Selecting Locking Designs for Parallel Programs

Paul E. McKenney (pmckenne@us.ibm.com)
Sequent Computer Systems, Inc.

Abstract

Parallelizing a program can greatly speed it up. How-
ever, the synchronization primitives needed to protect
shared resources result in contention, overhead, and
added complexity. These costs can overwhelm the per-
formance benefits of parallel execution. Since the only
reason to go to the trouble of parallelizing a program
is to gain performance, it is necessary to understand
the performance implications of synchronization prim-
itives in addition to their correctness, liveness, and
safety properties.

This paper presents a pattern language to assist
you in selecting appropriate locking designs for par-
allel programs.

Section 1 presents the example that is used through-
out the paper to demonstrate use of the patterns. Sec-
tion 2 overviews contexts in which these patterns are
useful. Section 3 describes the forces common to all
of the patterns. Section 4 presents several indexes to
the patterns. Section 5 presents the patterns them-
selves.

1 Example Algorithm

A simple hashed lookup table is used to illustrate the
patterns in this paper. This example searches for a
specified key in a list of elements and performs opera-
tions on those elements. Both the individual elements
and the list itself may require mutual exclusion.

The data structure for a monoprocessor implemen-
tation is shown in Figure 1. The 1t_next field links

typedef struct looktab {
struct looktab_t *1t_next;

int 1t _key;
int 1t_data;
} looktab_t;

Figure 1: Lookup-Table Element

the individual elements together, the 1t _key field con-

tains the search key, and the 1t_data field contains the
data corresponding to that key.

Again, this structure will be embellished as needed
for each of the example uses with synchronization.

A search for the element with a given key might be
implemented as shown in Figure 2.

/* Header for list of looktab_t’s. */

looktab_t *looktab_head [LOOKTAB_NHASH] =
{ NULL };

#define LOOKTAB_HASH(key) \
((key) % LOOKTAB_NHASH)

/*

* Return a pointer to the element of the
* table with the specified key, or return
* NULL if no such element exists.

*/
looktab_t *
looktab_search(int key)
{
looktab_t *p;
p = looktab_head [LOOKTAB_HASH(key)];
while (p != NULL) {
if (p->1t_key == key) {
return (p);
}
p = p—>lt_next;
}
return (NULL);
}

Figure 2: Lookup-Table Search

2 Overview of Context

Use the patterns in this paper for development or
maintenance efforts when parallelization is a central

issue, for example, when you Share the Load [Mes95]
among several processors in order to improve capacity
of reactive systems.

For new development, use the following steps:

1. Analyze architecture/design:

(a) Identify activities that are good candidates
for parallelization.

(b) Identify shared resources.

(c) Identify communications and synchroniza-
tion requirements.

These items combined will define the critical sec-
tions. You must guard all critical sections with
synchronization primitives in order for the pro-
gram to run correctly on a parallel processor.

2. Use the patterns in this paper to select a locking
design.!

3. Measure the results. If they are satisfactory, you
are done! Otherwise, proceed with the mainte-
nance process below.

Use prototypes as needed to help identify candidate
activities. Relying on the intuition of architects and
designers is risky, especially when they are solving
unfamiliar problems. If the prototype cannot be
scaled up to production levels, use differential profil-
ing [McK95] to help predict which activities are most
prone to scaling problems.
For maintenance, use the following steps:

1. Measure current system.

2. Analyze measurements to identify bottleneck ac-
tivities and resources.

3. Use the patterns in this paper to select a locking
design.

4. Measure the results. If they are satisfactory, you
are done! Otherwise, repeat this process.

Use the pattern language presented in this paper
for step 2 of the development procedure and step 3 of
the maintenance procedure. The other steps of both
procedures are the subject of other pattern languages.

1Tt may also be necessary to select designs for communica-
tion, notification, and versioning. Pattern languages for these
aspects of design are the subject of another paper.

3 Forces

The forces acting on the performance of parallel pro-
grams are speedup, contention, overhead, read-to-
write ratio, economics, and complexity:

Speedup: Getting a program to run faster is the only
reason to go to all of the time and trouble required
to parallelize it. Speedup is defined to be the ratio
of the time required to run a sequential version of
the program to the time required to run a parallel
version.

Contention: If more CPUs are applied to a parallel
program than can be kept busy given that pro-
gram, the excess CPUs are prevented from doing
useful work by contention.

Overhead: A monoprocessor version of a given paral-
lel program would not need synchronization prim-
itives. Therefore, any time consumed by these
primitives is overhead that does not contribute
directly to the useful work that the program is
intended to accomplish. Note that the important
measure is the relationship between the synchro-
nization overhead and the serial overhead—critical
sections with greater overhead may tolerate syn-
chronization primitives with greater overhead.

Read-to-Write Ratio: A data structure that is
mostly rarely updated may often be protected
with lower-overhead synchronization primitives
than may a data structure with a high update
rate.

Economics: Budgetary constraints can limit the
number of CPUs available regardless of the po-
tential speedup.

Complexity: A parallel program is more complex
than an equivalent sequential program because
the parallel program has a much larger state space
than does the sequential program. A parallel
programmer must consider synchronization prim-
itives, locking design, critical-section identifica-
tion, and deadlock in the context of this larger
state space.

This greater complexity often (but not always!)
translates to higher development and mainte-
nance costs. Therefore, budgetary constraints
can limit the number and types of modifications
made to an existing program — a given degree of
speedup is worth only so much time and trouble.

These forces will act together to enforce a maximum
speedup. The first three forces are deeply interre-
lated, so the remainder of this section analyzes these
interrelationships.?

Note that these forces may also appear as part of
the context. For example, economics may act as a
force (“cheaper is better”) or as part of the context
(“the cost must not exceed $100”).

An understanding of the relationships between these
forces can be very helpful when resolving the forces
acting on an existing parallel program.

1. The less time a program spends in critical sec-
tions, the greater the potential speedup.

2. The fraction of time that the program spends in a
given critical section must be much less than the
reciprocal of the number of CPUs for the actual
speedup to approach the number of CPUs. For
example, a program running on 10 CPUs must
spend much less than one tenth of its time in the
critical section if it is to scale well.

3. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup
be less than the number of available CPUs. The
larger the gap between the number of CPUs and
the actual speedup, the less efficiently the CPUs
will be used. Similarly, the greater the desired
efficiency, the smaller the achievable speedup.

4. If the available synchronization primitives have
high overhead compared to the critical sections
that they guard, the best way to improve speedup
is to reduce the number of times that the primi-
tives are invoked (perhaps by fusing critical sec-
tions, using data ownership, or by moving toward
a more coarse-grained parallelism such as code
locking).

5. If the critical sections have high overhead com-
pared to the primitives guarding them, the best
way to improve speedup is to increase parallelism
by moving to reader/writer locking, data locking,
or data ownership.

6. If the critical sections have high overhead com-
pared to the primitives guarding them and the
data structure being guarded is read much more
often than modified, the best way to increase par-
allelism is to move to reader/writer locking.

2A real-world parallel system will have many additional
forces acting on it, such as data-structure layout, memory size,
memory-hierarchy latencies, and bandwidth limitations.

4 Index to Patterns for Select-
ing Locking Patterns

This section contains indexes based on relationships
between the patterns (Section 4.1), forces resolved by
the patterns (Section 4.2), and problems commonly
encountered in parallel programs (Section 4.3).

4.1 Pattern Relationships

Section 5 presents the following patterns:
1. Sequential Program (5.1)

Code Locking (5.2)

Data Locking (5.3)

Data Ownership (5.4)

Parallel Fastpath (5.5)

Reader /Writer Locking (5.6)

Hierarchical Locking (5.7)

Allocator Caches (5.8)

© 0 NS ok W N

Critical-Section Fusing (5.9)
10. Critical-Section Partitioning (5.10)

Relationships between these patterns are shown in
Figure 3 and are described in the following para-
graphs.

Parallel Fastpath, Critical-Section Fusing, and
Critical-Section Partitioning are meta-patterns.

Reader/Writer Locking, Hierarchical Locking, and
Allocator Caches are instances of the Parallel Fastpath
meta-pattern. Reader/Writer Locking and Hierarchi-
cal Locking are themselves meta-patterns; they can
be thought of a modifiers to the Code Locking and
Data Locking patterns. Parallel Fastpath, Hierarchi-
cal Locking, and Allocator Caches are ways of com-
bining other patterns and thus are template patterns.

Critical-Section Partitioning transforms Sequential
Program into Code Locking and Code Locking into
Data Locking. It also transforms conservative Code
Locking and Data Locking into more aggressively par-
allel forms.

Critical-Section Partitioning transforms Data Lock-
ing into Code Locking and Code Locking into Sequen-
tial Program. It also transforms aggressive Code Lock-
ing and Data Locking into more conservative forms.

Assigning a particular CPU or process to each par-
tition of a data-locked data structure results in Data
Ownership. A similar assignment of a particular CPU,

Reader/Writer
Locking

Sequential Crit-Section
Program Fusing
Partition Fuse Inverse
_ Crit-Section
Code Locking Partitioning
Partition Fuse
_ Parallel
Data L ocking Fastpath
Own Disown Instances
Data
Ownership

Figure 3: Relationship Between Pattern

Hierarchical
Locking

Allocator
Caches

process, or computer system to each critical section of
a code-locked program results in Client/Server (used
heavily in distributed systems but not described in
this paper).

4.2 Force Resolution

Table 4.2 compares how each of the patterns resolves
each of the forces. Plus signs indicate that a pat-
tern resolves a force well. For example, Sequential
Program resolves Contention and Overhead perfectly
due to lack of synchronization primitives, Budget per-
fectly since sequential programs run on cheap single-
CPU machines, and Complexity perfectly because se-
quential implementations of programs are better un-
derstood and more readily available than are parallel
versions.

Minus signs indicate that a pattern resolves a force
poorly. Again, Sequential Program provides extreme
examples with Speedup since a sequential program al-
lows no speedup® and with Read-to-Write Ratio be-
cause multiple readers cannot proceed in parallel in a
sequential program.

Question marks indicate that the quality of resolu-
tion is quite variable. Programs based on Data Own-
ership can be extremely complex if CPUs must access
each other’s data. If no such access if needed, the pro-
grams can be as trivial as a script running multiple
instances of a sequential program in parallel.

See the individual patterns for more information on
how they resolve the forces.

4.3 Fault Table

Use Table 4.3 to locate a replacement pattern for a
pattern that is causing more problems than it is solv-
ing.

5 Patterns for Selecting Lock-
ing Designs

5.1 Sequential Program

Problem How can you eliminate the complexity of

parallelization?

Context An existing parallel program with exces-
sive complexity that runs fast enough on a single pro-
cessor.

3If you run multiple instances of a sequential program in
parallel, you have used Data Locking or Data Ownership instead
of Sequential Program.

Forces

e Contention (+ + +): There is no parallel execu-
tion, so there is absolutely no contention.

e Overhead (+ + +): There are no synchronization
primitives, so there is no synchronization over-
head.

e Economics (+ + +): The program runs on a sin-
gle CPU. Single-CPU systems are usually cheaper
than parallel systems.

e Complexity (+ + +): Pure sequential execution
eliminates all parallel complexity. In fact, many
sequential programs are available as freeware.
You need only understand how to install such
programs to run them sequentially. In contrast,
you would need to intimately understand the pro-
gram, your machine, and parallelism in order to
produce a parallel version.

e Speedup (— — —): There is no parallel execution,
so there is absolutely no speedup.

e Read-to-Write Ratio (———): There is no parallel
execution, so there is absolutely no opportunity
to allow readers to proceed in parallel.

Solution Construct an entirely sequential pro-
gram. Eliminate all use of synchronization primitives,
thereby eliminating the overhead and complexity as-
sociated with them.

Resulting Context A completely sequential pro-
gram with no complexity, overhead, contention, or
speedup from parallelization.

Design Rationale If the program runs fast enough
on a single processor, remove the synchronization
primitives and spare yourself their overhead and com-
plexity.

5.2 Code Locking

Problem How can you parallelize and maintain ex-
isting third-party code in an inexpensive and efficient
way?

Context An existing sequential program that has
only one resource, whose critical sections are very
small compared to the parallel portion of the code,
of which only modest speedups are required, or whose
development- or maintenance-cost constraints rule out
more complex and effective parallelization techniques.

| Speedup Contention Overhead R/W $ Complexity Pattern
- == +++ +++ —== +++ + ++ Sequential Program (5.1)
0 —— 0 ——- 0 ++ Code Locking (5.2)
+ + 0 + - —— Data Locking (5.3)
+++ +++ +7 + - ? Data Ownership (5.4)
++ ++ ++ + — —— Parallel Fastpath (5.5)
++ + + +4++ - — Reader/Writer Locking (5.6)
+ ++ - 0 - — — — Hierarchical Locking (5.7)
++ ++ ++ N/A - — Allocator Caches (5.8)
0 - + 0 —— Critical-Section Fusing (5.9)
0 + — 0 + Critical-Section Partitioning (5.10)
Forces to bury the locks in the looktab_search(), since this

e Complexity (++): The monitor-like structure of
code-locked programs is more easily understood.

e Speedup (0): Code locking usually permits only
modest speedups.

e Overhead (0): Code locking uses a modest num-
ber of synchronization primitives and so suffers
only modest overhead.

e Economics (0): Code locking scales modestly, so
requires a system with few CPUs.

e Contention (——): The simple locking pattern
usually results in high contention.

e Read-to-Write Ratio (— — —): There is no paral-
lel execution of critical sections sharing a specific
resource, so there is absolutely no opportunity to
allow readers to proceed in parallel.

The required speedup may be modest, or the
contention and overhead present may be negligible,
thereby allowing adequate speedups.

Economics may prohibit applying more than a small
number of CPUs to a problem, thereby rendering high
speedups irrelevant.

Highly parallel code can be prohibitively complex.
In many cases, the less-complex code-locking approach
is preferable.

Solution Parallelize and maintain existing third-
party code inexpensively and efficiently using code
locking when the code spends a very small fraction of
its execution in critical sections or when you require
only modest scaling.

See Figure 4 for an example. Note that calls to
the looktab_search() function and subsequent uses
of the return value must be surrounded by a synchro-
nization primitive as shown in the figure. Do not try

would allow multiple CPUs to update the element si-
multaneously, which would corrupt the data value. In-
stead, hide the locking within higher level functions
(member functions in an object-oriented implementa-
tion) that call looktab_search() as part of specific,
complete operations on the table.

/*
* Global lock for looktab_t
* manipulations.

*/

slock_t looktab_mutex;

/*
* Look up a looktab element and
* examine it.

*/

S_LOCK(&looktab_mutex) ;
p = looktab_search (mykey) ;

/*
* insert code here to examine or
* update the element.

*/

S_UNLOCK (&looktab_mutex) ;

Figure 4: Code-Locking Lookup Table

It is relatively easy to create and maintain a code-
locking version of a program. No restructuring is
needed, only the (admittedly non-trivial) task of in-
serting the locking operations.

0Old Pattern

Problem

Pattern to use or apply

Sequential Program (5.1)

Need faster execution.

Code Locking (5.2)

Data Locking (5.3)

Data Ownership (5.4)
Parallel Fastpath (5.5)
Reader /Writer Locking (5.6)
Hierarchical Locking (5.7)
Allocator Caches (5.8)

Code Locking (5.2)

Speedup limited by contention.

Data Locking (5.3)

Data Ownership (5.4)
Parallel Fastpath (5.5)
Reader/Writer Locking (5.6)
Hierarchical Locking (5.7)
Allocator Caches (5.8)

Code Locking (5.2)
Data Locking (5.3)
Hierarchical Locking (5.7)

Speedup limited by synchro-
nization overhead or by both
contention and synchronization
overhead.

Data Ownership (5.4)
Parallel Fastpath (5.5)
Reader /Writer Locking (5.6)
Allocator Caches (5.8)

Sequential Program (5.1)
Code Locking (5.2)

Data Locking (5.3)

Reader /Writer Locking (5.6)

Speedup limited by contention
and synchronization cheap com-
pared to non-critical-section code
in critical sections.

Critical-Section Partitioning (5.10)

Code Locking (5.2)
Data Locking (5.3)
Reader /Writer Locking (5.6)

Speedup limited by synchroniza-
tion overhead and contention is
low.

Critical-Section Fusing (5.9)

Code Locking (5.2)
Data Locking (5.3)

Speedup limited by contention
and readers could proceed in
parallel.

Reader/Writer Locking (5.6)

Data Locking (5.3)

Data Ownership (5.4)
Parallel Fastpath (5.5)
Reader/Writer Locking (5.6)
Hierarchical Locking (5.7)
Allocator Caches (5.8)

Speedup greater than necessary
and complexity is too high (e.g.,
takes too long to merge changes
for new version of program).

Sequential Program (5.1)
Code Locking (5.2)

Code Locking (5.2)

Speedup greater than necessary
and complexity is too high (e.g.,
takes too long to merge changes
for new version of program).

Sequential Program (5.1)

Data Ownership (5.4)

Complexity of passing operations
to the data is too high (e.g., takes
too long to merge changes for new
version of program).

Data Locking (5.3)

Table 1: Locking-Design Fault Table

This program might scale well if the table search
and update was a very small part of the program’s
execution time.

Resulting Context A moderately parallel program
that is very similar to its sequential counterpart, re-
sulting in relatively added complexity.

Design Rationale Code locking is the simplest
locking design. It is especially easy to retrofit an ex-
isting program to use code locking in order to run
it on an multiprocessor. If the program has only a
single shared resource, code locking will even give op-
timal performance. However, most programs of any
size and complexity require much of the execution to
occur in critical sections, which in turn sharply limits
the scaling as specified by Amdahl’s Law.

Therefore, use code locking on programs that spend
only a small fraction of their run time in critical sec-
tions or from which only modest scaling is required.
In these cases, code locking will provide a relatively
simple program that is very similar to its sequential
counterpart.

5.3 Data Locking

Problem How can you obtain better speedups than
straightforward parallelizations such as code locking
can provide?

Context An existing sequential or parallel program
requiring greater speedup than can be obtained via
code locking, and whose data structures may be split
up into independent partitions, so that different par-
titions may be operated on in parallel.

Forces

e Speedup (+): Data locking associates different
locks with different data structures or with dif-
ferent parts of data structures. Contention and
overhead still limit speedups.

e Contention (+): Accesses to different data struc-
tures proceed in parallel. However, accesses to
data guarded by the same lock still result in con-
tention.

e Read-to-Write Ratio (+): Readers accessing dif-
ferent data structures proceed in parallel. How-
ever, readers attempting to access structures
guarded by the same lock are still serialized.

e Overhead (0): A data locked program usually
uses about the same number of synchronization
primitives to perform a given task as a code-
locked program does.

e Economics (—): Greater speedups require bigger
machines.

e Complexity (——): Data locked programs can be
extremely complex and subtle, particularly when
critical sections must be nested, leading to dead-
lock problems.

A greater speedup than can be obtained via code
locking must be needed badly enough to invest the
development, maintenance, and machine resources re-
quired for more aggressive parallelization.

The program must also be partitionable so as to
allow data locking to be used to reduce contention
and overhead.

Solution Partition the data structures to allow each
of the resulting portions to be processed in parallel.
Data locking often results in better speedups than
straightforward parallelizations such as code locking
can provide. The following paragraphs present two
examples of data locking.

The first example is trivial but important: lock
on instances of data structures rather than on the
code operating on those data structures.* For exam-
ple, if there were several independent lookup tables
in a program, each could have its own critical sec-
tion, as shown in Figure 5. This figure assumes that
looktab_search() has been modified to take an addi-
tional pointer to the table to be searched. Structuring
the code in this manner allows searches of different
tables to proceed in parallel, although searches of a
particular table will still be serialized.

In the second example, allocate a lock for each hash
line in the hash-line-header data structure,® as shown
in Figure 6. This may be done if the individual ele-
ments in a table are independent from one another,
and allows searches of a single table to proceed in par-
allel if the items being searched for do not collide after
being hashed.

A major difference between these two examples is
the degree to which locking considerations have been
allowed to constrain the design. You can change the
first example’s design to use, say, a linked binary
search tree, without changing the locking design. A

40r, in object-oriented terminology, lock on instances of a
class rather than the class itself.

5In object-oriented programs, this level of data locking re-
sults in many independent critical sections per instance.

/* Global lock for looktab_t manipulations. */

slock_t my_looktab_mutex;

looktab_t *my_looktab[LOOKTAB_NHASH];

/* Look up a looktab element and examine it. */

S_LOCK (&my_looktab_mutex) ;

p = looktab_search(my_looktab, mykey) ;

/* insert code here to examine or update the element. */

S_UNLOCK (&my_looktab_mutex) ;

Figure 5: Partitioned Lookup Table

single lock still guards a single table regardless of that
table’s implementation.

However, the second example’s locking design forces
you to use a hashing scheme. The only degree of free-
dom is your choice of design for the overflow chains.
The benefit of this constraint is unlimited speedup—
you can increase speedup simply by increasing the size
of the hash table.

In addition, you can combine these two techniques
to allow fully parallel searching within and between
lookup tables.

Resulting Context A more heavily parallel pro-
gram that is less similar to its sequential counterpart,
but which exhibits much lower contention and over-
head and thus higher speedups.

Design Rationale Many algorithms and data
structures may be partitioned into independent parts,
with each part having its own independent critical sec-
tion. Then the critical sections for each part can ex-
ecute in parallel (although only one instance of the
critical section for a given part could be executing at
a given time). Use data locking when critical-section
overhead must be reduced, and where synchroniza-
tion overhead is not limiting speedups. Data locking
reduces this overhead by distributing the instances of
the overly-large critical section into multiple critical
sections.

5.4 Data Ownership

Problem How can you make programs with fre-
quent, small critical sections achieve high speedups
on machines with high synchronization overheads?

Context An existing sequential or parallel program
that can be partitioned so that only one process ac-
cesses a given data item at a time, thereby greatly
reducing or eliminating the need for synchronization.

Forces

e Speedup (+ + +): Since each CPU operates on
its data independently of the other CPUs, Data
Ownership provides excellent speedups.

e Contention (+ + +): No CPU accesses another
CPU’s data, so there is absolutely no contention.

e Read-to-Write Ratio (+): Each CPU can read its
own data independently of the other CPUs, but
since only one CPU owns a given piece of data,
only one CPU may read a given piece of data at
a time.

e Overhead (+7): In the best case, the CPUs op-
erate independently, free of overhead. However,
if CPUs must share information, this sharing will
exact some sort of communications or synchro-
nization overhead.

e Complexity (?77): In the best case, a program
constructed using Resource Ownership is simply

/%
* Type definition for looktab header.
* All fields are protected by lth_mutex.

*/

typedef struct looktab_head {
looktab_t *1th_head;
slock_t *1th_mutex;

} looktab_head_t;

/* Header for list of looktab_t’s. */

looktab_head_t *looktab_head[LOOKTAB_NHASH] = { NULL };
#define LOOKTAB_HASH(key) ((key) % LOOKTAB_NHASH)

/*
* Return a pointer to the element of the table with the
* specified key, or return NULL if no such element exists.

*/

looktab_t *
looktab_search(int key)

{
looktab_t *p;

p = looktab_head[LOOKTAB_HASH(key)].lth_head;
while (p != NULL) {
if (p->1lt_key > key) {
return (NULL);
}

if (p—>1lt_key == key) {
return (p);
}
P = p->lt_next;
}
return (NULL);
/*x o .. x/

/* Look up a looktab element and examine it. */

S_LOCK (&looktab_head [LOOKTAB_HASH(mykey)].lth_mutex) ;
p = looktab_search(mykey) ;

/* insert code here to examine or update the element. */

S_UNLOCK (&looktab_head [LOOKTAB_HASH (mykey)].1lth_mutex) ;

Figure 6: Data Locking

10

a set of sequential programs run independently in
parallel. The main issue here is how to balance
the load among these independent programs. For
example, if 90% of the work is assigned to one
CPU, then there will be at most a 10% speedup.

In more complex cases, the CPUs must access
each other’s data. In these cases, arbitrarily com-
plex sharing mechanisms must be designed and
implemented. For data ownership to be useful,
CPUs must access their own data almost all the
time. Otherwise, the overhead of sharing can
overwhelm the benefit of ownership.

e Economics (— — —): Excellent speedups require
lots of equipment. This means lots of money, even
if the equipment is a bunch of cheap PCs con-
nected to a cheap LAN.

A high speedup must be needed badly enough to
invest the time and effort needed to develop, maintain,
and run a highly parallel version.

The program must be perfectly partitionable, elim-
inating contention and synchronization overhead.

Solution Use data ownership to partition data
used by programs with frequent, small critical sec-
tions running on machines with high synchroniza-
tion overheads. This partitioning can eliminate
mutual-exclusion overhead, thereby greatly increasing
speedups.

The last example of the previous section splits a
lookup table into multiple independent classes of keys,
where the key classes are defined by a hash function.

If each key class can be assigned to a separate pro-
cess, we have a special case of partitioning known as
data ownership. Data ownership is a very powerful
pattern, as it can entirely eliminate synchronization
overhead. This is particularly useful in programs that
have small critical sections whose overhead is domi-
nated by synchronization overhead. If the key classes
are well balanced, data ownership can allow virtually
unlimited speedups.

Partitioning the lookup-table example over separate
processes would require a convention or mechanism to
force lookups for keys of a given class to be performed
by the proper process. For example, Figure 7 shows
how a simple modulo mapping from key to CPU. The
on_cpu() function is similar to an RPC call; the func-
tion is invoked with the specified arguments on the
specified CPU.

Note that the form of the algorithm has been
changed considerably. The original serial form passed
back a pointer that the caller could use as it saw fit.

11

However, data ownership requires that a specific CPU
perform all operations on a particular data structure.
We therefore cannot pass a reference to data owned
by one CPU to the CPU that wants to operate on
that data. We instead must pass the operation to the
CPU that owns the data structure.® This operation
passing usually requires synchronization, so we have
simply traded one form of overhead for another. This
tradeoff may neverthless be worthwhile if each CPU
processes its own data most of the time, particularly
if each data structure is large so that the overhead
of passing the operation is small compared to that of
moving the data. For example, a version of OSF/1
for massively-parallel processors used a vproc layer to
direct operations (such as UNIX signals) to processes
running on other nodes [ZRBT93].

Data ownership might seem arcane, but it is used
very frequently:

1. Any variables accessible by only one CPU or pro-
cess (such as auto variables in C and C++) are
owned by that CPU or process.

2. An instance of a user interface owns the cor-
responding user’s context. It is very common
for applications interacting with parallel database
engines to be written as if they were entirely se-
quential programs. Such applications own the
user interface and his current action. Explicit
parallelism is thus confined to the database en-
gine itself.

3. Parametric simulations are often trivially paral-
lelized by granting each CPU ownership of its own
region of the parameter space.

This is the paradox of data ownership. The more thor-
oughly you apply it to a program, the more complex
the program will be. However, if you structure a pro-
gram to use only data ownership, as in these three
examples, the resulting program can be identical to
its sequential counterpart.

Resulting Context A more heavily parallel pro-
gram that is often even less similar to its sequential
counterpart, but which exhibits much lower contention
and overhead and thus higher speedups.

6The Active Object pattern [Sch95] describes an object-
oriented approach to this sort of operation passing. More com-
plex operations that atomicly update data owned by many
CPUs must use a more complex operation-passing approach
such as two-phase commit [Tay87].

/* Header for list of looktab_t’s. */

looktab_t *looktab_head[LOOKTAB_NHASH] = { NULL };
#define LOOKTAB_HASH(key) \ ((key) % LOOKTAB_NHASH)

/%
* Look up the specified entry and invoke the specified
* function on it. The key must be one of this CPU’s keys.
*/
looktab_t *
looktab_srch_me(int key, int (*func) (looktab_t *ent))
{
looktab_t *p;

p = looktab_head[LOOKTAB_HASH(key)];
while (p != NULL) {
if (p->lt_key == key) {
return (*func) (p);

}

P = p—>lt_next;
}
return (func(NULL));

/*
* Look up the specified entry and invoke the specified
* function on it. Force this to happen on the CPU that
* corresponds to the specified key.

*/

int
looktab_search(int key, int (*func) (looktab_t *ent))

{
int which_cpu = key % N_CPUS;

if (which_cpu == my_cpu) {

return (looktab_srch_me(key, func));

}

return (on_cpu(which_cpu, key, func));

Figure 7: Partitioning Key Ranges

12

Design Rationale Data ownership allows each
CPU to access its data without incurring synchro-
nization overhead. This can result in perfectly linear
speedups. Some programs will still require one CPU
to operate on another’s CPU’s data, and these pro-
grams must pass the operation to the owning CPU.
The overhead of this operation passing will limit the
speedup, but may be better than directly sharing the
data.

5.5 Parallel Fastpath

Problem How can you achieve high speedups in
programs that cannot use aggressive locking patterns
throughout?

Context An existing sequential or parallel program
that can use an aggressive locking patterns for the
majority of its workload (the fastpath), but that must
use a more conservative patterns for a small part of
its workload.

Forces

e Speedup (++): Parallel fastpaths have very good
speedups.

e Contention (++): Since the common-case fast-
path code uses an aggressive locking design, con-
tention is very low.

e Overhead (++): Since the common-case fastpath
uses either lightweight synchronization primitives
or omits synchronization primitives altogether,
overhead is very low.

e Read-to-Write Ratio (+): The parallel fastpath
may allow readers to proceed in parallel.

e Economics (——): Higher speedups require larger,
more expensive systems with more CPUs.

e Complexity (——): Although the fastpath itself is
often very straightforward, the off-fastpath code
must handle complex recovery in cases that the
fastpath cannot handle.

A high speedup must be needed badly enough to
invest the resources needed to develop, maintain, and
run a highly parallel version.

The program must be highly partitionable and must
have its speedup limited by synchronization overhead
and contention. The fraction of the execution time
that cannot be partitioned limits the speedup. For ex-
ample, if the off-fastpath code uses code locking and

13

10% of the execution time occurs off the fastpath, then
the maximum achievable speedup will be 10. Either
the off-fastpath code must not be executed very fre-
quently or it must itself use a more aggressive locking
pattern.

Solution Use parallel fastpaths to aggressively par-
allelize the common case without incurring the com-
plexity required to aggressively parallelize the entire
algorithm.

You must understand not only the specific algo-
rithm you wish to parallelize, but also the workload
that the algorithm will be subjected to. Great cre-
ativity and design effort is often required to construct
a parallel fastpath.

Resulting Context A more heavily parallel pro-
gram that is even less similar to its sequential coun-
terpart, but which exhibits much lower contention and
overhead and thus higher speedups.

Design Rationale Parallel fastpath allows the
common case to be fully partitioned without requiring
that the entire algorithm be fully partitioned. This
allows scarce design and coding effort to be focused
where it will do the most good.

Parallel fastpath combines different patterns (one
for the fastpath, one elsewhere) and is therefore a
template pattern. The following instances of paral-
lel fastpath occur often enough to warrant their own
patterns:

1. Reader/Writer Locking (5.6).
2. Hierarchical Locking (5.7).
3. Resource Allocator Caches (5.8).

5.6 Reader/Writer Locking

Problem How can programs that rarely modify
shared data improve their speedups?

Context An existing program with much of the
code contained in critical sections, but where the read-
to-write ratio is large.

Forces

e Read-to-Write Ratio (+ + +): Reader/Writer
Locking takes full advantage of favorable read-
to-write ratios.

e Speedup (++): Since readers proceed in parallel,
very high speedups are possible.

e Contention (++): Since readers do not contend,
contention is low.

e Overhead (+): The number of synchronization
primitives required is about the same as for Code
Locking, but the reader-side primitives can be
cheaper in many cases.

e Complexity (—): The reader/writer concept adds
a modest amount of complexity.

e Economics (——): More CPUs are required to
achieve higher speedups.

Synchronization overhead must not dominate, con-
tention must be high, and read-to-write ratio must
be high. Low synchronization overhead is especially
important, as most implementations of reader/writer
locking incur greater synchronization overhead than
does normal locking.

Specialized forms of reader/writer locking may
be used when synchronization overhead domi-
nates [And91, Tay87].

Solution Use reader/writer locking to greatly im-
prove speedups of programs that rarely modify shared
data.

The lookup-table example uses read-side primitives
to search the table and write-size primitives to mod-
ify it. Figure 8 shows locking for search, and Fig-
ure 9 shows locking for update. Since this example
demonstrates reader/writer locking applied to a code-
locked program, the locks must surround the calls to
looktab_search() as well as the code that examines
or modifies the selected element.

Reader/writer locking can easily be adapted to
data-locked programs as well.

Resulting Context A program that allows CPUs
that are not modifying data to proceed in parallel,
thereby increasing speedup.

Design Rationale If synchronization overhead is
negligible (i.e., the program uses coarse-grained par-
allelism), and only a small fraction of the critical sec-
tions modify data, then allowing multiple readers to
proceed in parallel can greatly increase speedup.

The reader/writer locking pattern can be thought
of as a modifier to the Code Locking (5.2) and Data
Locking (5.3) patterns, with the reader/writer locks
being assigned to code paths and data structures, re-
spectively. It also is an instance of Parallel Fast-
path (5.5).

14

/*
* Global lock for looktab_t
* manipulations.

*/

srwlock_t looktab_mutex;

/*
* Look up a looktab element and
* examine it.

*/

S_RDLOCK (&looktab_mutex) ;
p = looktab_search(mykey) ;

/*
* insert code here to examine
* the element.

*/

S_UNLOCK (&looktab_mutex) ;

Figure 8: Read-Side Locking

/*
* Global lock for looktab_t
* manipulations.

*/

srwlock_t looktab_mutex;

VA
* Look up a looktab element and
* examine it.

*/

S_WRLOCK (&looktab_mutex) ;
p = looktab_search(mykey) ;

/*
* insert code here to update
* the element.

*/

S_UNLOCK (&looktab_mutex) ;

Figure 9: Write-Side Locking

15

Reader /writer locking is a simple instance of asym-
metric locking. Snaman [ST87] describes a more or-
nate six-mode asymmetric locking design used in sev-
eral clustered systems. Asymmetric locking primitives
can be used to implement a very simple form of the
Observer Pattern [GHJV95]-when a writer releases
the lock, all readers are notified of the change in state.

5.7 Hierarchical Locking

Problem How can you obtain better speedups when
updates are complex and expensive, but where coarse-
grained locking is needed for infrequent operations
such as insertion and deletion?

Context An existing sequential or parallel program
suffering high contention due to coarse-grained locking
combined with frequent, high-overhead updates.

Forces

e Contention (++): Updates proceed in parallel.
However, coarsely-locked operations are still seri-
alized and can result in contention.

e Speedup (+): Hierarchical locking allows
coarsely-locked operations to proceed in parallel
with frequent, high-overhead operations. Con-
tention still limits speedups.

e Read-to-Write Ratio (0): Readers accessing a
given finely-locked element proceed in paral-
lel. However, readers traversing coarsely-locked
structures are still serialized.

e Overhead (—): Hierarchical-locked programs ex-
ecutes more synchronization primitives than do
code-locked or data-locked programs, resulting in
higher synchronization overhead.

e Economics (—): Greater speedups require bigger
machines.

e Complexity (— — —): Hierarchically-locked pro-
grams can be extremely complex and subtle, since
they are extremely prone to deadlock problems.

A large speedup must be be needed badly enough
to invest the development, maintenance, and machine
resources required for more aggressive parallelization.

The program must also have hierarchical data struc-
tures so that hierarchical locking may be used to re-
duce contention and overhead.

Solution Partition the data structures into coarse-
and fine-grained portions. For example, use a single
lock for the internal nodes and links of a search tree,
but maintain a separate lock for each of the leaves.
If the updates to the leaves is expensive compared to
searches and to synchronization primitives, hierarchi-
cal locking can result in better speedups than can code
or data locking.

For example, allocate a lock for each hash line in
the hash-line-header data structure,” as shown in Fig-
ure 10. This may be done if the individual elements
in a table are independent from one another, and al-
lows searches of a single table to proceed in parallel if
the items being searched for do not collide after being
hashed.

In this example, hierarchical locking is an instance
of Parallel Fastpath (5.5) that uses data locking for
the fastpath and code locking elsewhere.

You can combine hierarchical locking with data
locking (e.g., by changing the search structure from
a single linked list to a hashed table with per-hash-
line locks) to further reduce contention. This results
in an instance of Parallel Fastpath (5.5) that uses data
locking for both the fastpath and the search structure.
Since there can be many elements per hash line, the
fastpath is using a more aggressive form of data lock-
ing than is the search structure.

Resulting Context A more heavily parallel pro-
gram that is less similar to its sequential counterpart,
but which exhibits much lower contention and thus
higher speedups.

Design Rationale If updates have high overhead,
then contention will be reduced by allowing each ele-
ment to have its own lock.

Since hierarchical locking can make use of different
types of locking for the different levels of the hierarchy,
it is a template that combines other patterns. It also
is an instance of Parallel Fastpath (5.5).

5.8 Allocator Caches

Problem How can you make achieve high speedups
in global memory allocators?

Context An existing sequential or parallel program
that spends much of its time allocating or deallocating
data structures.®

"In object-oriented programs, this level of data locking re-
sults in many independent critical sections per instance.

8Programs that allocate resources other than data structures
(e.g., I/O devices) use data structures to represent these re-

16

Forces

e Speedup (++): Speedups are limited only by the
allowable size of the caches.

e Contention (++): The common-case access that
hits the per-CPU cache causes no contention.

e Overhead (++): The common-case access that
hits the per-CPU cache causes no synchronization
overhead.

e Complexity (—): The per-CPU caches make the
allocator more complex.

e Economics (——): High speedups translate to
more expensive machines with more CPUs.

o Read-to-Write Ratio (N/A): Allocators normally
do not have a notion of reading or writing. If
allocation and free operations are considered to
be reads, then reads proceed in parallel.’

A high speedup must be needed badly enough to
invest the resources needed to develop, maintain, and
run an allocator with a per-CPU cache.

Solution Create a per-CPU (or per-process) cache
of data-structure instances. A given CPU owns the in-
stances in its cache (Data Ownership (5.4)), and there-
fore need not incur overhead and contention penalties
to allocate and free them. Fall back to a global al-
locator with a less aggressive locking pattern (Code
Locking (5.2)) when the per-CPU cache either over-
flows or underflows. The global allocator is needed
to support arbitrary-duration producer-consumer re-
lationships among the CPUs, which make it impossi-
ble to fully partition the memory among the CPUs.

Resulting Context A more heavily parallel pro-
gram that contains an allocator that is quite differ-
ent than its sequential counterpart, but which exhibits
much lower contention and overhead and thus higher
speedups.

You do not need to modify the code calling the
memory allocator. This pattern confines the complex-
ity to the allocator itself.

sources. The allocator-cache pattern is therefore general enough
to include general resource allocation. For ease of exposition
but without loss of generality, this section focuses on memory
allocation.

9Perhaps changing the size of the caches or some other at-
tribute of the allocator is considered a write.

slock_t looktab_mutex;
looktab_t *looktab_head;
typedef struct looktab {
struct looktab_t *1t_next;

int 1t_key;

int 1t_data;

slock_t lt_mutex;
} looktab_t;

/*
* Return a pointer to the element of the table with the
* specified key holding lt_mutex, or return NULL if no
* such element exists.

*/

looktab_t *
looktab_search(int key)

{
looktab_t *p;
S_LOCK(&looktab_mutex) ;
p = looktab_head;
while (p != NULL) {
if (p—>1lt_key > key) {
S_UNLOCK (&looktab_mutex) ;
return (NULL);
}
if (p->lt_key == key) {
S_LOCK (&p->1t_mutex) ;
S_UNLOCK (&looktab_mutex) ;
return (p);
}
p = p—->lt_next;
}
return (NULL);
}
/x . . . %/

/* Look up a looktab element. */
p = looktab_search(mykey) ;
/* insert code here to examine or update the element.

S_LOCK (&p->1t_mutex) ;

Figure 10: Hierarchical Locking

17

Design Rationale Many programs allocate a struc-
ture, use it for a short time, then free it. These
programs’ requests can often be satified from per-
CPU/process caches of structures, eliminating the
overhead of locking in the common case. If the cache
hit rate is too low, increase it by increasing the size of
the cache. If the cache is large enough, the reduced
allocation overhead on cache hits more than makes up
for the slight increase incurred on cache misses.

McKenney and Slingwine [MS93] describe the de-
sign and performance of memory allocator that uses
caches. This allocator applies the Parallel Fast-
path (5.5) pattern twice, using Code Locking (5.2) to
allocate pages of memory, Data Locking (5.3) to coa-
lesce blocks of a given size into pages, and Data Own-
ership (5.4) for the per-CPU caches. Accesses to the
per-CPU caches is free of synchronization overhead
and of contention. In fact, the overhead of allocations
and deallocations that hit the cache are several times
cheaper than the synchronization primitives. Cache-
hit rates often exceed 95%, so the performance of the
allocator is very close to that of its cache.

Other choices of patterns for the caches, coalescing,
and page-allocation make sense in other situations.
Therefore, the allocator-cache pattern is a template
that combines other patterns to create an allocator.
It also is an instance of Parallel Fastpath (5.5).

5.9 Critical-Section Fusing

Problem How can you get high speedups from pro-
grams with frequent, small critical sections on ma-
chines with high synchronization overheads?

Context An existing program with many small crit-
ical sections so that synchronization overhead domi-
nates, but which is not easily partitionable.

Forces

e Overhead (+): Fusing critical sections decreases
overhead by reducing the number of synchroniza-
tion primitives.

e Speedup (0): Fusing critical sections improves
speedup only when speedup is limited primarily
by overhead.

o Read-to-Write Ratio (0): Fusing critical sections
usually has no effect on the ability to run readers
in parallel.

e Economics (0): Fusing critical sections requires
more CPUs if speedup increases.

18

e Contention (—): Fusing critical sections increases
contention.

e Complexity (——): Fusing otherwise-unrelated
critical sections can add confusion and thus com-
plexity to the program.

Additional speedup must be needed badly enough to
justify the cost of creating, maintaining, and running
a highly parallel program.

Synchronization overhead must dominate, and con-
tention must be low enough to allow increasing the
size of critical sections.

Solution Fuse small critical sections into larger ones
to get high speedups from programs with frequent,
small critical sections on machines with high synchro-
nization overheads.

For example, imagine a program containing back-
to-back searches of a code-locked lookup table. A
straightforward implementation would acquire the
lock, do the first search, do the first update, release the
lock, acquire the lock once more, do the second search,
do the second update, and finally release the lock. If
this sequence of code was dominated by synchroniza-
tion overhead, eliminating the first release and sec-
ond acquisition as shown in Figure 11 would increase
speedup.

In this case, the critical sections being fused used
the same lock. Fuse critical sections that use different
locks by combining the two locks into one, and make
all critical sections that used either of the two original
locks use the single new lock instead.

Resulting Context A program with fewer but
larger critical sections, thus less subject to synchro-
nization overheads.

Design Rationale If the overhead of the code be-
tween two critical sections is less than the overhead of
the synchronization primitives, fusing the two critical
sections will decrease overhead and increase speedups.

Critical-section fusing is a meta-pattern than trans-
forms Data Locking (5.3) into Code Locking (5.2) and
Code Locking (5.2) into Sequential Program (5.1).
In addition, it transforms more-aggressive variants of
Code Locking (5.2) and Data Locking (5.3) into less-
aggressive variants.

Critical-section fusing is the inverse of Critical-
Section Partitioning (5.10).

/*
* Global lock for looktab_t
* manipulations.

*/

slock_t looktab_mutex;

/*
* Look up a looktab element and
* examine it.

*/

S_LOCK(&looktab_mutex) ;
p = looktab_search(mykey) ;

/*
* insert code here to examine or
* update the element.

x/
p = looktab_search(myotherkey) ;
/*

* insert code here to examine or

* update the element.

*/

S_UNLOCK (&looktab_mutex) ;

Figure 11: Critical-Section Fusing

5.10 Critical-Section Partitioning

Problem How can you get high speedups from pro-
grams with infrequent, large critical sections on ma-
chines with low synchronization overheads?

Context An existing program with a few large crit-
ical sections so that contention dominates, where the
critical sections might contain code that is not relevant
to the data structures that they protect, but that is
not easily partitionable.

This situation is rather rare in highly parallel code,
since the cost of synchronization overhead has been
decreasing more slowly than instruction or memory-
access overhead. The increasing relative cost of syn-
chronization makes it less likely that contention effects
will dominate. You can find it in cases where Critical-
Section Fusing (5.9) has been applied too liberally and
in code that is not highly parallel.

If the program is large or unfamiliar but is not be-
ing maintained in sequential form by another organi-
zation, you should consider applying other patterns
(such as Data Locking (5.3)) because the effort of ap-
plying the more difficult and effective patterns can be
small compared to the effort required to analyze and
understand the program.

Forces

e Contention (+): Partitioning critical sections de-
creases contention.

e Complexity (+): Partitioning “thrown-together”
critical sections can clarify the intent of the code.

e Speedup (0): Partitioning critical sections im-
proves speedup only when speedup is limited pri-
marily by overhead.

e Read-to-Write Ratio (0): Splitting critical sec-
tions usually has no effect on the ability to run
readers in parallel.

e Economics (0): Splitting critical sections requires
more CPUs if speedup increases.

e Overhead (—): Splitting critical sections can in-
crease overhead by increasing the number of syn-
chronization primitives. There are some special
cases where overhead is unchanged, such as when
a code-locked program’s critical sections are par-
titioned by data structure, resulting in a data-
locked program.

Contention must dominate, and synchronization
overhead must be low enough to allow decreasing the
size of critical sections.

Solution Split large critical sections into smaller
ones to get high speedups from programs with infre-
quent, large critical sections on machines with low syn-
chronization overheads.

For example, imagine a program parallelized using
“huge locks” that covered entire subsystems. These
subsystems are likely to contain a fair amount of code
that does not need to be in a critical section. Splitting
the critical sections to allow this code to run in parallel
might increase speedup.

If you think of a sequential program as being a code-
locked program with a single critical section contain-
ing the whole program, then you would apply critical-
section splitting to move from a sequential to a code-
locked program.

Resulting Context A program with more but
smaller critical sections, thus less subject to con-
tention.

Design Rationale If the overhead of the non-
critical-section code inside a single critical sections is
greater than the overhead of the synchronization prim-
itives, splitting the critical section can decrease over-
head and increase speedups.

Critical-section partitioning is a meta-pattern that
transforms Sequential Program (5.1) into Code Lock-
ing (5.2) and Code Locking (5.2) into Data Lock-
ing (5.3). It also transforms less-aggressive variants
of Code Locking (5.2) and Data Locking (5.3) into
more-aggressive variants.

Critical-section partitioning
Critical-Section Fusing (5.9).

is the inverse of

6 Acknowledgments

I owe thanks to Ward Cunningham and Steve Peter-
son for encouraging me to set these ideas down and
for many valuable conversations, to my PLoP’95 shep-
ard, Erich Gamma, for much coaching on how to set
forth patterns, to the members of PLoP’95 Working
Group 4 for their insightful comments and discussion,
to Ralph Johnson for his tireless championing of use
of active voice in patterns, and to Dale Goebel for his
consistent support.

References
[And91] Gregory R. Andrews. Paradigms for pro-
cess interaction in distributed programs.
ACM Computing Surveys:, 1991.

20

[GHJV95] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[McK95] Paul E. McKenney. Differential profiling.
In MASCOTS’95, Toronto, Canada, Jan-

uary 1995.

[Mes95] Gerard Meszaros. A pattern language
for improving capacity of reactive systems.
In Pattern Languages of Program Design,

September 1995.

[MS93] Paul E. McKenney and Jack Slingwine. Ef-
ficient kernel memory allocation on shared-
memory multiprocessors. In USENIX Con-
ference Proceedings, Berkeley CA, Febru-

ary 1993.

[Sch95] Douglas C. Schmidt. Active object. In
Pattern Languages of Program Design,

September 1995.

[ST87] William E. Snaman and David W. Thiel.
The VAX/VMS distributed lock manager.

Digital Technical Journal, September 1987.

[Tay87] Y. C. Tay. Locking Performance in Cen-

tralized Databases. Academic Press, 1987.

[ZRB193] Roman Zajcew, Paul Roy, David Black,
Chris

Peak, Paulo Guedes, Bradford Kemp, John
LoVerso, Michael Leibensperger, Michael
Barnett, Faramarz Rabii, and Durriya Net-
terwala. An OSF/1 UNIX for massively
parallel multicomputers. In 1993 Winter

USENIX, pages 449-468, January 93.

