
© 2014 IBM Corporation

Advances in Validation of Concurrent Software

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

linux.conf.au, Perth, Australia, January 8, 2014

© 2014 IBM Corporation2

linux.conf.au January 8, 2014

Overview

Validation Trends Over Time

Current Linux Kernel Validation Directions

Future Validation Needs

Validation Via Model Checking

Multithreaded Model Checking

© 2014 IBM Corporation3

linux.conf.au January 8, 2014

Validation Trends Over Time

© 2014 IBM Corporation4

linux.conf.au January 8, 2014

Validation Trends Over Time

Range of validation needed

One-off hacked-up scripts have always been with us
–Fix it if it fails, many bugs will go unnoticed and unexercised

As have systems requiring extreme validation
–Mission-critical business applications

• Lose lots of money if it fails
–High-volume consumer applications

• Low-probability failures have a high probability of occurring
• Another way to lose lots of money if it fails

–Autonomous space-exploration systems
• No way to fix it

–Safety-critical embedded systems
• Lose lives if it fails

© 2014 IBM Corporation5

linux.conf.au January 8, 2014

Validation Trends Over Time: Paul's Journey

1975-6: Computer-dating program: < 5 users (data entry)

1977-1980: University housing system: 2 users

1981-1985: Building control system: ~100 users
–Plus other embedded projects with similar user base

1986-1987: System administrator: ~50 users

1988-1990: Research prototypes: 1 user

Informal testing sufficed

© 2014 IBM Corporation6

linux.conf.au January 8, 2014

Validation Trends Over Time: Paul's Journey

1975-6: Computer-dating program: < 5 users (data entry)

1977-1980: University housing system: 2 users

1981-1985: Building control system: ~100 users
–Plus other embedded projects with similar user base

1986-1987: System administrator: ~50 users

1988-1990: Research prototypes: 1 user

1990-2000: Sequent DYNIX/ptx: ~6,000 sites, mission critical

Formal unit and stress testing required: “tlbtest” rather than “rcutorture”, but...

© 2014 IBM Corporation7

linux.conf.au January 8, 2014

Validation Trends Over Time: Paul's Journey

1975-6: Computer-dating program: < 5 users (data entry)

1977-1980: University housing system: 2 users

1981-1985: Building control system: ~100 users
–Plus other embedded projects with similar user base

1986-1987: System administrator: ~50 users

1988-1990: Research prototypes: 1 user

1990-2000: Sequent DYNIX/ptx: ~6,000 sites, mission critical

2001-present: Linux kernel: ~1M – ~1G OS instances

What do we do now?

© 2014 IBM Corporation8

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

Torture your code to the best of your ability, because
otherwise it will torture you to the best of its ability!

© 2014 IBM Corporation9

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

© 2014 IBM Corporation10

linux.conf.au January 8, 2014

Validation: Paul's Philosophy: Limits to Validity

http://paulmck.livejournal.com/36150.html

© 2014 IBM Corporation11

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

Torture your code to the best of your ability, because
otherwise it will torture you to the best of its ability!

But with a billion running instances out there, it is really hard
to torture your code more viciously than the real world is
going to torture it

© 2014 IBM Corporation12

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

Torture your code to the best of your ability, because
otherwise it will torture you to the best of its ability!

But with a billion running instances out there, it is really hard
to torture your code more viciously than the real world is
going to torture it

And failing to torture your code more than the real world is
going to torture it will result in bugs escaping into the wild

© 2014 IBM Corporation13

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

Torture your code to the best of your ability, because
otherwise it will torture you to the best of its ability!

But with a billion running instances out there, it is really hard
to torture your code more viciously than the real world is
going to torture it

And failing to torture your code more than the real world is
going to torture it will result in bugs escaping into the wild

Some of which will result in security exploits

© 2014 IBM Corporation14

linux.conf.au January 8, 2014

Validation: Paul's Philosophy

Torture your code to the best of your ability, because
otherwise it will torture you to the best of its ability!

But with a billion running instances out there, it is really hard
to torture your code more viciously than the real world is
going to torture it

And failing to torture your code more than the real world is
going to torture it will result in bugs escaping into the wild

Some of which will result in security exploits

On the other hand, the Linux kernel community has been
doing some really cool validation work!

© 2014 IBM Corporation15

linux.conf.au January 8, 2014

Current Linux Kernel Validation Directions

© 2014 IBM Corporation16

linux.conf.au January 8, 2014

Current Linux Kernel Validation Directions

Why are we getting reasonable reliability on 1G instances???
–At >15M lines of code, there are bugs
–Million-year bugs happen about three times per day
–And some bugs do get through

© 2014 IBM Corporation17

linux.conf.au January 8, 2014

Current Linux Kernel Validation Directions

Why are we getting reasonable reliability on 1G instances???
–At >10M lines of code, there are bugs
–Million-year bugs happen about three times per day
–And some bugs do get through

The bulk of Linux's installed base has few CPUs
–Many SMP bugs found and fixed on larger server systems
–But the CPU counts of “small” embedded systems increasing

The bulk of Linux's installed base has predictable workload
–System testing can find most of the relevant bugs
–But smartphones are becoming general-purpose systems, which will

render system testing less effective

Fortunately lots of validation: testing and tooling!!!

© 2014 IBM Corporation18

linux.conf.au January 8, 2014

Linux Kernel Validation Overview

Code review: 10,000 eyes
–Not that review has kept pace with change rate and complexity
–From v3.11 to v3.12:

• 8636 files changed, 587981 insertions(+), 264385 deletions(-)

Unit/Stress tests
–rcutorture, locktest, kernbench, hackbench, ...
–Linux Test Project, Dave Jones's Trinity (quite effective lately)

Automated/recurring testing
–Stephen Rothwell's -next testing
–Fengguang Wu's kbuild test robot (see next slide)
–Frequent testing from many individuals and organizations

Tools: sparse, lockdep, coccinelle, smatch, ...

A big “Thank You!!!” to everyone helping with this!!!

© 2014 IBM Corporation19

linux.conf.au January 8, 2014

Fengguang Wu's kbuild test robot

tree: git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux
rcu.git rcu/dev
head: 7f797be6ab3cfb47e34ffe44a1a8ee8d6728893a
commit: 7f797be6ab3cfb47e34ffe44a1a8ee8d6728893a [42/42] rcu:
Consistent rcu_is_watching() naming
config: x86_64randconfiga00914 (attached as .config)

All error/warnings:

 In file included from include/linux/srcu.h:33:0,
 from include/linux/notifier.h:15,
 from include/linux/memory_hotplug.h:6,
 from include/linux/mmzone.h:797,
 from include/linux/gfp.h:4,
 from include/linux/slab.h:12,
 from include/linux/crypto.h:24,
 from arch/x86/kernel/asmoffsets.c:8:
 include/linux/rcupdate.h: In function 'rcu_read_lock_held':
>> include/linux/rcupdate.h:354:2: error: implicit declaration of
function 'rcu_is_watching' [Werror=implicitfunctiondeclaration]

© 2014 IBM Corporation20

linux.conf.au January 8, 2014

Fengguang Wu's kbuild test robot

vim +/rcu_is_watching +354 include/linux/rcupdate.h

 348 * offline from RCU perspective, so check for those as well.
 349 */
 350 static inline int rcu_read_lock_held(void)
 351 {
 352 if (!debug_lockdep_rcu_enabled())
 353 return 1;
 > 354 if (!rcu_is_watching())
 355 return 0;
 356 if (!rcu_lockdep_current_cpu_online())
 357 return 0;

© 2014 IBM Corporation21

linux.conf.au January 8, 2014

Future Validation Needs

© 2014 IBM Corporation22

linux.conf.au January 8, 2014

Future Validation Needs

Typical CPU counts will continue increasing for some time
–Including for the low-end embedded systems that make up the bulk of

the Linux kernel's installed base

Scalability needs will force more aggressive parallelism
–lockdep can't help much with atomic operations and memory barriers!
–Manual inspection does not scale with Linux's rate of development
–Additional automated inspection will be needed

Many other needs, including validation against standards
–To say nothing of validation of standards...

But this presentation will focus on concurrency

© 2014 IBM Corporation23

linux.conf.au January 8, 2014

Future Validation Needs: RCU Anecdotes

As with airplane safety, you need to look beyond bugs in use:
–“Near misses” caught by distro testing

• Recent day-1 RCU CPU stall warning bug (Michal Hocko &c)
• Shortcoming in my development methods: I need to take diagnostic code

more seriously
–“Near misses” caught by mainline testing

• Mid-2011 v3.0-rc7 RCU/interrupt/scheduler race
• RCU is becoming more intertwined with the rest of the kernel: I need to

work to increase the isolation between RCU and the rest of the kernel
–“Near misses” caught by my testing

• Late 2012 day-1 RCU initialization race
• See next slide...

That said, in RCU “day 1” is a slippery concept
–Three categories of statements in RCU remain from v2.6.12

© 2014 IBM Corporation24

linux.conf.au January 8, 2014

Late 2012 Day-1 RCU initialization Race

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 becomes associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 associates callback with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invkes callback, freeing A (too bad CPU 1 is still using it)

RCU reviewers are smart, but I cannot expect them to find this.

© 2014 IBM Corporation25

linux.conf.au January 8, 2014

Validation Via Model Checking

© 2014 IBM Corporation26

linux.conf.au January 8, 2014

Validation Via Model Checking

Researchers' traditional focus:
–Full validation of all behaviors of the system

• Too bad that a description of all behaviors is as big as the system itself
–Strong ordering (e.g., Promela/spin)

• Too bad that all modern systems are weakly ordered, even x86
–Special-purpose languages

• Too bad that most parallel code is in general-purpose languages like C/C++

Richard Bornat, 2011:
–Our job is to validate the code developers write, in the environment

they write it in, and in the language that they write it.

A number of researchers have been taking this to heart
–Peter Sewell, Susmit Sarkar, Jade Alglave, Daniel Kroening, Michael

Tautschnig, Alexey Gotsman, Noam Riznetsky, Hongseok Yang, ...

© 2014 IBM Corporation27

linux.conf.au January 8, 2014

Concurrency and Validation: Sewell & Sarkar's Group

Formalization of weak-memory models (x86, Power, ARM)
–http://lwn.net/Articles/470681/

Tools for full state-space search of concurrent code
PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | sync | sync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

© 2014 IBM Corporation28

linux.conf.au January 8, 2014

Concurrency and Validation: Sewell & Sarkar's Group

Extremely valuable tool
–Definitive answers for atomic operations and memory barriers
–Explores every state that a real system could possibly enter
–Near production quality

Some shortcomings:
–Need to translate code to assembly language
–Does not handle arbitrary loops or arrays
–Only handles very small code sequences
–Applies to Power, ARM, C/C++11, but not generic Linux barriers
–~14 CPU-hours and ~10GB to validate example, 3.3MB of output

• Failures detected more quickly
• Omitting sync instructions detects failure in less than three CPU minutes
• And knowing in 14 hours is better than just not knowing!

 Important milestone in handling real-world parallelism

© 2014 IBM Corporation29

linux.conf.au January 8, 2014

Validation Via Model Checking: Alglave, Kroening,
and Tautschnig

Programming languages might be Turing complete, but you
can get a long way with finite state machines

–Any real system is a finite state machine

Finite state machines represented by logic expressions
–Assertions can be tested with boolean satisfiabilty tester (SAT)

SAT is NP complete
–But full state-space searches are no picnic, either
–And much progress on SAT: million-variable problems now feasible

© 2014 IBM Corporation30

linux.conf.au January 8, 2014

Code To Logic Expression CPU 0 CPU 1
x = 1; r1 = x;
x = 2;

 Initial value of x is zero

Assume cache coherence (stores of 1 and 2 are ordered)

 Introduce three auxiliary variables:
–Ls1s2: Load happened before store of 1
–s1Ls2: Load happened between store of 1 and store of 2
–s1s2L: Load happened after store of 2

Expression:
–Ls1s2r1==0 && s1Ls2r1==1 && s1s2Lr1==2

Convert implication to boolean operators:
–(!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)

© 2014 IBM Corporation31

linux.conf.au January 8, 2014

Code To Logic Expression CPU 0 CPU 1
x = 1; r1 = x;
x = 2;

 Initial logic expression:
– (!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)

Problem: What if all three of Ls1s2, s1Ls2, s1s2L are set?
– This would mean that CPU 1's load is both before and after both stores!
– Need some way to rule this out
– (Ls1s2 && !s1Ls2 && !s1s2L) || (!Ls1s2 && s1Ls2 && !s1s2L) || (!Ls1s2 && !

s1Ls2 && s1s2L)

Combining these:
– ((Ls1s2 && !s1Ls2 && !s1s2L) || (!Ls1s2 && s1Ls2 && !s1s2L) || (!Ls1s2 && !

s1Ls2 && s1s2L)) && (!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)

© 2014 IBM Corporation32

linux.conf.au January 8, 2014

Code To Logic Expression CPU 0 CPU 1
x = 1; r1 = x;
x = 2;

 Initial logic expression:
– (!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)

Problem: What if all three of Ls1s2, s1Ls2, s1s2L are set?
– This would mean that CPU 1's load is both before and after both stores!
– Need some way to rule this out
– (Ls1s2 && !s1Ls2 && !s1s2L) || (!Ls1s2 && s1Ls2 && !s1s2L) || (!Ls1s2 && !

s1Ls2 && s1s2L)

Combining these:
– ((Ls1s2 && !s1Ls2 && !s1s2L) || (!Ls1s2 && s1Ls2 && !s1s2L) || (!Ls1s2 && !

s1Ls2 && s1s2L)) && (!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)

And this is supposed to make things simpler???

© 2014 IBM Corporation33

linux.conf.au January 8, 2014

Code To Logic Expression CPU 0 CPU 1
x = 1; r1 = x;
x = 2;

 “Full” logic expression:
– ((Ls1s2 && !s1Ls2 && !s1s2L) || (!Ls1s2 && s1Ls2 && !s1s2L) || (!Ls1s2 && !

s1Ls2 && s1s2L)) && (!Ls1s2r1==0) && (!s1Ls2r1==1) && (!s1s2Lr1==2)
– In real life, need binary expansion of r1
– And expressions to relate the values of x to each other

There is a lot of software to analyze such expressions
–And to simplify and manipulate them
–And to generate them automatically from C code
–Which is a good thing because doing it by hand would be a pain!

 In particular, there is a lot of code to determine what combinations
of variables satisfies a given logic expression

© 2014 IBM Corporation34

linux.conf.au January 8, 2014

C Bounded Model Checker (cbmc)

Takes smallish C programs as input, converts to SSA

Generates corresponding logic expressions

Optionally takes limits on loop unrolling
–Arbitrary loops are not handled
–Something about them generating logic expressions of infinite size

Evaluates array bounds and assertions, among other things
–This presentation will focus on assertions
–Big benefit: Developer specifies correctness criteria

Does not handle multithreading
–But you have to start somewhere...

© 2014 IBM Corporation35

linux.conf.au January 8, 2014

Example #1 cbmc Verification: Input

#include <stdio.h>

int main(int argc, char *argv[])
{
 int i;

 if (argc < 2) {
 printf("Usage: %s n\n", argv[0]);
 return 1;
 }
 i = atoi(argv[1]);
 i = i * 2 + 1;
 assert(i & 0x1);
 return 0;
}

© 2014 IBM Corporation36

linux.conf.au January 8, 2014

Example #1 cbmc Verification: Output

$ cbmc even.c
file even.c: Parsing
Converting
Typechecking even
file even.c line 11 function main: function `c::atoi' is not declared
Generating GOTO Program
Adding CPROVER library
Function Pointer Removal
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 29 assignments
simple slicing removed 3 assignments
Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction
Running propositional reduction
Solving with MiniSAT2 without simplifier
1476 variables, 4036 clauses
empty clause: negated claim is UNSATISFIABLE, i.e., holds
Runtime decision procedure: 0.017s
VERIFICATION SUCCESSFUL

© 2014 IBM Corporation37

linux.conf.au January 8, 2014

Example #2 cbmc Verification: Input

#include <stdio.h>

int main(int argc, char *argv[])
{
 int i;

 if (argc < 2) {
 printf("Usage: %s n\n", argv[0]);
 return 1;
 }
 i = atoi(argv[1]);
 i = i * 2;
 assert(i & 0x1);
 return 0;
}

© 2014 IBM Corporation38

linux.conf.au January 8, 2014

Example #2 cbmc Verification: Output

$ cbmc evenbad.c
. . .
State 22 file evenbad.c line 12 function main thread 0

 main::1::i=2 (00000000000000000000000000000010)

Violated property:
 file evenbad.c line 13 function main
 assertion
 (_Bool)(i & 1)

VERIFICATION FAILED

© 2014 IBM Corporation39

linux.conf.au January 8, 2014

Example #3 cbmc Verification: Input

#include <stdio.h>

extern int nondet_int(void);

int main(int argc, char *argv[])
{
 int a, b, c;

 a = nondet_int();
 b = nondet_int();
 c = nondet_int();
 if (a <= 0 || a > 1023 || b <= 0 || b > 1023 || c <= 0 || c > 1023) {
 printf("Usage: %s a b c\n", argv[0]);
 printf("\tValue must be 0 < v <= 1023\n", argv[0]);
 return 2;
 }
 assert(a * a * a + b * b * b != c * c * c);
 return 0;
}

© 2014 IBM Corporation40

linux.conf.au January 8, 2014

Example #3 cbmc Verification: Output
$ cbmc fermat.c
file fermat.c: Parsing
Converting
Typechecking fermat
Generating GOTO Program
Adding CPROVER library
Function Pointer Removal
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 37 assignments
simple slicing removed 1 assignments
Generated 1 VCC(s), 1 remaining after
simplification
Passing problem to propositional reduction
Running propositional reduction
Solving with MiniSAT2 without simplifier
24573 variables, 29508 clauses
SAT checker: negated claim is UNSATISFIABLE,
i.e., holds
Runtime decision procedure: 158.163s
VERIFICATION SUCCESSFUL

Why so slow?

Exhaustive testing can be faster, but often more work

© 2014 IBM Corporation41

linux.conf.au January 8, 2014

Example #3 cbmc Verification: Output
$ cbmc fermat.c
file fermat.c: Parsing
Converting
Typechecking fermat
Generating GOTO Program
Adding CPROVER library
Function Pointer Removal
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 37 assignments
simple slicing removed 1 assignments
Generated 1 VCC(s), 1 remaining after
simplification
Passing problem to propositional reduction
Running propositional reduction
Solving with MiniSAT2 without simplifier
24573 variables, 29508 clauses
SAT checker: negated claim is UNSATISFIABLE,
i.e., holds
Runtime decision procedure: 158.163s
VERIFICATION SUCCESSFUL

Why so slow?
Multiplication!!!

Exhaustive testing can be faster, but often more work

© 2014 IBM Corporation42

linux.conf.au January 8, 2014

C Bounded Model Checker (cbmc) Summary

CMU research project

Readily available open source: http://www.cprover.org/cbmc/

Part of several Linux distros

Handles C code

Reasonably robust and documented
–Theory of operation:http://www.cprover.org/cbmc/doc/cbmc-slides.pdf
–Tutorial: http://www.cprover.org/cprover-manual/cbmc.shtml

Does not handle general loops, but allows bounded unrolling
–And checks to see if unrolling was sufficient

Does not handle threading
–Though some extensions have been prototyped

© 2014 IBM Corporation43

linux.conf.au January 8, 2014

Multithreaded Model Checking

© 2014 IBM Corporation44

linux.conf.au January 8, 2014

Multithreaded Model Checking

Alglave, Kroening, and Tautschnig produced prototype
system with goto-cc, goto-instrument, and satabs

–I became aware of this work by accident while in Rome...

Memory model captured as additional constraints

Easily scripted:

#!/bin/sh
gotocc o $1.goto $1.c
gotoinstrument wmm power $1.goto $1_power.goto
nthreads=`grep __CPROVER_ASYNC_ $1.c | wc l`
nthreads=`expr $nthreads + 1`
satabs concurrency fullinlining maxthreads $nthreads $1_power.goto

© 2014 IBM Corporation45

linux.conf.au January 8, 2014

Multithreaded Model Checking: IRIW Example Input

int __unbuffered_cnt=0;
int __unbuffered_p0_EAX=0;
int __unbuffered_p0_EDX=0;
int __unbuffered_p1_EAX=0;
int __unbuffered_p1_EDX=0;
int x=0;
int y=0;

void * P0(void * arg) {
 __unbuffered_p0_EAX = x;
 asm("sync ");
 __unbuffered_p0_EDX = y;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P1(void * arg) {
 __unbuffered_p1_EAX = y;
 asm("sync ");
 __unbuffered_p1_EDX = x;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P2(void * arg) {
 x = 1;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P3(void * arg) {
 y = 1;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

© 2014 IBM Corporation46

linux.conf.au January 8, 2014

Multithreaded Model Checking: IRIW Example Input

int main() {
 __CPROVER_ASYNC_0: P0(0);
 __CPROVER_ASYNC_1: P1(0);
 __CPROVER_ASYNC_2: P2(0);
 __CPROVER_ASYNC_3: P3(0);
 __CPROVER_assume(__unbuffered_cnt==4);
 assert(__unbuffered_p0_EAX==0 || __unbuffered_p0_EDX == 1 ||
 __unbuffered_p1_EAX==0 || __unbuffered_p1_EDX == 1);
 return 0;
}

© 2014 IBM Corporation47

linux.conf.au January 8, 2014

Multithreaded Model Checking: IRIW Example Output

. . .

Statistics of refiner:
Invalid states requiring more than 1 passive thread: 2
Spurious assignment transitions requiring more than 1 passive thread: 0
Spurious guard transitions requiring more than 1 passive thread: 0
Total transition refinements: 48
Transition refinement iterations: 10

VERIFICATION SUCCESSFUL

Same result as cppmem, but much faster: 2.61 CPU seconds vs ~14 CPU hours
Omitting sync instructions slows down to 134 CPU seconds: larger expressions

© 2014 IBM Corporation48

linux.conf.au January 8, 2014

goto-cc/goto-instrument/satabs Summary

Oxford research project

Readily available open source: http://www.cprover.org/wmm/

Download source and/or x86 binaries

Handles C code, including some concurrency

Early days: Robustness and documentation lacking
–Number of threads specified in four different places, no diagnostics!
–Working versions as follows:

$ sum gotocc gotoinstrument satabs
19375 4429 gotocc
54447 5705 gotoinstrument
24956 5969 satabs

Does not handle general loops, but allows bounded unrolling
–And checks to see if unrolling was sufficient

© 2014 IBM Corporation49

linux.conf.au January 8, 2014

Validating Linux-Kernel RCU Implementation

© 2014 IBM Corporation50

linux.conf.au January 8, 2014

Validating Linux-Kernel RCU Implementation

 I just happen to have some new RCU code...
–“Is the whole system idle?” http://lwn.net/Articles/558284/

So why not try goto-cc/goto-instrument/satabs?

© 2014 IBM Corporation51

linux.conf.au January 8, 2014

Validating Linux-Kernel RCU Implementation

 I just happen to have some new RCU code...
–“Is the whole system idle?” http://lwn.net/Articles/558284/

So why not try goto-cc/goto-instrument/satabs?
Performing pointer analysis for concurrency-aware abstraction

satabs: value_set.cpp:1183: void value_sett::assign(const exprt&, const exprt&,
const namespacet&, bool): Assertion `base_type_eq(rhs.type(), type, ns)' failed.

Aborted (core dumped)

Maybe 685 lines of code was too much...
–Bug report in to authors

© 2014 IBM Corporation52

linux.conf.au January 8, 2014

Validating Linux-Kernel RCU Implementation

Another tool: impara
–Very similar setup as goto-cc/goto-instrument/satabs
–http://www.cprover.org/concurrent-impact/

Doesn't deal nicely with dynamic memory allocation
–Bug fix for this in the works

© 2014 IBM Corporation53

linux.conf.au January 8, 2014

Validating Linux-Kernel RCU Implementation

Another tool: impara
–Very similar setup as goto-cc/goto-instrument/satabs
–http://www.cprover.org/concurrent-impact/

Doesn't deal nicely with dynamic memory allocation
–Bug fix for this in the works

So eliminate boot-time allocation in favor of static allocation
terminate called after throwing an instance of 'char const*'

Bug report in to authors
–Perhaps time to fall back to Promela and spin...
–(In addition to pre-existing stress tests and review.)
–But tools that take C code as input are much more convenient!!!

© 2014 IBM Corporation54

linux.conf.au January 8, 2014

Summary

© 2014 IBM Corporation55

linux.conf.au January 8, 2014

Summary

Validation of the Linux kernel increasingly challenging
–More code to validate
–More instances to exercise obscure bugs
–More CPUs, memory, and other invitations to rare bugs

Linux kernel community has risen to the challenge
–Review, aggressive testing, tooling

Future requirements likely to be more severe
–Full state-space modeling might be one way forward for concurrency
–cppmem: slow and low-level but accurate and trustworthy
–goto-cc/goto-instrument/satabs: fast and high-level, but early days

• Will likely be able to handle larger problems

© 2014 IBM Corporation56

linux.conf.au January 8, 2014

Summary

Validation of the Linux kernel increasingly challenging
–More code to validate
–More instances to exercise obscure bugs
–More CPUs, memory, and other invitations to rare bugs

Linux kernel community has risen to the challenge
–Review, aggressive testing, tooling

Future requirements likely to be more severe
–Full state-space modeling might be one way forward for concurrency
–cppmem: slow and low-level but accurate and trustworthy
–goto-cc/goto-instrument/satabs: fast and high-level, but early days

• Will likely be able to handle larger problems: Eventually...
• Ditto for impara

© 2014 IBM Corporation57

linux.conf.au January 8, 2014

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2014 IBM Corporation58

linux.conf.au January 8, 2014

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

