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1 Abstract1

There has been much work done modeling,

simulating, and measuring the performance of locking

primitives under high levels of contention. However, an

important key to producing high-performance parallel

programs is to maintain extremely low levels of

contention. Despite its importance, the low-contention

regime has been largely neglected. In order to fill this gap,

this paper analyzes the performance of several commonly

used locking primitives under low levels of contention.

The costs predicted by a number of analysis

methodologies are compared to measurements taken on

real hardware, thereby showing where each may be safely

used.

Use of these methodologies is illustrated by an

analytic comparison of different reader-writer spin-locks,

and by a real-world case study.

Keywords: locking synchronization performance

2 Introduction
Maintaining low lock contention is essential to

attaining high performance in parallel programs.

However, even programs with negligible lock contention

can suffer severe performance degradation due to memory

latencies incurred when accessing shared data that is

frequently modified.  This is due to the high cost of

memory latency compared to instruction execution

overhead.

Increases in CPU-core instruction-execution rate are

expected to continue to outstrip reductions in global
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latency for large-scale multiprocessors [1, 2, 3].  This

trend will cause global lock and synchronization

operations to continue becoming more costly relative to

instructions that manipulate local data.  Thus, the low-

contention performance of locking primitives will

continue to be governed by memory latency.  This paper

analyzes several commonly used classes of lock

primitives from a memory-latency viewpoint.

Memory latencies are incurred for shared data

structures in addition to the locks themselves.  Therefore,

simple empirical measurements of the locking primitives

cannot give a complete picture of the performance of the

program that uses the locks.  The designer needs some

way to account for the memory latencies incurred by the

program's data as well as by its locks.

In short, the designer needs a technique that can

provide reasonable estimates of performance based on

information available at design time.  This paper

describes such a technique, and illustrates its use on a

number of locking primitives, and in some real-world

case studies.

3 Existing Solutions
The most straightforward way to measure the

performance of an algorithm is to simply run it.  Even so,

modern microprocessor architectures complicate this

seemingly simple task, so that special hardware support is

often required [4].  Even with such support, this

measurement approach produces results that are specific

to a particular machine.  Furthermore, both the algorithm

and the hardware must be fully implemented and

debugged, which is often infeasible during the early

design phases of a project.
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Alternatively, an algorithm’s performance may be

evaluated via simulation.  Although this approach can

alleviate some of the measurement difficulties posed by

modern microprocessor architectures, precise results

require not only that the algorithm be fully coded and

debugged, but that a simulator be available.

Traditional design-time methodologies for

evaluating the performance of algorithms are based on

operation counting [5].  This approach has been refined

by many researchers over the decades.  Recent work

considers the properties of the underlying hardware,

weighting the operations by their costs [6].  This

hardware-centric approach requires detailed analysis of

assembly code, and produces results that are specific to a

particular machine.  Magnusson's approach is

nevertheless the technique of choice when exact analysis

of existing short sequences of code is required.

In contrast, the techniques described in this paper

are suitable for use during early design time, when the

code is not yet written, let alone running.  Although these

techniques may be applied to both simulation and analytic

operation-counting methodologies, this paper focuses on

analytic methodologies.
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Figure 1: CC-NUMA Memory Latency

4 Memory-Latency Model
The solution put forward in this paper relies on the

fact that memory latency is the dominating factor in well-

constructed parallel programs.  Such programs avoid

highly contended locks, leaving the memory latency as

the dominating execution cost, since memory accesses are

increasingly expensive compared to instruction execution

overhead [1, 2, 3].

Since memory latency dominates, we can accurately

estimate performance by tracking the flow of data among

the CPUs, caches, and memory.  For SMP and CC-

NUMA [7] architectures, this data flow is controlled by

the cache-coherence protocol, which moves the data in

units of cache lines.  Figure 1 shows a cache line's

possible locations relative to a given CPU in a CC-

NUMA system.  As shown in the figure, a CC-NUMA

system is composed of modules called quads, which

contain both CPUs and memory.  Data residing nearer to

a given CPU will have shorter access latencies.  As the

figure shows, data that is already in a given CPU’s cache

may be accessed with latency tf.  Data located elsewhere

on the quad may be accessed with latency tm, while data

located on other quads may be accessed with latency ts.
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On large-scale machines where ts overwhelms tm and tf,

the latter quantities may often be ignored, further

simplifying the analysis, but decreasing accuracy

somewhat.  If more accuracy is required, the overheads of

the individual instructions may be included [6], however,

this will usually require that the program be coded and

compiled to assembly language, and is often infeasible for

large programs.

Once a given data item has been accessed by a CPU,

it is cached in that CPU’s cache.  If the data’s home is in

some other quad’s memory, then it will also be cached in

the accessing CPU’s quad’s cache.  In both cases, the

caching allows subsequent accesses from the same CPU

to proceed with much lower latency.  Data that has been

previously accessed by a given CPU is assumed to reside

in that CPU’s cache (with access latency tf).  In other

words, at low contention, we assume that there is

insufficient cache pressure to force data out of a CPU’s

cache.  Most modern CPUs also have a small on-chip

cache, which can deliver multiple data items in parallel to

the CPU in a single clock.  This on-chip cache is modeled

as having zero latency, but is assumed only to hold data

across a single function call.

5 Conditions & Assumptions
A CC-NUMA system contains n quads and m CPUs

per quad (two and four, respectively, in the example

shown in the figure).  The analysis makes the following

assumptions:

1) Quads contain the same number of CPUs.

2) Contention is low and lock-hold times are short

compared to the interval between lock acquisitions. This

means that the probability of two CPUs attempting to

acquire the same lock at the same time is vanishingly

small, as is the probability of one CPU attempting to

acquire a lock held by another CPU.

3) CPUs acquire locks at random intervals.  This

means that when a given CPU acquires a lock, that lock

was last held, with equal probability, by any of the CPUs.

Exclusive and non-exclusive accesses are assumed to

occur randomly with probability f and 1-f, respectively.

4) The overhead of instructions executed wholly

within the microprocessor core is insignificant compared

to the overhead of data references that miss the cache.

The model can be extended to handle programs with a

significant number of “heavyweight” instructions (such as

atomic read-modify-write instructions) by adding an

additional th for these heavyweight instructions.

5) The CPU is assumed to have a single-cycle-

access on-chip cache. This cache is considered part of the

CPU core, and for purposes of these derivations is called

the “on-chip cache”.  Instruction fetches and stack

references (function calls and returns, accesses to auto

variables) are assumed to hit this on-chip cache, and are

modeled as having zero cost.  Indeed, modern

microprocessors are frequently able to perform multiple

accesses to this on-chip cache in a single clock cycle.

6) Cache pressure is assumed low (outside of the

on-chip cache), so that a variable that resides in a given

cache remains there until it is invalidated by a write from

some other CPU.

7) Memory-access times are independent of the

number of copies that appear in different caches.

Although directory-based cache-coherence schemes can

in theory deviate significantly from this ideal, in practice,

this assumption is usually sufficiently accurate [7],

particularly for design purposes.

8) Speculative references are ignored.  In principle,

speculation can result in large quantities of useless but

expensive memory references, but in practice, this is often

at least partially balanced by the fact that a speculating

CPU can fetch multiple data items simultaneously.

6 Details of Solution
This section gives a step-by-step method of using

the latency model to estimate the overhead of an
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algorithm.  It also describes some simplifications that may

apply in some commonly occurring situations.

6.1 Summary of Nomenclature
Table 1 shows the symbols used in the derivations.

6.2 Adaptation to Large-Scale SMP
Machines

The large caches and large memory latencies on

large-scale SMP machines allow them to be modeled in a

similar manner.  In many cases, substituting ts for tm, 1 for

m, and n for m reduces a CC-NUMA model to the

corresponding SMP model.

These substitutions may be used except where the

algorithm itself changes form in moving from a CC-

NUMA to an SMP environment.  Software that is to run

in both CC-NUMA and SMP environments will generally

be coded to operate well in both, often by considering the

SMP system to be a CC-NUMA system with a single

large quad.

Definition

f Fraction of lock acquisitions that require exclusive access
to the critical section.

m Number of CPUs per quad in NUMA systems.  Not
applicable to SMP systems.  Equations that apply to both
SMP and NUMA systems will define m  to be one unless
otherwise stated.

n Number of CPUs (quads) in SMP (NUMA) systems.
r Ratio of ts to tf.
ts Time required to complete a “slow” access that misses all

local caches.
tm Time required to complete a “medium” access that hits

memory or a cache shared among a subset of the CPUs.
This would be the latency of local memory or of the remote
cache in CC-NUMA systems.

tf Time required to complete a “fast” access that hits the
CPU’s cache.

Table 1: Nomenclature for Lock Cost Derivation

6.3 Use and Simplifications
The model is a four-step process:

1. Analyze the CPU-to-CPU data flow in your

algorithm.

2. For each point in the algorithm where a CPU

must load a possibly-remote data item, determine the

probabilities of that data item being in each of the

possible locations relative to the requesting CPU.  It is

usually best to make a table of the probabilities.

3. For each location, compute the cost.

4. Multiply the probabilities by the corresponding

costs, and sum them up to obtain the expected cost.

This process is illustrated on locking primitives in

the following sections.

One useful simplification is to set tf and possibly tm

to zero.  This greatly simplifies the analysis, and provides

accuracy sufficient for many uses, particularly when the

ratio r between ts and tf is large.

A further simplification is to assume that the data is

maximally remote each time that a CPU requests it.  This

further reduces accuracy, but provides a very simple and

conservative back-of-the envelope analysis that can often

be applied to large systems during early design.

Note that because the actual behavior depends

critically on cache state, actual results can deviate

significantly from the analytic results presented in this

paper.  For example, if the CPU cache was fully utilized,

the added cache pressure resulting from the larger size of

higher-performance locking primitives might well

overwhelm their performance benefits.  Therefore,

analytic results should be used only as guidelines or rules

of thumb, and should be double-checked by measuring

the actual performance of the running program.

Nevertheless, results obtained from these models have

proven quite useful in practice.

7 Analytical Analysis
This section illustrates the use of the methodology

on simple spin-lock and on a number of variants of

reader-writer spin-lock.

7.1 Simple Spinlock

A simple spinlock is acquired with a test-and-set

instruction sequence.  Under low contention, there will be
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almost no spinning, so the acquisition overhead is just the

memory latency to access the cache line containing the

lock.  This latency is incurred when acquiring and when

releasing the lock, and will depend on where the cache

line is located, with the different possible locations,

probabilities, latencies, and weighted latencies shown in

Table 2.

The entries in this table are obtained by considering

where the lock could have been last held, and, for each

possible location, how much it will cost for the current

acquisition.  In a NUMA system, there are nm CPUs

distributed over n quads, so there is probability 1/nm that

the CPU currently acquiring the lock was also the last

CPU to acquire it, as shown in the upper-left entry in the

table.  In this case, the cost to acquire the lock will just tf,

as shown in the left-most entry of the second row.  The

weighted latency will be the product of these two

quantities, shown in the left-most entry of the third row.

Same
CPU

Different CPU,
Same Quad

Different
Quad

Probability 1/nm (m-1)/nm (n-1)/n
Acq. Latency tf tm ts

Wtd. Latency tf /nm tm(m-1)/nm ts(n-1)/n

Table 2: Simple Spinlock Access-Type Probabilities
and Latencies

Similarly, there will be probability (m-1)/nm that

one of the m-1 other CPUs on the same quad as the

current CPU last acquired the lock, as shown in the upper-

middle entry in the table.  In this case, the cost to acquire

the lock will be tm, as shown in the middle entry of the

second row.  Again, the weighted latency will be the

product of these two quantities, as shown in the lower-

middle entry of the table.

Finally, there will be probability (n-1)/n  that one of

the CPUs on the other n-1 quads last acquired the lock, as

shown in the upper right entry in the table.  In this case,

the cost to acquire the lock will be ts, as shown in the

right-hand entry of the middle row.  The weighted latency

will once again be the product of these two quantities, as

shown in the lower right entry of the table.

Under low contention, the overhead of releasing the

lock is just the local latency tf, since there is vanishingly

small probability that some other CPU will attempt to

acquire the lock while a given CPU holds it.  Therefore,

the overall NUMA lock-acquisition overhead is obtained

by summing the entries in the last row of Table 2 and then

adding tf, as shown in Equation 1.

( ) ( ) ( )1 1 1s m fn mt m t nm t

nm

− + − + +

Equation 1

An n-CPU SMP system can be thought of as a

single-quad NUMA system with n CPUs per quad.  The

SMP overhead is therefore obtained by setting n to 1, tm to

ts, and then m to n, resulting in Equation 2.

( ) ( )1 1s fn t n t

n

− + +

Equation 2

Both of these expressions approach ts for large n,

validating the common rule of thumb which states that

under low contention, the cost of a spinlock is simply the

worst-case memory latency.

Normalizing with ts=rtf [8] yields the results shown

in Equation 3 and Equation 4.

( ) ( ) ( )1 1 1n mr m r nm

nm

− + − + +

Equation 3

( ) ( )1 1n r n
n

− + +

Equation 4

7.2 Distributed Reader-Writer Spinlock
Distributed reader-writer spinlock is constructed by

maintaining a separate simple spinlock per CPU, and an

additional simple spinlock to serialize write-side accesses

[9].  Each of these locks is in its own cache line in order

to prevent false sharing.  However, it is possible to

interleave multiple distributed reader-writer spinlocks so

that the locks for CPU 0 share one cache line, those for

CPU 1 a second cache line, and so on.  Table 3 shows an

example layout for a four-CPU system.
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Lock
CPU A B C D E F E F

0 0 1 2 3 4 5 6 7
1 8 9 10 11 12 13 14 15
2 16 17 18 19 20 21 22 23
3 24 25 26 27 28 29 30 31

W 32 33 34 35 36 37 38 39

Table 3: Distributed Reader-Writer Spinlock Memory
Layout

Each row in the figure represents a cache line, and

each cache line is assumed to hold eight simple spinlocks.

Each cache line holds simple spinlocks for one CPU, with

the exception of the last cache line, which holds the

writer-gate spinlocks.  If the entire data structure is

thought of as a dense array of forty simple spinlocks, then

Lock A occupies indices 0, 8, 16, 24, and 32, Lock B

occupies 1, 9, 17, 25, 33, and so on.

To read-acquire the distributed reader-writer spin-

lock, a CPU acquires its lock.  If the write fraction f is

low, the cost of this acquisition will be roughly tf.  To

release a distributed reader-writer spin-lock, a CPU

releases its lock.  Again, assuming low f, the cost of the

release will be roughly tf.

Figure 2: Costs of Simple Spinlock and Distributed
Reader-Writer Spinlock

To write-acquire the distributed reader-writer

spinlock, a CPU first acquires the writer gate, then each of

the CPU’s spinlocks in order.  If the write fraction f is

low, the cost of the write-acquisition in this four-CPU

example will be roughly 4ts+tf.  To release the distributed

reader-writer spinlock, a CPU releases the per-CPU locks

in order, then the writer gate.  Assuming low f, the cost of

the release will be roughly 5tf.  See Appendix A for a

detailed derivation of more exact results, which are

plotted in Figure 2: Costs of Simple Spinlock and

Distributed Reader-Writer Spinlock.  The labels in this

plot are defined in Table 4.

Label Description
drw Distributed (cache-friendly) reader-

writer spinlock [9]
sl Simple spinlock

Table 4: Trace Labels

More extensive plots of the costs and breakevens for

these and other locking primitives are available elsewhere

[10].

7.3 Segmented Reader-Writer Spinlock
Although distributed reader-writer lock performs

very well when the update fraction is low, it is orders of

magnitude slower than simple spinlock when the update

fraction approaches 1.  Hsieh and Weihl [11] suggest use

of a bitmask to track which CPUs have read-acquired the

lock, so that the write-acquiring CPU need only reference

those CPU’s locks.  However, this approach requires all

read-acquiring CPUs to reference and update a single

variable, which could lead to performance degradation

due to memory contention.

This section analyzes a different approach, namely,

allowing small numbers of CPUs to share read-side locks.

Table 5 shows how the lock might be laid out in memory

for a four-CPU system in which each read-side lock is

shared by a pair of CPUs.

The analysis for segmented locks is very similar to

that for distributed reader-writer spinlocks.  The

breakevens for different segment sizes are plotted in

Figure 3.

Lock
CPU A B C D E F E F

0-1 0 1 2 3 4 5 6 7
2-3 8 9 10 11 12 13 14 15
W 16 17 18 19 20 21 22 23

Table 5: Segmented Reader-Writer Spinlock Memory
Layout, Segment Size 2
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Figure 3: Segmented Reader-Writer Spinlock

The x-axis is the number of CPUs, and the y-axis is

the breakeven update fraction f, or the fraction of the time

that the lock will be write-acquired.  When f=1, the lock

is always write-acquired, and when f=0, the lock is

always read-acquired.

In the region above the upper line, simple spinlock is

optimal.  In the region below the lower line, distributed

reader-writer spinlock, which is the same as segmented

reader-writer spinlock with a segment size of one, is

optimal.  The second line from the top marks the

breakeven between a segment size equal to half the

number of CPUs and a segment size equal to one third the

number of CPUs, while the second line from the bottom

marks the breakeven point between a segment size of 2

and a segment size of 3.

These results show that segmented reader-writer

spinlocks can be useful, but only in a narrow range of

conditions.  The results also support the rule of thumb that

says that distributed reader-writer spinlock should be used

only if less than 1/mn  of the accesses are write-size

accesses (where mn is the number of CPUs).

8 Comparison to Measurements
The following two sections compare the predictions

of the model to measurements taken on a Sequent

NUMA-Q 2000 with eight quads each containing four

Intel 180 MHz Pentium Pro Processors.  Measurement

code runs on the first up to seven quads: the eighth quad

runs code that sequences and controls the tests.  First, the

values of ts, tm, and tf were measured using the on-chip

time-stamp counters.  The latency of the lock operations

was measured using the same methodology and compared

to the analytic predictions.

Since the Pentium Pro is a speculative CPU that can

execute instructions out of order, special care is required

to measure the latencies of single memory references and

of single locking primitives.  The instruction sequence

under test is preceded by a sequence consisting of a

serializing instruction (namely CPUID) followed by an

RDTSC (read timestamp counter) instruction followed by

40 NOP instructions.  The sequence under test is followed

by the same sequence in reverse, that is, by 40 NOP

instructions followed by an RDTSC instruction and a

CPUID instruction.  The 40 NOP instructions were

observed to be sufficient to force the RDTSC instructions

to be executed a predictable amount of time before and

after the the instruction sequence under test.  A sequence

consisting of a CPUID, an RDTSC, a varying number of

NOPs, an RDTSC, and a CPUID was used to calibrate the

measurements.

8.1 Rules of Thumb
These sections will examine the applicability of

some commonly used rules of thumb:

1. The Alpern approximation [8], which assumes

that the ratios of the memory latencies of adjacent levels

of the memory hierarchy are equal.  In other words,

Alpern's model assumes that tf /tm=tm /ts.

2. The ts-only model, where only the ts term of the

full analytic model is used.

3. The naïve model, which simply counts the

expected number of remote memory references without

considering the probabilities of past histories.  This model

would for example predict that the write-acquisition

overhead of a reader-writer spinlock is nts: one remote
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reference for the write-side guard lock, and n-1 references

for each of the other CPUs’ read-side locks.

The naïve model allows rough performance

estimates to be derived early the design process.  The

following set of remote-reference counting rules have

been quite helpful for large real-world scalable parallel

programs:

1) Count these as one remote memory reference:

a) Acquisition of a contended spinlock counts.

b) The first reference to a given cacheline of a data

structure that is frequently modified counts.

c) The first write to a given cache line of a data

structure that is frequently referenced.

2) Count these as zero remote memory references:

a) The second read or write to a given cache line of

a data structure.

b) References or modifications to auto (on-stack)

variables.

c) Releases of locks.

These counts may then be combined an estimate or

measurement of remote latency to yield an overall

performance estimate.

This approach assumes good locking design, so that

locks are not heavily contended.  If a given lock is

suspected to be a bottleneck, this same procedure may be

applied to the code in that lock's critical sections.  The

result of this procedure is an estimate of the system

throughput limit imposed by this lock.  Such a per-lock

application of this method may be used to determine how

aggressive a locking strategy is required.

These rules of thumb have proven themselves to be

extremely useful in generating design-time performance

estimates.  However, they are in no way intended to

supplant the simulation, measurement, and analysis

methodologies that are used to evaluate the performance

of production systems.

8.2 Simple Spinlock
Figure 4 compares the measurements (ticks) to the

predictions of the full analytic model, and to the

predictions using only the ts term of the analytic model.

Since simple spinlock performance is dominated by

remote latency, the two variants of the model are in close

agreement with each other.  The ts-only model gives

better predictions at lower numbers of quads because the

hardware contains optimizations for small numbers of

quads that are not captured by the analytic model.  Note

that the naïve model closely approximates the ts-only

model in this case.

Figure 4: Simple Spinlock

These results validate the rule of thumb that simple

spinlock performance can be closely estimated by

counting the remote references.  Note that there are small

but measurable deviations at larger numbers of quads.

This is due in part to longer sharing list and in part to

speculation.  It is possible to design more complex

locking primitives that do not exhibit these deviations, but

such designs are beyond the scope of this paper.

8.3 Distributed Reader-Writer Spinlock
Figure 5 compares the measurements (ticks) against

the predictions of the full analytic model.  The full

analytic model achieves good agreement with the
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measured data.  Note that the goodness of the agreement

is similar to that of simple spinlock—the log-scale y-axis

in Figure 5 makes the differences less apparent.

Figure 5: Full Analytic Model, Measured Latencies

Figure 6 compares the measured data to the analytic

model using the Alpern approximation.  Agreement is

excellent for larger update ratios, but there are significant

deviations for small update ratios.  These deviations are

due to the fact that the measured values of tf for

distributed reader-writer spinlock include the pipeline-

flushing overhead of locked instructions, which is

significant when compared to tf.

Figure 6: Full Analytic Model, Alpern Approximation

However, the Alpern approximation is reasonably

accurate for non-locked instructions on the hardware

under test, as well as for the common situation where

performance is dominated by ts.

Figure 7: Analytic Model, ts Term Only

Figure 7 compares the measured data to the ts-only

term of the analytic model.  Again, this approximation is

quite accurate in the large-f regime where remote memory

latency dominates, but gives significant error in the small-

f regime.

Figure 8 compares the measured data to the naïve

model.  The naïve model is accurate only for large values

of f.

Figure 8: Naïve Model

8.4 Case Study
Sequent’s DYNIX/ptx UNIX kernel was ported to

NUMA hardware using concurrent development

techniques.  Many of the NUMA enhancements were

implemented and tested well before NUMA hardware was

available.  Although a NUMA simulator was available for

testing functionality, there was insufficient time for use of

full performance-level simulation, and there was very
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limited time for use of cut-and-try cache-simulation

techniques.

Several of the kernel subsystems were therefore

adapted to the NUMA environment using the naïve model

to guide design decisions.  The subsystems include the

kernel memory allocator, the timeout subsystem, and the

read-copy update mechanism.  Although some

performance tuning was needed, the naïve model was

accurate enough that these tuning changes were quite

small.

8.5 Discussion

All of the models give accurate results when remote

latency dominates.  In these situations, the simplest model

(the naïve model) is the model of choice, especially since

it is simple enough to be used during design.  This simple

model has been useful as a rule of thumb for predicting

the performance of moderately large parallel programs

that do not have highly optimized data sharing.  More

highly optimized programs, in particular, programs that

avoid remote memory references, must use the full

analytic model in order to properly account for the local

memory references.

Although Alpern's approximation introduces some

inaccuracy, it is useful for comparing lock-primitive

overhead over a wide span of computer architectures.

More accurate comparisons for a particular machine

require accurate measurement of tf as well as ts and tm.

In particular, improved remote latencies (ts) from

hard-wired cache-coherence protocol engines will reduce

the accuracy of Alpern’s approximation, as shown in

Figure 9.  This plot shows the number of instructions that

can be executed in the time required to complete a

memory reference on Sequent computers.  This line

bifurcates in 1996 with the introduction of NUMA

systems.  These early NUMA systems used a microcoded

cache-coherence protocol engine, which resulted in large

remote latencies.  For these systems, Alpern's

approximation was reasonably accurate.  However, the

introduction of prototype hardwired cache-coherence

protocol engines in 2001 resulted in the ratio between

remote (ts) and local (tm) memory latencies being much

smaller than the ratio between local memory (tm) and on-

chip (tf) latencies, as can be seen from the chart.

Figure 9: Memory-Latency Trend

Therefore, although Alpern's approximation may

still be useful for generic cross-architecture comparisons,

it is unlikely to generate accurate results for specific

computer systems.

9 Conclusions
This paper presents a performance-evaluation

methodology and uses it to compare the costs of several

lock primitives.  Several variants of the methodology are

compared to measured data, with excellent agreement for

the full analytic model, and good agreement in situations

dominated by remote latency for the other models.  These

models validate the rule of thumb that the cost of a simple

spinlock under low contention may be approximated by ts.

Breakeven curves for the locking primitives were

computed, and the breakeven between simple spinlock

and distributed reader-writer spinlock supports the rule of

thumb that states that simple spinlock should be used in

cases where the update ratio f is greater than the

reciprocal of the number of CPUs, 1/nm.

The full methodology as well as the ts-only and the

naïve simplifications have been used in real-life situations



- 11 -

with good success, for small-scale software exemplified

by the locking primitives shown in this paper, as well as

for larger-scale software making up a parallel Unix

kernel.  The ts-only simplification has proven particularly

useful during early design efforts and for obtaining rapid

estimates of the performance of large software systems.
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Quad 0 Quad 1 Quad n
CPU 0 1 2 3 m m+1 m+2 m+3

. . .

. . . nm-3 nm-2 nm-1 nm
Read 1-f 1-f 1-f 1-f 1-f 1-f 1-f 1-f 1-f 1-f 1-f 1-f
Write f f f f f f f f f f f f
Cost tf tm tm tm ts ts ts ts

. . .

. . .

. . . ts ts ts ts
Table 6: Unnormalized Probability Matrix for Distributed Reader-Writer Spinlock

A Derivation for Distributed Reader-
Writer Spinlock
Computing costs for large f is a bit more involved,

since a write-side lock will force all CPU’s locks into the

write-locking CPU’s cache.  Assuming independent

interarrival distributions, the probability of a CPU’s lock

being in its cache is the probability that this CPU did

either a read- or write-side acquisition since the last write-

side acquisition by any of the other (n-1) CPUs.

Similarly, the probability of some other CPU’s lock being

in a given CPU’s cache is the probability that the given

CPU did a write-side acquisition since both: (1) the last

read-side acquisition by the CPU corresponding to the

lock and (2) the last write-side acquisition by one of the

(n-1) remaining CPUs.  These probabilities may be more

easily derived by referring to Table 6, which shows the

relative frequency and cost of the read- and write-

acquisition operations.

It is important to note that the only events that can

affect a given per-CPU lock are read-acquisitions by that

CPU and write-acquisitions by all CPUs.  These events

have a total weighting of 1+(nm-1)f.  This important

quantity will be found in the denominator of many of the

subsequent equations.

A.1 Read Acquisition and

Release

Suppose CPU 0 is read-acquiring the lock.  As noted

earlier, the only events that can affect the cost are CPU

0’s past read-acquisitions and all CPUs’ write-

acquisitions, for a total weighting of 1+(nm-1)f.  Of this,

only read- and write-acquisitions, with combined weight

of (1-f+f)=1, will leave CPU 0’s element of the

distributed reader-writer spinlock in CPU 0’s cache.

Therefore, the cost of CPU 0’s read operation has

probability 1/(1+(nm-1)f )  of being tf.

Similarly, there is probability (m-1)f/(1+(nm-1)f)

that the last operation was a write-acquisition by another

CPU on Quad 0, in which case the cost will be tm.

Finally, there is probability (nm-m)f/(1+(nm-1)f)  that

the last operation was a write-acquisition by one of the

CPUs on the n-1 other quads, in which case the cost will

be ts.

Weighting these costs by their probability of

occurrence gives the expected cost of a read acquisition

shown in Equation 5.

( ) ( )
( )

1
1 1

s m fnm m f t m f t t
nm f

− + − +
+ −

Equation 5

Read release will impose an additional cost of tf, as

shown in Equation 6.

( ) ( ) ( )( )
( )
1 2 1

1 1
s m fnm m f t m f t nm f t

nm f

− + − + + −

+ −
Equation 6

A.2 Write Acquisition
Suppose CPU 0 is write-acquiring the lock.  It must

first acquire the writer gate, the cost of which was derived

in Section 7.  It must then acquire each of the per-CPU

locks.  There are three cases to consider:

1. The lock for the write-acquiring CPU (this cost

was derived in Section A.1, Equation 5).

2. The locks for other CPUs on the write-acquiring

CPU’s quad.

3. The locks for CPUs on other quads.
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Expressions for these last two are derived in the

following sections.

A.2.1 Different CPU, Same Quad
If the write-acquiring CPU last write-acquired the

lock, the cost will be tf.  If some other CPU, including the

owning CPU, last write-acquired the lock, the cost will be

tm.  If the owning CPU last read-acquired the lock, the

cost will also be tm.  Finally, if a CPU on some other quad

last write-acquired the lock, the cost will be ts.

Referring again to Table 6, the probability that the

write-acquiring CPU last write-acquired the lock is just

f/(1+(nm-1)f ) .  The probability that the owning CPU last

read- or write-acquired the lock is 1/(1+(nm-1)f ), and the

probability that another CPU on the same quad last write-

acquired the lock is (m-2)f/(1+(nm-1)f ), assuming m>2.

Finally, the probability that a CPU on some other quad

last write-acquired the lock is (nm-m)f/(1+(nm-1)f.

Weighting the costs by their respective probabilities

of occurrence gives the expected cost of acquiring the

per-CPU locks for the CPUs on the same quad as the

write-acquiring CPU, as shown in Equation 7.

( ) ( )( )
( )

1 1 2

1 1
s m fn mf t m f t f t

nm f

− + + − +
+ −

Equation 7

A.2.2 Different Quad
If the write-acquiring CPU last write-acquired the

lock, the cost will be tf.  If some other CPU on the same

quad last write-acquired the lock, the cost will be tm.

Finally, if a CPU on some other quad last write-acquired

the lock, or if the owning CPU last read-acquired the lock,

the cost will be ts.

Referring again to Table 6, the probability that the

write-acquiring CPU last write-acquired the lock is just

f/(1+(nm-1)f ). The probability that another CPU on the

same quad last write-acquired the lock is

(m-1)f/(1+(nm-1)f ) , assuming m>2.  The probability that

the owning CPU last read- or write-acquired the lock is

1/(1+(nm-1)f ).  Finally, the probability that some other

CPU on some other quad last write-acquired the lock is

(nm-m-1)f/(1+(nm-1)f.

Weighting the costs by their respective probabilities

of occurrence gives the expected cost of acquiring the

per-CPU locks for the CPUs on the same quad as the

write-acquiring CPU, as shown in Equation 8.

( )( ) ( )
( )

1 1 1

1 1
s m fnm m f t m f t f t

nm f

+ − − + − +
+ −

Equation 8

A.2.3 Overall Write Acquisition and
Release Overhead

The overall write-acquisition and release overhead is

the overhead of a simple spinlock (Equation 1), plus the

overhead of acquiring the per-CPU lock owned by this

CPU (Equation 5), plus the overhead of acquiring the per-

CPU locks owned by the other CPUs on the same quad

(m-1 times Equation 7), plus the overhead of acquiring

per-CPU locks owned by the CPUs on other quads (nm-m

times Equation 8), plus the additional overhead of

releasing the per-CPU locks (nmtf).  Combining these

equations and simplifying yields Equation 9.

( )( )
( )( )

( )

2 2

2 2

1

1 1

2 1

s

m

f

n m m nm m t

m nm m t

n m nm t

nm

 + − − +
 
 − + − +
 
 + + 

Equation 9

A.3 Overall Overhead
The overall overhead is 1-f times the overall read

overhead (Equation 6) plus f times the overall write

overhead (Equation 9), as shown in Equation 10.



- 11 -

( )
( )

( )( )
( )

( )
( )( )

( )
( )

( )

3 3 2 2
2

2 2

2 2
2

3 3 2

2 2

1
1

2 2 1

1
1 1

2 1 1

1

2 1 2

1

s

m

f

n m m n m
f

m nm m t

n m m nm m f

m n m
f

m nm m t

m nm m f

n m f
t

n m nm f nm

nm nmf nm

   − + +
+   − + +   

  
− − −   

 
  − − 

+   − − + +   
  − + −  

  − +
  
  − + +   

− +

Equation 10

An n-CPU SMP system can be thought of as a

single-quad NUMA system with n CPUs per quad.  The

SMP overhead is therefore obtained by setting n to 1, tm to

ts, and then m to n, resulting in Equation 11.

( ) ( )( )
( ) ( )( )

( )

3 2 2 2

3 2 2

2

2 1 2 1

1 2 1 2

s

f

n n f n n f t

n f n n f n t

n n f n

 − + + − − +
 
 − + − + +  

− +

Equation 11

This expression approaches nfts for large n and large

memory-latency ratios, validating the rule of thumb often

used for distributed reader-writer spinlock.

Normalizing with ts=rtf , tm=√r, and tf=1 yields the

results shown in Equation 12 and Equation 13.

( )
( )

( )( )
( )

( )
( )( )

( )
( )

( )

3 3 2 2
2

2 2

2 2
2

3 3 2

2 2

1
1

2 2 1

1
1 1

2 1 1

1

2 1 2

1

n m m n m
f

m nm m r

n m m nm m f

m n m
f

m nm m r

m nm m f

n m f

n m nm f nm

nm nmf nm

   − + +
+   − + +   

  
− − −   

 
  − − 

+   − − + +   
  − + −  

  − +
  
  − + +   

− +

Equation 12

( ) ( )( )
( ) ( )( )

( )

3 2 2 2

3 2 2

2

2 1 2 1

1 2 1 2

n n f n n f r

n f n n f n

n n f n

 − + + − − +
 
 − + − + +  

− +

Equation 13


