to attain good
scalability and performance when using such data struc-
tures.

Locking makes use of expensive instructions and results in
expensive cache misses [12]. This is particularly damaging
for read-mostly workloads, where locking introduces commu-
nications cache misses into a workload that could otherwise
run entirely within the CPU cache. This can result in severe
performance degradation even in the absence of contention.

Locking is a blocking synchronization primitive, in par-
ticular, if a thread terminates while holding a lock, any
other thread attempting to acquire that lock will block in-
definitely. Even less disastrous events such as preemption,
sleeping for I/O completion, and page faults can severely
degrade performance. All such blocking can be problematic
for fault-tolerant software.

Finally, lock acquisition is typically non-deterministic, which
can be an issue for real-time workloads.

Despite all of these shortcomings, locking remains heavily
used. Some reasons for this are outlined in Section 2.3.

2.3 Improving Locking
Perhaps locks are the synchronization equivalent of sili-

con: despite many attempts to replace locking over the past
few decades, it still predominates. Just as silicon-based in-
tegrated circuits have evolved to work around their early
limitations, both locking implementations and lock-based
designs have evolved to work around locking’s weaknesses.
Many of the strategies described in this section are well
known, but bear repeating so as to inform development of
other synchronization schemes.

Deadlock is most frequently avoided by providing a clear
locking hierarchy, so that when multiple locks are acquired,
they are acquired in a pre-specified order. More elaborate
schemes use conditional lock-acquisition primitives that ei-

ther acquire the specified lock immediately or give a failure
indication. Upon failure, the caller drops any conflicting
locks and retries in the correct order. Other systems de-
tect deadlock and abort selected processes participating in
a given deadlock cycle.

Self-deadlock is most simply avoided by masking relevant
signals or interrupts while locks are held, or by avoiding lock
acquisition in handlers.

Priority inversion can be avoided through priority inher-
itance, so that a high-priority task blocked on a lock will
temporarily “donate” its priority to a lower-priority holder
of that lock. Alternatively, priority inversion can be avoided
by raising the lock holder’s priority to that of the highest-
priority task that might acquire that lock. Some software en-
vironments permit preemption to be disabled entirely while
locks are held, which can be thought of as raising priority
arbitrarily high.

Many algorithms can be redesigned to use partitionable
data structures, for example, replacing trees and graphs with
hash tables or radix trees, greatly increasing scalability.

More generally, lock-induced overhead is commonly ad-
dressed through the use of well-known designs that reduce
or eliminate such contention, dating back more than 20
years [1, 7]. These designs were also recast into pattern
form more than a decade ago [11]. In read-mostly situ-
ations, locked updates may be paired with read-copy up-
date (RCU) [12], as has been done in the LinuxR© kernel, or
as might potentially be done with hazard pointers [13, 4].
Experience with both techniques has shown them to be ex-
tremely effective at reducing locking overhead in many com-
mon cases, as well as increasing read-side performance and
scalability [2]. Finally, light-weight special-purpose tech-
niques are widely used, for example, for statistical counters.

Preemption, blocking, page faulting, and many other haz-
ards that can befall the lock holder can be addressed through
the use of scheduler-conscious synchronization [8]. Some
form of scheduler-conscious synchronization is supported by
each of the mainstream operating systems, including Linux,
due to the fact that it is relied on by certain database ker-
nels.

However, scheduler-conscious synchronization does noth-
ing to guard against processes terminating while holding a
lock. Many production applications and systems handle this
situation by aborting in the face of the death of a critical
process. The application or system can then be restarted.
Alternatively, the system could record the lock’s owner dur-
ing the lock-acquisition process, detect the death of the lock
owner, and attempt to clean up state. This approach is not
for the faint of heart. The dead process might well have
aborted at any point in the critical section, which can result
in extremely complex clean-up processing. However, this
level of complexity will be incurred by any software artifact
that attempts to recover from arbitrary failure. Restart-
ing the application or system might seem rather unsophisti-
cated, but is often the simplest, most reliable, and highest-
performance solution.

The non-deterministic latency of locking primitives can
be addressed by converting read-side critical sections to use
RCU, or, where this is not practical, through use of FCFS
lock-acquisition primitives combined with a limit on the
number of threads.

2.4 Remaining Challenges for Locking

Locking may be heavily used, but it is far from perfect.
The following are a few of the many possible avenues for
improvement:

1. Software tools to aid in static analysis of lock-based
software. The first prototypes of such tools appeared
well over a decade ago, but more work is needed, for
example, to reduce the incidence of false positives.

2. Pervasive availability and use of software tools to eval-
uate lock contention.

3. Better codification of effective design rules for use of
locking in large software artifacts.

4. More work augmenting locking with other synchro-
nization methodologies so as to work around locking’s
weaknesses.

5. Locking algorithms that provide good scalability and
performance for large ill-structured update-heavy non-
partitionable data structures, in cases where these al-
gorithms cannot reasonably be transformed to use par-
titionable data structures such as hash tables or radix
trees.

3. TRANSACTIONAL MEMORY CRITIQUE
TM executes a group of memory operations as a single

atomic transaction [5], either as a language extension or as
a library. This section critiques TM, with Section 3.1 re-
viewing TM’s key strengths and Section 3.2 reviewing TM’s
weaknesses. Finally, Section 3.3 speculates on how these
weaknesses might be addressed and on remaining TM chal-
lenges.

3.1 Transactional Memory’s Strengths
As with locking, the basic idea behind TM is exceedingly

simple and elegant: cause a given operation, possibly span-
ning multiple objects, to execute atomically [5]. The promise
of transactional memory is simplicity, composability, per-
formance/scalability, and, for some variants, non-blocking
operation.

The simplicity of TM stems from the fact that, in princi-
ple, any sequence of memory loads and stores may be com-
posed into a single atomic operation. Such operations can
span multiple data structures without the deadlock issues
that can arise when using locking, even in cases where the
implementations of the operations defined over these data
structures are unknown. The fact that the transactions are
atomic, or linearizable, is argued by many to make it easier
to create and to understand multi-threaded code.

In many variants of TM, transactions may be nested, or
composed. This composability allows implementors further
freedom, as transactions may span multiple data structures
even if the operations defined over those data structures
themselves involve transactions.

Because a pair of transactions conflict only if the sets
of variables that they reference intersect,1 small transac-
tions running against large data sets should rarely conflict.
Achieving this same effect with locking can require signif-
icant effort and complexity. In effect, TM automatically

1And, in many proposed TM implementations, at least one
of the variables in the intersection must be modified by one
or both of the transactions.

attains many of the performance and scalability benefits of
fine-grained locking, but without the effort and complexity
that often accompanies fine-grained locking design [14].

Some implementations of TM are non-blocking, so that
delay or even complete failure of any given thread does not
prevent other threads from making progress. Such imple-
mentations provide a degree of fault-tolerance that is ex-
tremely difficult to obtain when using locking.

Transactions have been used for decades in the context of
database systems, and are thus well-understood by a large
number of practitioners. In addition, trivial hardware im-
plementations of TM have been available for more than a
decade in the form of LL/SC. Although these single-location
transactions are trivial, they indicate that full TM imple-
mentations have the potential to gain wide acceptance.

3.2 Transactional Memory’s Weaknesses
The simple and elegant idea behind locking proved to be

a facade concealing surprising difficulties and complexities
when applied to large and complex real-world software. Is
it possible that the simple and elegant idea behind TM is a
similar facade that will be torn away by the harsh realities
of complex multi-threaded operating systems and applica-
tions?

TM difficulties that have been identified thus far include
issues with non-idempotent operations such as I/O, conflict-
prone variables, conflict resolution in the face of high con-
flict rates, lack of TM support in commodity hardware, poor
contention-free performance of software TM (STM), and de-
buggability of transactions. There has of course been signif-
icant work on a number of these issues, which is the subject
of Section 3.3.

Begin Transaction

Send Request

Receive Response

Handle Response

End Transaction

Service Request

Receive Request

Send Response

Client Machine

Server Machine

Figure 1: Transactions Spanning Systems

Non-idempotent operations such as I/O pose challenges
due to the fact that they might be performed multiple times
upon transaction retry. For example, Figure 1 shows a prob-
lematic transaction. If the client’s transaction must buffer
the message until commit time, and it cannot commit until
it receives the response from the server, then the transac-
tion self-deadlocks. Although one could expand the scope of
the transaction to encompass both systems, as is done for
distributed databases, current TM proposals are limited to
single systems.

One challenge when moving to fine-grained locking designs

is the inevitable data structure that appears in every critical
section. A similar challenge might well await those who
attempt to transactionalize existing sequential programs—
the same data structures that impede fine-grained locking
will very likely result in excessive conflicts. This problem
might not affect new software, but new lock-based software
could similarly be designed to avoid this problem.

If a pair of transactions conflict, one or both must be rolled
back to avoid data corruption. Such rollbacks can result in
a number of problems, including starvation of large trans-
actions by smaller ones and delay of high-priority processes
via rollback of the high-priority process’s transactions due
to conflicts with those of a lower-priority process. These
effects can be crippling in large applications with diverse
transactions, particularly for applications that must provide
real-time response.

Current commodity hardware does not support any rea-
sonable form of TM. Although such hardware might appear
over time, current proposals either prohibit large transac-
tions or suffer performance degradations in the face of large
transactions. In addition, current hardware TM (HTM)
proposals may be uncompetitive with STM for large trans-
actions. Finally, unless or until it becomes pervasive, any
software relying on HTM will have portability problems.

Although STM does not face these obstacles, it will re-
main unattractive so long as its performance remains poor
compared to that of locking [10]. The poor performance of
current STM prototypes is mainly due to: (1) atomic op-
erations, (2) consistency validation, (3) indirection, (4) dy-
namic allocation, (5) data copying, (6) memory reclamation,
and (7) bookkeeping.

Even if STM performance becomes competitive, standard
TM APIs with well-defined semantics will be required to en-
able a smooth transition of software to TM. This API must
be independent of the TM implementation, in particular, of
whether TM is implemented in hardware or software.

The final weakness of many TM implementations is poor
interaction with many existing software tools. For example,
in many HTM proposals, the traps induced by breakpoints
can result in unconditional aborting of enclosing transac-
tions, reducing this common debugging technique to an ex-
ercise in futility.

Although these weaknesses might be addressed as described
in Section 3.3, it seems clear that the simple and elegant idea
underlying TM is not entirely immune to the vicissitudes of
large and complex real-world software artifacts.

3.3 Improving TM
To their credit, many in the TM community are taking

its weaknesses seriously and have been working to address
them.

Although non-idempotent operations are a thorny issue
for TM, there are some special cases that can be addressed.
For example, buffered I/O might be addressed by including
the buffering mechanism within the scope of the transactions
doing I/O. However, the messaging example in Section 3.2 is
more difficult. Although one could imagine distributed TM
systems encompassing both machines, simple locking seems
more straightforward.

Similarly, although one could imagine a new type of device
with transactional device registers, simple locking applied to
existing devices might be more appropriate.

It seems likely that the same partitioning techniques that

have been used in fine-grained locking designs could also
be applied to TM software. It is possible that additional
techniques specific to TM will be identified.

Recent work has applied the concept of a contention man-
ager to TM rollbacks [15]. The idea is to carefully choose
which transaction to roll back, so as to avoid the issues called
out in Section 3.2. The contention-manager approach has
yielded reasonable results across a number of popular bench-
marks, but many workloads remain unevaluated. Another
promising approach reduces conflicts by converting read-
only transactions to non-transactional form, in a manner
similar to the pairing of locking with RCU.

Transition and migration planning is a key challenge for
HTM, as it will be difficult to convince developers to produce
software for a small number of specialized machines, espe-
cially in the absence of large performance advantages. In
addition, HTM limitations that either fail to support large
transactions or that suffer performance degradations in the
face of large transactions might discourage many developers
of large-scale applications. In contrast, STM implementa-
tions run on existing commodity hardware. This situation
calls for language support that uses HTM when applicable,
but which falls back to STM otherwise.

However, such a strategy requires that STM offer com-
petitive performance. The STM overheads of indirection,
dynamic allocation, data copying, and memory reclama-
tion might be reduced or even avoided by relaxing the non-
blocking properties that many STMs provide. The fact that
most databases implement transactions using blocking prim-
itives such as locks clearly demonstrates the feasibility of
this approach. That said, an interesting open question is
whether STM can achieve HTM’s performance. If so, TM
could be implemented on existing hardware, or perhaps with
minimal hardware assists.

Finally, it is possible the debugging issues with HTM
might be addressed by doing the debugging using STM.
However, this approach requires an extremely high degree
of compatibility between the HTM and STM environments,
a level of compatibility that has proven difficult to achieve
in other similar situations.

Although there has been good progress towards address-
ing TM’s weaknesses, it is not clear that any of them have
been fully addressed. Of course, TM has been studied inten-
sively only for the past few years, as opposed to the decades
of experience accumulated with locking. This gives some
reason to hope that TM’s weaknesses might be more com-
pletely addressed over the next few decades. However, if
TM is to see heavy use in the near future, developers will
need to use it where it is strong, and use other techniques
where TM is weak, requiring integration of TM with these
other techniques.

4. WHERE DOES TM FIT IN?
In the near term, TM’s greatest opportunity lies with

those situations that are poorly served by combinations of
pre-existing mechanisms. Given a base of successful use,
TM usage might then grow as new parallel code is written
and as TM support beomes pervasive.

Partitionable data structures are well-served by locking,
and read-mostly situations are well-served by hazard point-
ers and RCU. An important TM near-term opportunity is
thus update-heavy workloads using large non-partitionable
data structures such as high-diameter unstructured graphs.

Updates on such data structures can be expected to touch
a minimal number of nodes, reducing conflict probability.

Another possible TM opportunity appears in systems with
complex fine-grained locking designs that incur significant
complexity in order to avoid deadlock. In some cases, ap-
plying transactions to simple data structures might remove
the need to acquire locks out of order, simplifying or even
eliminating much of the deadlock-avoidance code. Particu-
larly attractive opportunities for TM involve situations that
involve atomic operations that span multiple independent
data structures, for example, atomically removing an ele-
ment from one queue and adding it to another.

A final TM opportunity might appear for single-threaded
software having an embarrassingly parallel core containing
only idempotent operations. Such software might gain sub-
stantial performance benefits, either from HTM on those
systems supporting it, or from STM across a broad range of
commodity systems.

Large non-partitionable update-heavy data structures ap-
pear to offer TM its best chance of success.

5. SUMMARY AND CONCLUSIONS
The grass is not necessarily uniformly greener on the other

side, but improvement is both necessary and possible. How-
ever, given that none of the known synchronization mech-
anisms is optimal in all cases, future work should address
integration of different techniques in order to gain the ben-
efit of their combined strengths.

Given the large number of synchronization mechanisms
that have been proposed over the past several decades, much
work will be required to determine how best to integrate
them in various combinations into both existing and new
programming languages. Such integration will be far more
fruitful than force-fitting one’s favorite mechanism into sit-
uations for which it is ill-suited.

We are undertaking such integration via efforts with STM
and “relativistic programming” (RP). RP formalizes and
generalizes techniques such as RCU, combining integration
with other techniques, ease of use, and knowledge of time-
less hardware properties. These techniques will enable prac-
titioners to harness the potential of multi-core systems.

Acknowledgements
We are indebted to Calin Cascaval and his team for many
valuable discussions, to Josh Triplett for his careful review of
an early draft of this paper, and to Daniel Frye his support
of this effort.

6. REFERENCES
[1] Beck, B., and Kasten, B. VLSI assist in building a

multiprocessor UNIX system. In USENIX Conference
Proceedings (Portland, OR, June 1985), USENIX
Association, pp. 255–275.

[2] Hart, T. E., McKenney, P. E., Brown, A. D.,

and Walpole, J. Performance of memory
reclamation for lockless synchronization. To appear in
J. Parallel Distrib. Comput.
doi=10.1016/j.jpdc.2007.04.010, 2007.

[3] Herlihy, M. The transactional manifesto: software
engineering and non-blocking synchronization. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and
implementation (New York, NY, USA, 2005), ACM
Press, pp. 280–280.

[4] Herlihy, M., Luchangco, V., and Moir, M. The
repeat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In
Proceedings of 16th International Symposium on
Distributed Computing (October 2002), pp. 339–353.

[5] Herlihy, M., and Moss, J. E. B. Transactional
memory: Architectural support for lock-free data
structures. The 20th Annual International Symposium
on Computer Architecture (May 1993), 289–300.

[6] Hoare, C. A. R. Monitors: An operating system
structuring concept. Communications of the ACM 17,
10 (October 1974), 549–557.

[7] Inman, J. Implementing loosely coupled functions on
tightly coupled engines. In USENIX Conference
Proceedings (Portland, OR, June 1985), USENIX
Association, pp. 277–298.

[8] Kontothanassis, L., Wisniewski, R. W., and

Scott, M. L. Scheduler-conscious synchronization.
Communications of the ACM 15, 1 (January 1997),
3–40.

[9] Lampson, B. W., and Redell, D. D. Experience
with processes and monitors in Mesa.
Communications of the ACM 23, 2 (1980), 105–117.

[10] Marathe, V. J., Spear, M. F., Heriot, C.,

Acharya, A., Eisenstat, D., Scherer III, W. N.,

and Scott, M. L. Lowering the overhead of
nonblocking software transactional memory. In
TRANSACT: the First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for
Transactional Computing (June 2006), ACM
SIGPLAN.

[11] McKenney, P. E. Pattern Languages of Program
Design, vol. 2. Addison-Wesley, June 1996, ch. 31:
Selecting Locking Designs for Parallel Programs,
pp. 501–531.

[12] McKenney, P. E. Exploiting Deferred Destruction:
An Analysis of Read-Copy-Update Techniques in
Operating System Kernels. PhD thesis, OGI School of
Science and Engineering at Oregon Health and
Sciences University, 2004.

[13] Michael, M. M. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Transactions
on Parallel and Distributed Systems 15, 6 (June 2004),
491–504.

[14] Moore, K. E., Bobba, J., Moravan, M. J., Hill,

M. D., and Wood, D. A. LogTM: Log-based
transactional memory. In Proceedings of the 12th

Annual International Symposium on High
Performance Computer Architecture (HPCA-12)
(Washington, DC, USA, 2006), IEEE.

[15] Scherer III, W. N., and Scott, M. L. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the 24th
Annual ACM SIGOPS Symposium on Principles of
Distributed Computing. Association for Computing
Machinery, July 2005, pp. 240–248.

