
Beyond Expert-Only Parallel Programming?

Paul E. McKenney
IBM Linux Technology Center

15400 SW Koll Parkway
Beaverton, OR USA

paulmck@linux.vnet.ibm.com

ABSTRACT
My parallel-programming education began in earnest when
I joined Sequent Computer Systems in late 1990. This edu-
cation was both brief and effective: within a few short years,
my co-workers and I were breaking new ground [MG92,
MS93, MS98].1 Nor was I alone: Sequent habitually hired
new-to-parallelism engineers and had them producing com-
petent parallel code within a few months. Nevertheless,
more than two decades later, parallel programming is per-
ceived to be difficult to teach and learn. Is parallel program-
ming an exception to the typical transitioning of technnol-
ogy from impossible to expert-only to routine to unworthy
of conscious thought?

1. INTRODUCTION
In 2006, Linus Torvalds noted that in the prior three-year

period, the Linux community’s grasp of concurrency had
improved to the point that patches involving locking were
often correct at first submission. In contrast, locking patches
submitted in 2003 frequently contained fatal concurrency
bugs [Tor06].

What changed between 2003 and 2006 to cause this huge
improvement in code quality? It was not the programming
language, which was C before, during, and after. It wasn’t
the synchronization primitives, either: the most common
synchronization primitive in Linux for the duration was, by
far, locking [McK06].2

We are told that parallel programming is a grand chal-
lenge impossible to address with today’s technology, but the
Linux experience argues differently. We must look beyond
the programming language and synchronization primitives

1 The work reported in the latter McKenney and Slingwine
publication [MS98] took place in 1993.
2 Much as I might hate to admit it, it was not RCU [MS98,
McK04]: Although RCU has recently been noted as benefi-
cial to the Linux kernel’s scalability [CKZ12, BWCM+10], in
2006, there were fewer than 1,000 uses of RCU in the Linux
kernel, and more than 40,000 uses of locking [McK06].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RACES ’12 Tucson, Arizona USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to solve this mystery. This paper proposes a comforting, but
currently underappreciated, answer: Parallel programming
is actually becoming easier, as we develop a parallel pro-
gramming culture and parallel programming tools. To this
end, Section 2 investigates acculturation, Section 3 reviews
economic changes, Section 4 discusses tooling, Section 5 dis-
cusses progress since 2006 along with future directions, and
finally, Section 6 presents concluding remarks.

2. ACCULTURATION
My education on parallel programming was typical: I

was given a copy of some training materials for Sequent’s
DYNIX/ptx operating-system kernel,3 my code was sub-
ject to detailed review, and finally, perhaps most important,
I was surrounded by accomplished parallel programmers.
This apprenticeship-style training had very few “drop outs”
and delivered impressive results. For example, in the seven
years before I joined, Sequent invalidated the earlier com-
mon wisdom that operating systems could not scale beyond
two to four CPUs. During that time, Sequent transitioned
30-CPU software scalability from impossible to expert-only
to routine.

Acculturation is an underappreciated but powerful force
driving technology adoption. This force is not restricted
to computer technologies, for example, over the past five
centuries, basic arithmetic has moved from a topic of ad-
vanced study to an elementary topic taught to all children
in grade school [Swe87]. Nor is this an isolated incident:
Car driving progressed from a highly skilled task for a chauf-
feur/mechanic to a simple task taught to almost every Amer-
ican teenager—in less than a century.

To bring the focus back to computing, in less than 30
years, the Internet has gone from a topic for advanced re-
search to an indispensable tool for all ages. Finally, I at-
tended a talk in the late 1970s by none other than Edsger
Dijkstra in which he claimed that the typical programmer
could not be trusted to correctly code a “while” loop. In
contrast, by the turn of the century, it was not unheard of
for children to grasp the use of “while” loops well before the
age of ten.

Given this weight of evidence from disparate fields of en-
deavor, along with the speed at which Linux-kernel par-
allelism moved from expert-only to routine, the burden of

3 These never were published, but were similar to their user-
level counterpart [Seq88] and not too different from material
created for the Linux kernel [Rus03]. In addition, many of
the key points were alluded to in a pair of 1985 USENIX
papers [BK85, Inm85].

 0.1

 1

 10

 100

 1000

 10000

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

Figure 1: MIPS/Clock-Frequency Trend for Intel
CPUs

proof must fall on those claiming that parallel programming
will remain difficult.

However, acculturation requires motivation. Although the
exact motivation for whole-hearted adoption of parallelism
in the Linux kernel is subject to debate, Figure 1 shows a
key suspect, namely that during the time period between
2003 and 2006, CPU clock frequencies ceased the exponen-
tial climb of the preceding two decades. During this time, it
became quite clear that parallelism would pervade the com-
puting industry [Sut05]. Within the Linux community, the
questions during code review shifted from whether or not a
given level of scalability should be provided to how best to
provide it. This motivation helped move parallelism within
the Linux kernel community from expert-only to routine.

This industry shift also dramatically changed the eco-
nomics of parallel systems, as discussed in the next section.

3. ECONOMICS
In the early 1990s, I was assigned to work with Sequent’s

benchmarking center. They were not achieving their goal:
Their CPUs were fully utilized, but there was almost no
lock contention and also ample I/O and system-interconnect
bandwidth. The solution was simple: Add more CPUs.
Thus it was that I found myself carrying five Sequent CPU
boards across the parking lot, each equipped with a pair of
80486 CPUs clocked at 50MHz. When I got about halfway
across the parking lot, I suddenly realized that I was carry-
ing no less than three times the purchase price of my house
in my arms.4 In the early 1990s, therefore, only a fortunate
few had access to parallel systems: (1) People like myself
who worked for companies manufacturing them, (2) those
working for companies that used them and had spare cy-
cles on test systems, and (3) students attending universities
that owned them, perhaps due to earlier research grants.
It is no surprise that parallel-programming knowledge and
experience remained obscure during the early 1990s.

4 Yes, I did walk more carefully after that. Why do you ask?

However, by 2006 the price of parallel systems had dropped
dramatically, to the point where a graduate student pur-
chased a dual-core system for no better reason than to be
able to do a presentation on parallel processing on a parallel
processor [HMB06]. In less than 20 years, the cost of a par-
allel system had dropped from multiples of that of a house
to a fraction of that of a used car.

Thus, this economic motivation had a powerful ally, namely,
the advent of low-cost dual-core laptops. These laptops dra-
matically increased the number of Linux developers who
could afford parallel hardware. This increased number of
developers in turn made possible more capable tooling, as
described in the next section.

4. TOOLING
A worker is only as good as his or her tools. To see that

this time-honored adage still holds, consider the Internet ex-
ample from Section 2. Why has Internet become so much
easier to use? Although acculturation is one important rea-
son, the fact is that today’s users do not spend anywhere as
much time crawling around above ceilings adjusting Ether-
net transceivers as did users of the early 1980s.

At that time, connecting a system to the Internet was a
complex task requiring specialized knowledge and skills. To-
day, the task is if anything even more complex, especially
given the wide variety of wireless protocols. However, al-
most all of these tasks are now carried out automatically by
hardware and software tools, so that in many environments,
the user need only power up his or her device.

The development of these hardware and software tools
was driven by the economics described in the previous sec-
tion: The greater the number of users, the more economic
sense it makes to save small amounts of their time. This
economic force applies equally well to tooling for parallel
programming.

To see this, contrast the size of Sequent’s DYNIX/ptx de-
velopment team (at most 40 people) with that of the Linux
kernel (numbering in the thousands). Suppose that a soft-
ware tool saves one percent of each developer’s time, but
costs one developer-year to construct. It would take the
DYNIX/ptx team at least 2.5 years to reach breakeven. In
stark contrast, the Linux kernel community would achieve
breakeven in less than six weeks. Therefore, all else being
equal, the greater the number of developers, the greater the
number and variety of software tools, which is in fact one of
many advantages of strong software ecosystems.

The Linux experience from 2003 to 2006 bears this out,
with three important tools being introduced during this time.
The first was “sparse” [Cor04], a static analyzer that (among
other things) can detect some cases of lock acquisition and
release mismatches. The second is “lockdep” [Cor06], which
computes a lock-dependency graph at runtime, automati-
cally detecting and reporting potential deadlock cycles. The
third is “coccinelle” [PLM06], which is a source-code ana-
lyzer capable of generating patches to fix all occurrences of
Linux-kernel bugs expressible in the SmPL domain-specific
language, including some concurrency bugs.

Of these three tools, the most successful thus far has been
lockdep. The secret of its success is threefold. First, it has
relatively few false positives, and most false positives are
easily suppressed. In contrast, sparse’s output is heavily
ridden with false positives, requiring more time and effort
to interpret. Second, lockdep is easy to run, in contrast

with coccinelle, which requires specific SmPL patterns to
be written to locate specific classes of bugs. Third, lock-
dep’s implementation has proven quite flexible, which has
allowed it to detect a number of other classes of concur-
rency bugs in addition to its original mandate of deadlock
cycles [McK10a]. These three properties have acculturated
use of lockdep, which is in fact mandated in Linux’s patch-
submission checklist (Documentation/SubmitChecklist). Of
course, nothing stops an individual developer from omitting
this step of the checklist, but because Linux’s maintainers
and testers habitually run lockdep, such an omission will be
noticed sooner rather than later. The lockdep experience
stands in happy contrast to the huge amounts of ink spilled
decrying locking’s potential for deadlock. One can only hope
that future researchers wishing to improve the lot of devel-
opers will take to heart the lessons from this contrast.

Please note that assessment of these tools is necessarily
subjective and varies with time. For example, the number
of coccinelle patterns is constantly growing, and they might
well be run on every change to each maintainer’s source-code
repository.5 Such a regimen might well eventually cause coc-
cinelle to find as many concurrency bugs than does lockdep,
in addition to coccinelle’s long list of non-concurrency bugs.

In addition, assessments vary across communities. For ex-
ample, the DYNIX/ptx community considered deadlock to
be neither difficult to avoid or hard to debug. Therefore, the
only deadlock tooling in DYNIX/ptx tagged each spinlock
with the number of the CPU currently holding it. Something
like lockdep would have been considered overkill, especially
given the economics of DYNIX/ptx’s smaller number of de-
velopers. In contrast, in the Linux community, although all
three of these tools consumed many developer-years of ef-
fort, they also produced large returns, removing numerous
bugs from the Linux kernel.

Because good tools greatly ease the task of producing cor-
rect parallel code, they accelerate the acculturation process.
Greater acculturation results in more developers, which shifts
economics further in favor of tooling improvement. When
this circle is operating full force, it generates surprisingly
large improvements in software quality in very short time
periods, as seen in the Linux kernel from 2003 to 2006.

5. PROGRESS AND FUTURE DIRECTIONS
An important contributor to the Linux kernel commu-

nity’s great progress in parallel programming during the
time period from 2003 to 2006 was a virtuous circle involv-
ing acculturation, economics, and tooling. Those of us who
would like to see continued successful adoption of parallelism
would therefore be wise to initiate and promote such circles.
To that end, the following sections discusses each of the three
segments of this circle.

5.1 Progress: Acculturation
Acculturation has been proceeding rapidly since 2006, for

example as measured by the number of parallel-programming
texts [HS08, Sco06, SSRB00, BHS07, MSM05, But97, Sut08,
Rei07, Lea97, GPB+07, CRKH05, McK12a]. In addition,
there now are many parallel open-source projects, allowing
easy access to production-quality code for study and ex-

5 There is already similar automation that does build-and-
boot testing on each change to each maintainer’s source-code
repository, which has proven quite effective.

perimentation. Finally, universities have used open-source
projects in their coursework for at least ten years.

That said, there is still a need for better educational ma-
terials, particularly surrounding design. My own design
education took place in mechanical engineering, but fortu-
nately the lessons carried over to computing. Of course,
there are design principles specific to parallel programming,
particularly the partitioning and replication techniques re-
quired to achieve high performance and scalability, along
with sets of transformations to convert broad classes of non-
partitionable problems into partitionable form [McK12a, Sec-
tion 5]. In addition, parallelism is but one performance op-
timization of many. Therefore, a key component of any par-
allel design course must include identifying which classes of
performance problems are best addressed by parallelism.

Of course, education is not the only way to promote ac-
culturation. To see this, note that the major figures in each
project called out in Section 4 was intimately involved in the
Linux kernel community. In the case of sparse (kicked off
by Linus Torvalds) and lockdep (kicked off by Ingo Molnar),
this is unsurprising. The case of coccinelle is more instruc-
tive. Julia Lawall is a researcher at INRIA (formerly with
Copenhagen University), but regularly contributes code to
the Linux kernel. So much so that she sometimes appears
on the list of the top 20 contributors to the Linux kernel and
that she was invited to the exclusive invitation-only Linux
Kernel Summit in 2010. The lesson here is that if you truly
wish to help a group of people, there is no substitute for
living among them. Please note that this is not to say that
each and every researcher should contribute heavily to some
open-source community. Far from it—such a policy would
be a wasteful failure to apply division of labor. Instead, each
researcher should speak regularly with at least one person
who has participated fully in some development project, but
who also intimately understands the research community.

Similarly, developers would do well to be acquainted with
someone who intimately understands research, presumably
also by living among researchers. Perhaps greater communi-
cation between researchers and developers will help to nar-
row the gap between these two communities [McK11b].

5.2 Progress: Economics
Although having an significant impact on large-scale eco-

nomics is beyond the capacity of most individual researchers
and developers, it should not be beyond their imaginations.
In my case, a course in engineering economics combined with
running my own business for several years has been of great
help. However, the only reason I took this course was that it
was required for my mechanical engineering degree. Perhaps
it should be added to the computer science curriculum.

Going forward, the advent of multicore smartphones will
push parallel programming even further into mainstream
computing, and, more important, greatly increase the unit
volumes and decrease the costs of parallel systems and appli-
cations. Although this will enable more people to try their
hand at parallel programming, it will also require additional
work, particularly tooling for validation and reliability.

5.3 Progress: Tooling
Great progress has been made on tooling since 2006. Both

sparse and lockdep have added RCU support [McK10b], and
lockdep has greatly improved its diagnostics, though addi-
tional improvement is possible [Ros11]. Coccinelle has ma-

tured greatly and is frequently used to find problems in the
Linux kernel [PTS+11]. A number of maintainers use combi-
nations of these three tools as part of their validation efforts.

Additional tools have come to light in the years since 2006.
One tool that has found a surprising number of concur-
rency bugs is Trinity, which is an intelligent system-call-
level stress test [Jon11]. The University of Cambridge’s
PPCMEM tool [AMP+11, SSA+11, SMO+12] is also an in-
teresting development, which is capable of validating small
algorithms on weakly ordered systems, including some frag-
ments of the Linux kernel. Formalization of new synchro-
nization mechanisms [GRY12] will eventually lead to more
powerful validation techniques, while work illuminating the
effects of APIs on parallel performance [AGH+11, McK11a]
will help guide API design. These types of validation are
critically important to acculturation, which relies heavily
on use Linux-kernel community code review as part of the
learning process. This clearly requires high-quality concur-
rent code in the Linux kernel, which is promoted by the
aggressive validation regimens using advanced tooling.

To complete the cycle, open-source projects serve as an
excellent set of test cases for all manner of software tools:
Nothing builds credibility for a given tool among practi-
tioners quite like that tool finding a serious problem in their
code, particularly if those practitioners spent significant time
attempting to track it down. Tooling improves the quality of
publicly available code, and also provides test cases for fur-
ther improvements in tooling, which further improves code
quality, forming another virtuous circle.

There is room for many other types of tools, including
data-race detectors, whole-program static analyzers that de-
tect additional cases of unbalanced critical-section opera-
tions, as well as a long list of full-state-space-search tools [Hol03,
SSA+11]. But perhaps the greatest need is for tools that val-
idate the combinations of synchronization operations used in
concert by large parallel projects [Bro11, McK12a].

5.4 Progress: Routine
Parallelism is well on its way to becoming routine. Once

it does, what will researchers and developers work on?

1. Core counts are still increasing, and there is plenty of
work needed to handle systems with hundreds (to say
nothing of thousands) of CPUs.

2. The end of clock-frequency scaling ten years ago has
renewed interest in special-purpose hardware, which
will pose special challenges.

3. The combination of parallelism and real-time response
is increasingly important [McK07, McK12c].

4. The combination of parallelism and energy efficiency
will only grow in importance with the increasing need
for energy conservation [Cor01, McK12b]. In fact, par-
allelism and energy efficiency are closely linked because
decreases in CPU clock frequencies produce quadratic
improvements in energy efficiency.

5. The combination of parallelism, real-time response,
and energy efficiency will also become increasingly im-
portant. I am not aware of much progress in this
area, partly due to the real-time habit of automati-
cally disabling all energy-efficiency options, but that
will change.

6. The extremely high volumes of multicore embedded
systems will place additional stress on parallel-programming
methodologies, requiring better validation techniques
and tooling, along with modifications to the parallel-
programming methodologies themselves.

7. What are now expert-only weakly ordered techniques
must become usable by the masses, given the expense
of strong ordering [HSW96, AGH+11]. RCU is one ef-
fort in this area [MS98, McK04, HMBW07, DMS+12],
but there are any number of other expert-only tech-
niques that can be made safe for a broader user base
through acculturation, tooling, and componentry, with
many more waiting to be discovered.

8. A rigorous theoretical basis is required for all of the
above. There is some recent intriguing progress in this
area [GRY12], which will hopefully support a new gen-
eration of tooling.

Rest assured that there will be no shortage of exciting
things to work on for the foreseeable future.

6. CONCLUSION
This paper has called out an important virtuous circle in-

volving acculturation, economics, and tooling, which was a
major factor behind the marked increase in quality of paral-
lel code in the Linux kernel from 2003 to 2006. Furthermore,
this virtuous circle is still in operation, which is fortunate
given the increases in reliability that will be required to sup-
port the huge unit volumes of multicore smartphones and
other embedded devices. In short, the preponderance of the
evidence indicates that parallel programming is no exception
to the long standing progression of new technologies: What
is impossible today will be expert-only tomorrow, routine
the next day, and unworthy of conscious thought the day
after that.

This progression will not only bring the benefits of parallel
programming to mainstream computing, it will also free up
researchers and developers to take on larger challenges, in-
cluding energy efficiency, real-time response, and yet unfore-
seen expert-only parallel-programming techniques. There-
fore, if teaching parallel programming remains problematic,
we will need to raise our teaching game.

Acknowledgments
I owe thanks to Eddie Kohler for many fruitful discussions on
this topics, to the RACES referees, and to many colleagues
at Sequent, IBM, and in the Linux community. Bob Beck
deserves special mention for his leading role in formulating
Sequent’s parallel-programming methodology [BK85]. I am
grateful to Jim Wasko for his support of this effort.

Legal Statement
This work represents the views of the author and does not
necessarily represent the views of IBM.
Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trade-
marks or service marks of such companies.

7. REFERENCES
[AGH+11] Hagit Attiya, Rachid Guerraoui, Danny

Hendler, Petr Kuznetsov, and Maged M.
Michael. Laws of order: Expensive
synchronization in concurrent algorithms
cannot be eliminated. In 38th ACM
SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New
York, NY, USA, 2011. ACM.

[AMP+11] Jade Alglave, Luc Maranget, Pankaj Pawan,
Susmit Sarkar, Peter Sewell, Derek Williams,
and Francesco Zappa Nardelli.
PPCMEM/ARMMEM: A tool for exploring
the POWER and ARM memory models.
June 2011.

[BHS07] Frank Buschmann, Kevlin Henney, and
Douglas C. Schmidt. Pattern-Oriented
Software Architecture Volume 4: A Pattern
Language for Distributed Computing. Wiley,
Chichester, West Sussex, England, 2007.

[BK85] Bob Beck and Bob Kasten. VLSI assist in
building a multiprocessor UNIX system. In
USENIX Conference Proceedings, pages
255–275, Portland, OR, June 1985. USENIX
Association.

[Bro11] Neil Brown. Meet the Lockers. Available:
http://lwn.net/Articles/453685/ [Viewed
September 2, 2011], August 2011.

[But97] David Butenhof. Programming with POSIX
Threads. Addison-Wesley, Boston, MA, USA,
1997.

[BWCM+10] Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai
Zeldovich. An analysis of Linux scalability to
many cores. In 9th USENIX Symposium on
Operating System Design and
Implementation, pages 1–16, Vancouver, BC,
Canada, October 2010. USENIX.

[CKZ12] Austin Clements, Frans Kaashoek, and
Nickolai Zeldovich. Scalable address spaces
using RCU balanced trees. In Architectural
Support for Programming Languages and
Operating Systems (ASPLOS 2012), pages
@@@–@@@, London, UK, March 2012.
ACM.

[Cor01] Jonathan Corbet. No more jiffies? Available:
http:

//lwn.net/2001/0412/bigpage.php3#kernel

[Viewed August 10, 2012], April 2001.

[Cor04] Jonathan Corbet. Finding kernel problems
automatically. Linux Weekly News, June
2004.

[Cor06] Jonathan Corbet. The kernel lock validator.
Available:
http://lwn.net/Articles/185666/ [Viewed:
March 26, 2010], May 2006.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman. Linux Device Drivers.
O’Reilly Media, Inc., third edition, 2005.

[DMS+12] Mathieu Desnoyers, Paul E. McKenney, Alan
Stern, Michel R. Dagenais, and Jonathan

Walpole. User-level implementations of
read-copy update. IEEE Transactions on
Parallel and Distributed Systems, 23:375–382,
2012.

[GPB+07] Brian Goetz, Tim Peierls, Joshua Bloch,
Joseph Bowbeer, David Holmes, and Doug
Lea. Java: Concurrency in Practice. Addison
Wesley, Upper Saddle River, NJ, USA, 2007.

[GRY12] Alexey Gotsman, Noam Rinetzky, and
Hongseok Yang. Verifying highly concurrent
algorithms with grace (extended version).
Available: http://sites.google.com/site/

popl13grace/paper.pdf [Viewed August 4,
2012], July 2012.

[HMB06] Thomas E. Hart, Paul E. McKenney, and
Angela Demke Brown. Making lockless
synchronization fast: Performance
implications of memory reclamation. In 20th

IEEE International Parallel and Distributed
Processing Symposium, Rhodes, Greece,
April 2006. Available: http://www.rdrop.

com/users/paulmck/RCU/hart_ipdps06.pdf

[Viewed April 28, 2008].

[HMBW07] Thomas E. Hart, Paul E. McKenney,
Angela Demke Brown, and Jonathan
Walpole. Performance of memory reclamation
for lockless synchronization. J. Parallel
Distrib. Comput., 67(12):1270–1285, 2007.

[Hol03] Gerard J. Holzmann. The Spin Model
Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[HS08] Maurice Herlihy and Nir Shavit. The Art of
Multiprocessor Programming. Morgan
Kaufmann, Burlington, MA, USA, 2008.

[HSW96] Maurice Herlihy, Nir Shavit, and Orli
Waarts. Linearizable counting networks.
Distrib. Comput., 9:193–203, February 1996.

[Inm85] Jack Inman. Implementing loosely coupled
functions on tightly coupled engines. In
USENIX Conference Proceedings, pages
277–298, Portland, OR, June 1985. USENIX
Association.

[Jon11] Dave Jones. Trinity: A system call fuzzer. In
Proceedings of the 13th Ottawa Linux
Symposium, pages ???–???, Ottawa, Canada,
June 2011.

[Lea97] Doug Lea. Concurrent Programming in Java:
Design Principles and Patterns. Addison
Wesley Longman, Reading, MA, USA, 1997.

[McK04] Paul E. McKenney. Exploiting Deferred
Destruction: An Analysis of
Read-Copy-Update Techniques in Operating
System Kernels. PhD thesis, OGI School of
Science and Engineering at Oregon Health
and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf

[Viewed October 15, 2004].

[McK06] Paul E. McKenney. RCU Linux usage.
Available: http://www.rdrop.com/users/

paulmck/RCU/linuxusage.html [Viewed
January 14, 2007], October 2006.

http://lwn.net/Articles/453685/
http://lwn.net/2001/0412/bigpage.php3#kernel
http://lwn.net/2001/0412/bigpage.php3#kernel
http://lwn.net/Articles/185666/
http://sites.google.com/site/popl13grace/paper.pdf
http://sites.google.com/site/popl13grace/paper.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

[McK07] Paul E. McKenney. SMP and embedded real
time. Linux Journal, (153):52–57, January
2007. Available: http:

//www.linuxjournal.com/article/9361

[Viewed May 31, 2007].

[McK10a] Paul E. McKenney. Lockdep-RCU. Available:
https://lwn.net/Articles/371986/

[Viewed June 4, 2010], February 2010.

[McK10b] Paul E. McKenney. The RCU API, 2010
edition. Available:
http://lwn.net/Articles/418853/ [Viewed
December 8, 2010], December 2010.

[McK11a] Paul E. McKenney. Concurrent code and
expensive instructions. Available:
http://lwn.net/Articles/423994 [Viewed
January 28, 2011], January 2011.

[McK11b] Paul E. McKenney. Verifying parallel
software: Can theory meet practice?
http://www.rdrop.com/users/paulmck/

scalability/paper/VericoTheoryPractice.

2011.01.28a.pdf, January 2011.

[McK12a] Paul E. McKenney. Is Parallel Programming
Hard, And, If So, What Can You Do About
It? kernel.org, Corvallis, OR, USA, 2012.
Available:
http://kernel.org/pub/linux/kernel/

people/paulmck/perfbook/perfbook.html

[Viewed March 28, 2010].

[McK12b] Paul E. McKenney. Making RCU safe for
battery-powered devices. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdynticks.2012.02.15b.pdf [Viewed
March 1, 2012], February 2012.

[McK12c] Paul E. McKenney. Real-time response on
multicore systems: It is bigger than you
think. Available: http://www.seas.gwu.edu/

~gparmer/ospert12/bigrt.2012.07.10a.pdf

[Viewed August 10, 2012], July 2012.

[MG92] Paul E. McKenney and Gary Graunke.
Efficient buffer allocation on shared-memory
multiprocessors. In IEEE Workshop on the
Architecture and Implementation of High
Performance Communication Subsystems,
pages 194–199, Tucson, AZ, February 1992.
The Institute of Electrical and Electronics
Engineers, Inc.

[MS93] Paul E. McKenney and Jack Slingwine.
Efficient kernel memory allocation on
shared-memory multiprocessors. In USENIX
Conference Proceedings, pages 295–306,
Berkeley CA, February 1993. USENIX
Association. Available:
http://www.rdrop.com/users/paulmck/

scalability/paper/mpalloc.pdf [Viewed
January 30, 2005].

[MS98] Paul E. McKenney and John D. Slingwine.
Read-copy update: Using execution history
to solve concurrency problems. In Parallel
and Distributed Computing and Systems,
pages 509–518, Las Vegas, NV, October
1998. Available: http://www.rdrop.com/

users/paulmck/RCU/rclockpdcsproof.pdf

[Viewed December 3, 2007].

[MSM05] Timothy G. Mattson, Beverly A. Sanders,
and Berna L. Massingill. Patterns for
Parallel Programming. Addison Wesley,
Boston, MA, USA, 2005.

[PLM06] Yoann Padioleau, Julia L. Lawall, and Gilles
Muller. Understanding collateral evolution in
linux device drivers. In Proceedings of the
ACM SIGOPS EuroSys 2006 Conference,
pages 59–71, Leuven, Belgium, April 2006.
ACM.

[PTS+11] Nicolas Palix, Ga el Thomas, Suman Saha,

Christophe CalvÃĺs, Julia Lawall, and Gilles
Muller. Faults in linux: Ten years later. In
Proceedings of the Sixteenth International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS 2011), pages 305–318,
Newport Beach, California, USA, March
2011. ACM.

[Rei07] James Reinders. Intel Threading Building
Blocks. O’Reilly, Sebastopol, CA, USA, 2007.

[Ros11] Steven Rostedt. lockdep: How to read its
cryptic output.
http://www.linuxplumbersconf.org/2011/

ocw/sessions/153, September 2011.

[Rus03] Rusty Russell. Unreliable guide to locking.
Available:
http://www.kernel.org/pub/linux/kernel/

people/rusty/kernel-locking/index.html

[Viewed September 10, 2012], 2003.

[Sco06] Michael Scott. Programming Language
Pragmatics. Morgan Kaufmann, Burlington,
MA, USA, 2006.

[Seq88] Sequent Computer Systems, Inc. Guide to
Parallel Programming, 1988.

[SMO+12] Susmit Sarkar, Kayvan Memarian, Scott
Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams.
Synchronizing C/C++ and POWER. In
Programming Language Design and
Implementation (PLDI) 2012, Beijing,
China, June 2012.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave,
Luc Maranget, and Derek Williams.
Understanding POWER multiprocessors. In
Programming Language Design and
Implementation (PLDI) 2011, San Jose, CA,
USA, June 2011.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and
Networked Objects. Wiley, Chichester, West
Sussex, England, 2000.

[Sut05] Herb Sutter. The free lunch is over: A
fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3), March
2005. Available: http://www.gotw.ca/

publications/concurrency-ddj.htm

[Viewed January 1, 2009].

[Sut08] Herb Sutter. Effective concurrency. Series in

http://www.linuxjournal.com/article/9361
http://www.linuxjournal.com/article/9361
https://lwn.net/Articles/371986/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/423994
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/VericoTheoryPractice.2011.01.28a.pdf
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.seas.gwu.edu/~gparmer/ospert12/bigrt.2012.07.10a.pdf
http://www.seas.gwu.edu/~gparmer/ospert12/bigrt.2012.07.10a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.linuxplumbersconf.org/2011/ocw/sessions/153
http://www.linuxplumbersconf.org/2011/ocw/sessions/153
http://www.kernel.org/pub/linux/kernel/people/rusty/kernel-locking/index.html
http://www.kernel.org/pub/linux/kernel/people/rusty/kernel-locking/index.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Dr. Dobbs Journal, 2008.

[Swe87] Frank J. Swetz. Capitalism & Arithmetic:
The New Math of the 15th Century. Open
Court, 1987.

[Tor06] Linux Torvalds. Open forum on os
architecture for multicore and manycore
platforms. Panel Discussion, hosted by Intel
Research Council Scalable Systems
Committee, November 2006.

	1 Introduction
	2 Acculturation
	3 Economics
	4 Tooling
	5 Progress and Future Directions
	5.1 Progress: Acculturation
	5.2 Progress: Economics
	5.3 Progress: Tooling
	5.4 Progress: Routine

	6 Conclusion
	7 References

