
Memory Barriers: a Hardware View for Software Hackers

Paul E. McKenney

Linux Technology Center

IBM Beaverton

paulmck@us.ibm.com

April 5, 2009

So what possessed CPU designers to cause them
to inflict memory barriers on poor unsuspecting SMP
software designers?

In short, because reordering memory references al-
lows much better performance, and so memory barri-
ers are needed to force ordering in things like synchro-
nization primitives whose correct operation depends
on ordered memory references.

Getting a more detailed answer to this question
requires a good understanding of how CPU caches
work, and especially what is required to make caches
really work well. The following sections:

1. present the structure of a cache,

2. describe how cache-coherency protocols ensure
that CPUs agree on the value of each location in
memory, and, finally,

3. outline how store buffers and invalidate queues
help caches and cache-coherency protocols
achieve high performance.

We will see that memory barriers are a necessary evil
that is required to enable good performance and scal-
ability, an evil that stems from the fact that CPUs
are orders of magnitude faster than are both the in-
terconnects between them and the memory they are
attempting to access.

1 Cache Structure

Modern CPUs are much faster than are modern mem-
ory systems. A 2006 CPU might be capable of execut-

ing ten instructions per nanosecond, but will require
many tens of nanoseconds to fetch a data item from
main memory. This disparity in speed — more than
two orders of magnitude — has resulted in the multi-
megabyte caches found on modern CPUs. These
caches are associated with the CPUs as shown in Fig-
ure 1, and can typically be accessed in a few cycles.1

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure 1: Modern Computer System Cache Structure

Data flows among the CPUs’ caches and memory
in fixed-length blocks called “cache lines”, which are
normally a power of two in size, ranging from 16 to
256 bytes. When a given data item is first accessed by

1It is standard practice to use multiple levels of cache, with
a small level-one cache close to the CPU with single-cycle ac-
cess time, and a larger level-two cache with a longer access
time, perhaps roughly ten clock cycles. Higher-performance
CPUs often have three or even four levels of cache.

1

a given CPU, it will be absent from that CPU’s cache,
meaning that a “cache miss” (or, more specifically,
a “startup” or “warmup” cache miss) has occurred.
The cache miss means that the CPU will have to
wait (or be “stalled”) for hundreds of cycles while the
item is fetched from memory. However, the item will
be loaded into that CPU’s cache, so that subsequent
accesses will find it in the cache and therefore run at
full speed.

After some time, the CPU’s cache will fill, and sub-
sequent misses will likely need to eject an item from
the cache in order to make room for the newly fetched
item. Such a cache miss is termed a “capacity miss”,
because it is caused by the cache’s limited capacity.
However, most caches can be forced to eject an old
item to make room for a new item even when they are
not yet full. This is due to the fact that large caches
are implemented as hardware hash tables with fixed-
size hash buckets (or “sets”, as CPU designers call
them) and no chaining, as shown in Figure 2.

This cache has sixteen “sets” and two “ways” for a
total of 32 “lines”, each entry containing a single 256-
byte “cache line”, which is a 256-byte-aligned block
of memory. This cache line size is a little on the large
size, but makes the hexadecimal arithmetic much
simpler. In hardware parlance, this is a two-way set-
associative cache, and is analogous to a software hash
table with sixteen buckets, where each bucket’s hash
chain is limited to at most two elements. The size (32
cache lines in this case) and the associativity (two in
this case) are collectively called the cache’s “geome-
try”. Since this cache is implemented in hardware,
the hash function is extremely simple: extract four
bits from the memory address.

In Figure 2, each box corresponds to a cache en-
try, which can contain a 256-byte cache line. How-
ever, a cache entry can be empty, as indicated by
the empty boxes in the figure. The rest of the boxes
are flagged with the memory address of the cache
line that they contain. Since the cache lines must be
256-byte aligned, the low eight bits of each address
are zero, and the choice of hardware hash function
means that the next-higher four bits match the hash
line number.

The situation depicted in the figure might arise
if the program’s code were located at address

0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure 2: CPU Cache Structure

0x43210E00 through 0x43210EFF, and this program
accessed data sequentially from 0x12345000 through
0x12345EFF. Suppose that the program were now to
access location 0x12345F00. This location hashes to
line 0xF, and both ways of this line are empty, so the
corresponding 256-byte line can be accommodated.
If the program were to access location 0x1233000,
which hashes to line 0x0, the corresponding 256-byte
cache line can be accommodated in way 1. However,
if the program were to access location 0x1233E00,
which hashes to line 0xE, one of the existing lines
must be ejected from the cache to make room for
the new cache line. If this ejected line were accessed
later, a cache miss would result. Such a cache miss
is termed an “associativity miss”.

Thus far, we have been considering only cases
where a CPU reads a data item. What happens when
it does a write? Because it is important that all CPUs
agree on the value of a given data item, before a given
CPU writes to that data item, it must first cause it
to be removed, or “invalidated”, from other CPUs’
caches. Once this invalidation has completed, the
CPU may safely modify the data item. If the data
item was present in this CPU’s cache, but was read-
only, this process is termed a “write miss”. Once a
given CPU has completed invalidating a given data
item from other CPUs’ caches, that CPU may repeat-

2

edly write (and read) that data item.
Later, if one of the other CPUs attempts to access

the data item, it will incur a cache miss, this time
because the first CPU invalidated the item in order
to write to it. This type of cache miss is termed
a “communication miss”, since it is usually due to
several CPUs using the data items to communicate
(for example, a lock is a data item that is used to
communicate among CPUs using a mutual-exclusion
algorithm).

Clearly, much care must be taken to ensure that
all CPUs maintain a coherent view of the data. With
all this fetching, invalidating, and writing, it is easy
to imagine data being lost or (perhaps worse) differ-
ent CPUs having conflicting values for the same data
item in their respective caches. These problems are
prevented by “cache-coherency protocols”, described
in the next section.

2 Cache-Coherence Protocols

Cache-coherency protocols manage cache-line states
so as to prevent inconsistent or lost data. These
protocols can be quite complex, with many tens of
states,2 but for our purposes we need only concern
ourselves with the four-state MESI cache-coherence
protocol.

2.1 MESI States

MESI stands for “modified”, “exclusive”, “shared”,
and “invalid”, the four states a given cache line can
take on using this protocol. Caches using this proto-
col therefore maintain a two-bit state “tag” on each
cache line in addition to that line’s physical address
and data.

A line in the “modified” state has been subject to
a recent memory store from the corresponding CPU,
and the corresponding memory is guaranteed not to
appear in any other CPU’s cache. Cache lines in the
“modified” state can thus be said to be “owned” by

2See Culler et al. [3] pages 670 and 671 for the nine-state
and 26-state diagrams for SGI Origin2000 and Sequent (now
IBM) NUMA-Q, respectively. Both diagrams are significantly
simpler than real life.

the CPU. Because this cache holds the only up-to-
date copy of the data, this cache is ultimately respon-
sible for either writing it back to memory or handing
it off to some other cache, and must do so before
reusing this line to hold other data.

The “exclusive” state is very similar to the “modi-
fied” state, the single exception being that the cache
line has not yet been modified by the correspond-
ing CPU, which in turn means that the copy of the
cache line’s data that resides in memory is up-to-
date. However, since the CPU can store to this line
at any time, without consulting other CPUs, a line
in the “exclusive” state can still be said to be owned
by the corresponding CPU. That said, because the
corresponding value in memory is up to date, this
cache can discard this data without writing it back
to memory or handing it off to some other CPU.

A line in the “shared” state might be replicated in
at least one other CPU’s cache, so that this CPU is
not permitted to store to the line without first con-
sulting with other CPUs. As with the “exclusive”
state, because the corresponding value in memory is
up to date, this cache can discard this data without
writing it back to memory or handing it off to some
other CPU

A line in the “invalid” state is empty, in other
words, it holds no data. When new data enters the
cache, it is placed into a cache line that was in the
“invalid” state if possible. This approach is preferred
because replacing a line in any other state could re-
sult in an expensive cache miss should the replaced
line be referenced in the future.

Since all CPUs must maintain a coherent view
of the data carried in the cache lines, the cache-
coherence protocol provides messages that coordinate
the movement of cache lines through the system.

2.2 MESI Protocol Messages

Many of the transitions described in the previous sec-
tion require communication among the CPUs. If the
CPUs are on a single shared bus, the following mes-
sages suffice:

Read: The “read” message contains the physical ad-
dress of the cache line to be read.

3

Read Response: The “read response” message
contains the data requested by an earlier “read”
message. This “read response” message might
be supplied either by memory or by one of the
other caches. For example, if one of the caches
has the desired data in “modified” state, that
cache must supply the “read response” message.

Invalidate: The “invalidate” message contains the
physical address of the cache line to be invali-
dated. All other caches must remove the corre-
sponding data from their caches and respond.

Invalidate Acknowledge: A CPU receiving an
“invalidate” message must respond with an “in-
validate acknowledge” message after removing
the specified data from its cache.

Read Invalidate: The “read invalidate” message
contains the physical address of the cache line to
be read, while at the same time directing other
caches to remove the data. Hence, it is a combi-
nation of a “read” and an “invalidate”, as indi-
cated by its name. A “read invalidate” message
requires both a “read response” and a set of “in-
validate acknowledge” messages in reply.

Writeback: The “writeback” message contains both
the address and the data to be written back
to memory (and perhaps “snooped” into other
CPUs’ caches along the way). This message per-
mits caches to eject lines in the “modified” state
as needed to make room for other data.

Interestingly enough, a shared-memory multipro-
cessor system really is a message-passing computer
under the covers. This means that clusters of SMP
machines that use distributed shared memory are us-
ing message passing to implement shared memory at
two different levels of the system architecture.

Quick Quiz 1: What happens if two CPUs at-
tempt to invalidate the same cache line concurrently?

Quick Quiz 2: When an “invalidate” message
appears in a large multiprocessor, every CPU must
give an “invalidate acknowledge” response. Wouldn’t
the resulting “storm” of “invalidate acknowledge” re-
sponses totally saturate the system bus?

Quick Quiz 3: If SMP machines are really using
message passing anyway, why bother with SMP at
all?

2.3 MESI State Diagram

A given cache line’s state changes as protocol mes-
sages are sent and received, as shown in Figure 3.

M

E S

I

a

c d e

f

g

h

j k

l

b

i

Figure 3: MESI Cache-Coherency State Diagram

The transition arcs in this figure are as follows:

Transition (a): A cache line is written back to
memory, but the CPU retains it in its cache and
further retains the right to modify it. This tran-
sition requires a “writeback” message.

Transition (b): The CPU writes to the cache line
that it already had exclusive access to. This
transition does not require any messages to be
sent or received.

Transition (c): The CPU receives a “read invali-
date” message for a cache line that it has mod-
ified. The CPU must invalidate its local copy,
then respond with both a “read response” and an
“invalidate acknowledge” message, both sending
the data to the requesting CPU and indicating
that it no longer has a local copy.

4

Transition (d): The CPU does an atomic read-
modify-write operation on a data item that was
not present in its cache. It transmits a “read
invalidate”, receiving the data via a “read re-
sponse”. The CPU can complete the transition
once it has also received a full set of “invalidate
acknowledge” responses.

Transition (e): The CPU does an atomic read-
modify-write operation on a data item that was
previously read-only in its cache. It must trans-
mit “invalidate” messages, and must wait for a
full set of “invalidate acknowledge” responses be-
fore completing the transition.

Transition (f): Some other CPU reads the cache
line, and it is supplied from this CPU’s cache,
which retains a read-only copy. This transition
is initiated by the reception of a “read” message,
and this CPU responds with a “read response”
message containing the requested data.

Transition (g): Some other CPU reads a data item
in this cache line, and it is supplied either from
this CPU’s cache or from memory. In either case,
this CPU retains a read-only copy. This tran-
sition is initiated by the reception of a “read”
message, and this CPU responds with a “read re-
sponse” message containing the requested data.

Transition (h): This CPU realizes that it will soon
need to write to some data item in this cache
line, and thus transmits an “invalidate” message.
The CPU cannot complete the transition until
it receives a full set of “invalidate acknowledge”
responses. Alternatively, all other CPUs eject
this cache line from their caches via “writeback”
messages (presumably to make room for other
cache lines), so that this CPU is the last CPU
caching it.

Transition (i): Some other CPU does an atomic
read-modify-write operation on a data item in a
cache line held only in this CPU’s cache, so this
CPU invalidates it from its cache. This transi-
tion is initiated by the reception of a “read in-
validate” message, and this CPU responds with

both a “read response” and an “invalidate ac-
knowledge” message.

Transition (j): This CPU does a store to a data
item in a cache line that was not in its cache,
and thus transmits a “read invalidate” message.
The CPU cannot complete the transition until it
receives the “read response” and a full set of “in-
validate acknowledge” messages. The cache line
will presumably transition to “modified” state
via transition (b) as soon as the actual store com-
pletes.

Transition (k): This CPU loads a data item in
a cache line that was not in its cache. The
CPU transmits a “read” message, and completes
the transition upon receiving the corresponding
“read response”.

Transition (l): Some other CPU does a store to a
data item in this cache line, but holds this cache
line in read-only state due to its being held in
other CPUs’ caches (such as the current CPU’s
cache). This transition is initiated by the recep-
tion of an “invalidate” message, and this CPU
responds with an “invalidate acknowledge” mes-
sage.

Quick Quiz 4: How does the hardware handle the
delayed transitions described above?

2.4 MESI Protocol Example

Let’s now look at this from the perspective of a cache
line’s worth of data, initially residing in memory at
address 0, as it travels through the various single-line
direct-mapped caches in a four-CPU system. Table 1
shows this flow of data, with the first column show-
ing the sequence of operations, the second the CPU
performing the operation, the third the operation be-
ing performed, the next four the state of each CPU’s
cache line (memory address followed by MESI state),
and the final two columns whether the corresponding
memory contents are up to date (“V”) or not (“I”).

Initially, the CPU cache lines in which the data
would reside are in the “invalid” state, and the data
is valid in memory. When CPU 0 loads the data at

5

address 0, it enters the “shared” state in CPU 0’s
cache, and is still valid in memory. CPU 3 also loads
the data at address 0, so that it is in the “shared”
state in both CPUs’ caches, and is still valid in mem-
ory. Next CPU 3 loads some other cache line (at
address 8), which forces the data at address 0 out of
its cache via a writeback, replacing it with the data
at address 8. CPU 2 now does a load from address 0,
but this CPU realizes that it will soon need to store
to it, and so it uses a “read invalidate” message in
order to gain an exclusive copy, invalidating it from
CPU 3’s cache (though the copy in memory remains
up to date). Next CPU 2 does its anticipated store,
changing the state to “modified”. The copy of the
data in memory is now out of date. CPU 1 does an
atomic increment, using a “read invalidate” to snoop
the data from CPU 2’s cache and invalidate it, so that
the copy in CPU 1’s cache is in the “modified” state
(and the copy in memory remains out of date). Fi-
nally, CPU 1 reads the cache line at address 8, which
uses a “writeback” message to push address 0’s data
back out to memory.

Note that we end with data in some of the CPU’s
caches.

Quick Quiz 5: What sequence of operations
would put the CPUs’ caches all back into the “in-
valid” state?

3 Stores Result in Unnecessary

Stalls

Although the cache structure shown in Figure 1 pro-
vides good performance for repeated reads and writes
from a given CPU to a given item of data, its perfor-
mance for the first write to a given cache line is quite
poor. To see this, consider Figure 4, which shows a
timeline of a write by CPU 0 to a cacheline held in
CPU 1’s cache. Since CPU 0 must wait for the cache
line to arrive before it can write to it, CPU 0 must
stall for an extended period of time.3

3The time required to transfer a cache line from one CPU’s
cache to another’s is typically a few orders of magnitude more
than that required to execute a simple register-to-register in-
struction.

CPU 0 CPU 1

Write

Acknowledgement

Invalidate

St
al

l

Figure 4: Writes See Unnecessary Stalls

But there is no real reason to force CPU 0 to stall
for so long — after all, regardless of what data hap-
pens to be in the cache line that CPU 1 sends it, CPU
0 is going to unconditionally overwrite it.

3.1 Store Buffers

One way to prevent this unnecessary stalling of writes
is to add “store buffers” between each CPU and its
cache, as shown in Figure 5. With the addition of
these store buffers, CPU 0 can simply record its write
in its store buffer and continue executing. When the
cache line does finally make its way from CPU 1 to
CPU 0, the data will be moved from the store buffer
to the cache line.

However, there are complications that must be ad-
dressed, which are covered in the next two sections.

3.2 Store Forwarding

To see the first complication, a violation of self-
consistency, consider the following code with vari-
ables “a” and “b” both initially zero, and with the
cache line containing variable “a” initially owned by
CPU 1 and that containing “b” initially owned by
CPU 0:

6

CPU Cache Memory
Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State -/I -/I -/I -/I V V

1 0 Load 0/S -/I -/I -/I V V

2 3 Load 0/S -/I -/I 0/S V V

3 0 Writeback 8/S -/I -/I 0/S V V

4 2 RMW 8/S -/I 0/E -/I V V

5 2 Store 8/S -/I 0/M -/I I V

6 1 Atomic Inc 8/S 0/M -/I -/I I V

7 1 Writeback 8/S 8/S -/I -/I V V

Table 1: Cache Coherence Example

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure 5: Caches With Store Buffers

1 a = 1;

2 b = a + 1;

3 assert(b == 2);

One would not expect the assertion to fail. How-
ever, if one were foolish enough to use the very simple
architecture shown in Figure 5, one would be sur-
prised. Such a system could potentially see the fol-
lowing sequence of events:

1. CPU 0 starts executing the a=1.

2. CPU 0 looks “a” up in the cache, and finds that

it is missing.

3. CPU 0 therefore sends a “read invalidate” mes-
sage in order to get exclusive ownership of the
cache line containing “a”.

4. CPU 0 records the store to “a” in its store buffer.

5. CPU 1 receives the “read invalidate” message,
and responds by transmitting the cache line and
removing that cacheline from its cache.

6. CPU 0 starts executing the b=a+1.

7. CPU 0 receives the cache line from CPU 1, which
still has a value of zero for “a”.

8. CPU 0 loads “a” from its cache, finding the value
zero.

9. CPU 0 applies the entry from its store queue to
the newly arrived cache line, setting the value of
“a” in its cache to one.

10. CPU 0 adds one to the value zero loaded for “a”
above, and stores it into the cache line containing
“b” (which we will assume is already owned by
CPU 0).

11. CPU 0 executes assert(b==2), which fails.

The problem is that we have two copies of “a”, one
in the cache and the other in the store buffer.

This example breaks a very important guaran-
tee, namely that each CPU will always see its own
operations as if they happened in program order.

7

This guarantee is violently counter-intuitive to soft-
ware types, so much so that the hardware guys took
pity and implemented “store forwarding”, where each
CPU refers to (or “snoops”) its store buffer as well
as its cache when performing loads, as shown in Fig-
ure 6. In other words, a given CPU’s stores are di-
rectly forwarded to its subsequent loads, without hav-
ing to pass through the cache.

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure 6: Caches With Store Forwarding

With store forwarding in place, item 8 in the above
sequence would have found the correct value of 1 for
“a” in the store buffer, so that the final value of “b”
would have been 2, as one would hope.

3.3 Store Buffers and Memory Barri-

ers

To see the second complication, a violation of global
memory ordering, consider the following code se-
quences with variables “a” and “b” initially zero:

1 void foo(void)

2 {

3 a = 1;

4 b = 1;

5 }

6

7 void bar(void)

8 {

9 while (b == 0) continue;

10 assert(a == 1);

11 }

Suppose CPU 0 executes foo() and CPU 1 executes
bar(). Suppose further that the cache line containing
“a” resides only in CPU 1’s cache, and that the cache
line containing “b” is owned by CPU 0. Then the
sequence of operations might be as follows:

1. CPU 0 executes a=1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value
of “a” in its store buffer and transmits a “read
invalidate” message.

2. CPU 1 executes while(b==0)continue, but the
cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes b=1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state),
so it stores the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and trans-
mits the cache line containing the now-updated
value of “b” to CPU 1, also marking the line as
“shared” in its own cache.

5. CPU 1 receives the cache line containing “b” and
installs it in its cache.

6. CPU 1 can now finish executing while(b==0)

continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

7. CPU 1 executes the assert(a==1), and, since
CPU 1 is working with the old value of “a”, this
assertion fails.

8. CPU 1 receives the “read invalidate” message,
and transmits the cache line containing “a” to

8

CPU 0 and invalidates this cache line from its
own cache. But it is too late.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store just in time to fall vic-
tim to CPU 1’s failed assertion.

The hardware designers cannot help directly here,
since the CPUs have no idea which variables are re-
lated, let alone how they might be related. There-
fore, the hardware designers provide memory-barrier
instructions to allow the software to tell the CPU
about such relations. The program fragment must
be updated to contain the memory barrier:

1 void foo(void)

2 {

3 a = 1;

4 smp_mb();

5 b = 1;

6 }

7

8 void bar(void)

9 {

10 while (b == 0) continue;

11 assert(a == 1);

12 }

The memory barrier smp_mb() will cause the CPU
to flush its store buffer before applying subsequent
stores to their cache lines. The CPU could either
simply stall until the store buffer was empty before
proceeding, or it could use the store buffer to hold
subsequent stores until all of the prior entries in the
store buffer had been applied.

With this latter approach the sequence of opera-
tions might be as follows:

1. CPU 0 executes a=1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value
of “a” in its store buffer and transmits a “read
invalidate” message.

2. CPU 1 executes while(b==0)continue, but the
cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes smp_mp(), and marks all current
store-buffer entries (namely, the a=1).

4. CPU 0 executes b=1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state),
but there is a marked entry in the store buffer.
Therefore, rather than store the new value of “b”
in the cache line, it instead places it in the store
buffer (but in an unmarked entry).

5. CPU 0 receives the “read” message, and trans-
mits the cache line containing the original value
of “b” to CPU 1. It also marks its own copy of
this cache line as “shared”.

6. CPU 1 receives the cache line containing “b” and
installs it in its cache.

7. CPU 1 can now finish executing while(b==0)

continue, but since it finds that the value of
“b” is still 0, it repeats the while statement.
The new value of “b” is safely hidden in CPU 0’s
store buffer.

8. CPU 1 receives the “read invalidate” message,
and transmits the cache line containing “a” to
CPU 0 and invalidates this cache line from its
own cache.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store.

10. Since the store to “a” was the only entry in the
store buffer that was marked by the smp_mb(),
CPU 0 can also store the new value of “b” —
except for the fact that the cache line containing
“b” is now in “shared” state.

11. CPU 0 therefore sends an “invalidate” message
to CPU 1.

12. CPU 1 receives the “invalidate” message, in-
validates the cache line containing “b” from its
cache, and sends an “acknowledgement” message
to CPU 0.

13. CPU 1 executes while(b==0)continue, but the
cache line containing “b” is not in its cache. It
therefore transmits a “read” message to CPU 0.

9

14. CPU 0 receives the “acknowledgement” message,
and puts the cache line containing “b” into the
“exclusive” state. CPU 0 now stores the new
value of “b” into the cache line.

15. CPU 0 receives the “read” message, and trans-
mits the cache line containing the original value
of “b” to CPU 1. It also marks its own copy of
this cache line as “shared”.

16. CPU 1 receives the cache line containing “b” and
installs it in its cache.

17. CPU 1 can now finish executing while(b==0)

continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

18. CPU 1 executes the assert(a==1), but the
cache line containing “a” is no longer in its cache.
Once it gets this cache from CPU 0, it will be
working with the up-to-date value of “a”, and
the assertion therefore passes.

As you can see, this process involves no small
amount of bookkeeping. Even something intuitively
simple, like “load the value of a” can involves lots of
complex steps in silicon.

4 Store Sequences Result in

Unnecessary Stalls

Unfortunately, each store buffer must be relatively
small, which means that a CPU executing a modest
sequence of stores can fill its store buffer (for exam-
ple, if all of them result in cache misses). At that
point, the CPU must once again wait for invalida-
tions to complete in order to drain its store buffer
before it can continue executing. This same situa-
tion can arise immediately after a memory barrier,
when all subsequent store instructions must wait for
invalidations to complete, regardless of whether or
not these stores result in cache misses.

This situation can be improved by making invali-
date acknowledge messages arrive more quickly. One
way of accomplishing this is to use per-CPU queues
of invalidate messages, or “invalidate queues”.

4.1 Invalidate Queues

One reason that invalidate acknowledge messages can
take so long is that they must ensure that the corre-
sponding cache line is actually invalidated, and this
invalidation can be delayed if the cache is busy, for
example, if the CPU is intensively loading and storing
data, all of which resides in the cache. In addition,
if a large number of invalidate messages arrive in a
short time period, a given CPU might fall behind in
processing them, thus possibly stalling all the other
CPUs.

However, the CPU need not actually invalidate the
cache line before sending the acknowledgement. It
could instead queue the invalidate message with the
understanding that the message will be processed be-
fore the CPU sends any further messages regarding
that cache line.

4.2 Invalidate Queues and Invalidate

Acknowledge

Figure 7 shows a system with invalidate queues. A
CPU with an invalidate queue may acknowledge an
invalidate message as soon as it is placed in the queue,
instead of having to wait until the corresponding line
is actually invalidated. Of course, the CPU must refer
to its invalidate queue when preparing to transmit in-
validation messages — if an entry for the correspond-
ing cache line is in the invalidate queue, the CPU
cannot immediately transmit the invalidate message;
it must instead wait until the invalidate-queue entry
has been processed.

Placing an entry into the invalidate queue is essen-
tially a promise by the CPU to process that entry
before transmitting any MESI protocol messages re-
garding that cache line. As long as the corresponding
data structures are not highly contended, the CPU
will rarely be inconvenienced by such a promise.

However, the fact that invalidate messages can be
buffered in the invalidate queue provides additional
opportunity for memory-misordering, as discussed in
the next section.

10

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Invalidate
Queue

Memory

Interconnect

Invalidate
Queue

Figure 7: Caches With Invalidate Queues

4.3 Invalidate Queues and Memory

Barriers

Suppose the values of “a” and “b” are initially zero,
that “a” is replicated read-only (MESI “shared”
state), and that “b” is owned by CPU 0 (MESI “ex-
clusive” or “modified” state). Then suppose that
CPU 0 executes foo() while CPU 1 executes function
bar() in the following code fragment:

1 void foo(void)

2 {

3 a = 1;

4 smp_mb();

5 b = 1;

6 }

7

8 void bar(void)

9 {

10 while (b == 0) continue;

11 assert(a == 1);

12 }

Then the sequence of operations might be as fol-

lows:

1. CPU 0 executes a=1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0
places the new value of “a” in its store buffer and
transmits an “invalidate” message in order to
flush the corresponding cache line from CPU 1’s
cache.

2. CPU 1 executes while(b==0)continue, but the
cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes b=1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state),
so it stores the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and trans-
mits the cache line containing the now-updated
value of “b” to CPU 1, also marking the line as
“shared” in its own cache.

5. CPU 1 receives the “invalidate” message for “a”,
places it into its invalidate queue, and transmits
an “invalidate acknowledge” message to CPU 0.
Note that the old value of “a” still remains in
CPU 1’s cache.

6. CPU 1 receives the cache line containing “b” and
installs it in its cache.

7. CPU 1 can now finish executing while(b==0)

continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

8. CPU 1 executes the assert(a==1), and, since
the old value of “a” is still in CPU 1’s cache,
this assertion fails.

9. CPU 1 processes the queued “invalidate” mes-
sage, and invalidates the cache line containing
“a” from its own cache. But it is too late.

10. CPU 0 receives the “invalidate acknowledge”
message for “a” from CPU 0, and therefore ap-
plies the buffered store just in time to fall victim
to CPU 1’s failed assertion.

11

Once again, the CPU designers cannot do much
about this situation, since the hardware does not
know what relationships there might be among what
to the CPU are just different piles of bits. However,
the memory-barrier instructions can interact with the
invalidate queue, so that when a given CPU executes
a memory barrier, it marks all the entries currently in
its invalidate queue, and forces any subsequent load
to wait until all marked entries have been applied to
the CPU’s cache. Therefore, we can add a memory
barrier as follows:

1 void foo(void)

2 {

3 a = 1;

4 smp_mb();

5 b = 1;

6 }

7

8 void bar(void)

9 {

10 while (b == 0) continue;

11 smp_mb();

12 assert(a == 1);

13 }

With this change, the sequence of operations might
be as follows:

1. CPU 0 executes a=1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0
places the new value of “a” in its store buffer and
transmits an “invalidate” message in order to
flush the corresponding cache line from CPU 1’s
cache.

2. CPU 1 executes while(b==0)continue, but the
cache line containing “b” is not in its cache. It
therefore transmits a “read” message.

3. CPU 0 executes b=1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state),
so it stores the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and trans-
mits the cache line containing the now-updated
value of “b” to CPU 1, also marking the line as
“shared” in its own cache.

5. CPU 1 receives the “invalidate” message for “a”,
places it into its invalidate queue, and transmits
an “invalidate acknowledge” message to CPU 0.
Note that the old value of “a” still remains in
CPU 1’s cache.

6. CPU 1 receives the cache line containing “b” and
installs it in its cache.

7. CPU 1 can now finish executing while(b==0)

continue, and since it finds that the value of
“b” is 1, it proceeds to the next statement.

8. CPU 1 executes the smp_mb(), marking the en-
try in its invalidate queue.

9. CPU 1 executes the assert(a==1), but since
there is a marked entry for the cache line con-
taining “a” in the invalidate queue, CPU 1 must
stall this load until that entry in the invalidate
queue has been applied.

10. CPU 1 processes the “invalidate” message, re-
moving the cacheline containing “a” from its
cache.

11. CPU 1 is now free to load the value of “a”, but
since this results in a cache miss, it must send a
“read” message to fetch the corresponding cache
line.

12. CPU 0 receives the “invalidate acknowledge”
message for “a” from CPU 0, and therefore ap-
plies the buffered store, changing the MESI state
of the corresponding cache line to “modified”.

13. CPU 0 receives the “read” message for “a” from
CPU 1, and therefore changes the state of the
corresponding cache line to “shared”, and trans-
mits the cache line to CPU 1.

14. CPU 1 receives the cache line containing “a”,
and can therefore do the load. Since this load
returns the updated value of “a”, the assertion
passes.

With much passing of MESI messages, the CPUs
arrive at the correct answer.

12

5 Read and Write Memory

Barriers

In the previous section, memory barriers were used
to mark entries in both the store buffer and the inval-
idate queue. But in our code fragment, foo() had no
reason to do anything with the invalidate queue, and
bar() simlarly had no reason to do anything with the
store queue.

Many CPU architectures therefore provide weaker
memory-barrier instructions that do only one or the
other of these two. Roughly speaking, a “read mem-
ory barrier” marks only the invalidate queue and a
“write memory barrier” marks only the store buffer.
while a full-fledged memory barrier does both.

The effect of this is that a read memory barrier
orders only loads on the CPU that executes it, so
that all loads preceding the read memory barrier will
appear to have completed before any load following
the read memory barrier. Similarly, a write memory
barrier orders only stores, again on the CPU that
executes it, and again so that all stores preceding
the write memory barrier will appear to have com-
pleted before any store following the write memory
barrier. A full-fledged memory barrier orders both
loads and stores, but again only on the CPU execut-
ing the memory barrier.

If we update foo and bar to use read and write
memory barriers, they appear as follows:

1 void foo(void)

2 {

3 a = 1;

4 smp_wmb();

5 b = 1;

6 }

7

8 void bar(void)

9 {

10 while (b == 0) continue;

11 smp_rmb();

12 assert(a == 1);

13 }

Some computers have even more flavors of memory
barriers, but understanding these three variants will
provide a good introduction to memory barriers in

general.

6 Example Memory-Barrier

Sequences

This section presents some seductive but subtly bro-
ken uses of memory barriers. Although many of them
will work most of the time, and some will work all
the time on some specific CPUs, these uses must be
avoided if the goal is to produce code that works re-
liably on all CPUs. To help us better see the subtle
breakage, we first need to focus on an ordering-hostile
architecture.

6.1 Ordering-Hostile Architecture

Paul has come across a number of ordering-hostile
computer systems, but the nature of the hostility
has always been extremely subtle, and understand-
ing it has required detailed knowledge of the specific
hardware. Rather than picking on a specific hard-
ware vendor, and as a presumably attractive alterna-
tive to dragging the reader through detailed technical
specifications, let us instead design a mythical but
maximally memory-ordering-hostile computer archi-
tecture.4

This hardware must obey the following ordering
constraints [16, 17]:

1. Each CPU will always perceive its own memory
accesses as occuring in program order.

2. CPUs will reorder a given operation with a store
only if the two operations are referencing differ-
ent locations.

3. All of a given CPU’s loads preceding a read mem-
ory barrier (smp_rmb()) will be perceived by all
CPUs to precede any loads following that read
memory barrier.

4Readers preferring a detailed look at real hardware ar-
chitectures are encouraged to consult CPU vendors’ manu-
als [19, 1, 8, 6, 15, 20, 10, 9, 13] or Gharachorloo’s disser-
tation [4].

13

CPU 0 CPU 1 CPU 2

a=1;

smp_wmb(); while(b==0);
b=1; c=1; z=c;

smp_rmb();

x=a;

assert(z==0||x==1);

Table 2: Memory Barrier Example 1

4. All of a given CPU’s stores preceding a write
memory barrier (smp_wmb()) will be perceived
by all CPUs to precede any stores following that
write memory barrier.

5. All of a given CPU’s accesses (loads and stores)
preceding a full memory barrier (smp_mb()) will
be perceived by all CPUs to precede any accesses
following that memory barrier.

Quick Quiz 6: Does the guarantee that each CPU
sees its own memory accesses in order also guarantee
that each user-level thread will see its own memory
accesses in order? Why or why not?

Imagine a large non-uniform cache architecture
(NUCA) system that, in order to provide fair allo-
cation of interconnect bandwidth to CPUs in a given
node, provided per-CPU queues in each node’s inter-
connect interface, as shown in Figure 8. Although
a given CPU’s accesses are ordered as specified by
memory barriers executed by that CPU, however, the
relative order of a given pair of CPUs’ accesses could
be severely reordered, as we will see.5

6.2 Example 1

Figure2 shows three code fragments, executed con-
currently by CPUs 1, 2, and 3. Each of “a”, “b”, and
“c” are initially zero.

5Any real hardware architect or designer will no doubt be
loudly calling for Ralph on the porcelain intercom, as they just
might be just a bit upset about the prospect of working out
which queue should handle a message involving a cache line
that both CPUs accessed, to say nothing of the many races
that this example poses. All I can say is “Give me a better
example”.

CPU 0

Queue
Message

CPU 1

Queue
Message

CPU 0

Cache

CPU 1

Node 0

CPU 2

Queue
Message

CPU 3

Queue
Message

CPU 3CPU 2

Cache

Node 1

Interconnect

Memory

Figure 8: Example Ordering-Hostile Architecture

Suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that
CPU 1 has been running exclusively within the cache,
so that its message queue is empty. Then CPU 0’s
assignment to “a” and “b” will appear in Node 0’s
cache immediately (and thus be visible to CPU 1),
but will be blocked behind CPU 0’s prior traffic. In
contrast, CPU 1’s assignment to “c” will sail through
CPU 1’s previously empty queue. Therefore, CPU 2
might well see CPU 1’s assignment to “c” before it
sees CPU 0’s assignment to “a”, causing the assertion
to fire, despite the memory barriers.

In theory, portable code could not on this exam-
ple coding technique, however, in practice it actually
does work on all mainstream computer systems.

Quick Quiz 7: Could this code be fixed by insert-
ing a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not?

6.3 Example 2

Figure3 shows three code fragments, executed con-
currently by CPUs 1, 2, and 3. Both “a” and “b” are
initially zero.

Again, suppose CPU 0 recently experienced many
cache misses, so that its message queue is full, but
that CPU 1 has been running exclusively within the

14

CPU 0 CPU 1 CPU 2

a=1; while(a==0);
smp_mb(); y=b;

b=1; smp_rmb();

x=a;

assert(y==0||x==1);

Table 3: Memory Barrier Example 2

CPU 0 CPU 1 CPU 2

1 a=1;
2 smb_wmb();
3 b=1; while(b==0); while(b==0);
4 smp_mb(); smb_mb();
5 c=1; d=1;
6 while(c==0);
7 while(d==0);
8 smp_mb();
9 e=1; assert(e==0||a==1);

Table 4: Memory Barrier Example 3

cache, so that its message queue is empty. Then
CPU 0’s assignment to “a” and “b” will appear in
Node 0’s cache immediately (and thus be visible to
CPU 1), but will be blocked behind CPU 0’s prior
traffic. In contrast, CPU 1’s assignment to “b” will
sail through CPU 1’s previously empty queue. There-
fore, CPU 2 might well see CPU 1’s assignment to “b”
before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

In theory, portable code could not on this example
coding technique, however, as before, in practice it
actually does work on all mainstream computer sys-
tems.

6.4 Example 3

Figure4 shows three code fragments, executed con-
currently by CPUs 1, 2, and 3. All variables are
initially zero.

Note that neither CPU 1 nor CPU 2 can proceed
to line 4 until they see CPU 0’s assignment to “b” on
line 3. Once CPU 1 and 2 have executed their mem-
ory barriers on line 3, they are both guaranteed to
see all assignments by CPU 0 preceding its memory
barrier on line 2. Similarly, CPU 0’s memory barrier

on line 8 pairs with those of CPUs 1 and 2 on line 4,
so that CPU 0 will not execute the assignment to
“e” on line 9 until after its assignment to “a” is vis-
ible to both of the other CPUs. Therefore, CPU 2’s
assertion on line 9 is guaranteed not to fire.

Quick Quiz 8: Suppose that lines 3-5 for CPUs 1
and 2 are in an interrupt handler, and that the
CPU 2’s line 9 is run at process level. What changes,
if any, are required to enable the code to work cor-
rectly, in other words, to prevent the assertion from
firing?

The Linux kernel’s synchronize_rcu() primitive
uses an algorithm similar to that shown in this ex-
ample.

7 Memory-Barrier Instructions

For Specific CPUs

Each CPU has its own peculiar memory-barrier in-
structions, which can make portability a challenge,
as indicated by Table 5. In fact, many software envi-
ronments, including pthreads and Java, simply pro-
hibit direct use of memory barriers, restricting the
programmer to mutual-exclusion primitives that in-
corporate them to the extent that they are required.
In the table, the first four columns indicate whether
a given CPU allows the four possible combinations
of loads and stores to be reordered. The next two
columns indicate whether a given CPU allows loads
and stores to be reordered with atomic instructions.
With only six CPUs, we have five different combina-
tions of load-store reorderings, and three of the four
possible atomic-instruction reorderings.

The seventh column, dependent reads reordered,
requires some explanation, which is undertaken in the
following section covering Alpha CPUs. The short
version is that Alpha requires memory barriers for
readers as well as updaters of linked data structures.
Yes, this does mean that Alpha can in effect fetch
the data pointed to before it fetches the pointer itself,
strange but true. Please see: http://www.openvms.
compaq.com/wizard/wiz_2637.html if you think
that I am just making this up. The benefit of this
extremely weak memory model is that Alpha can

15

L
o
a
d
s

R
eo

rd
er

ed
A

ft
er

L
o
a
d
s?

L
o
a
d
s

R
eo

rd
er

ed
A

ft
er

S
to

re
s?

S
to

re
s

R
eo

rd
er

ed
A

ft
er

S
to

re
s?

S
to

re
s

R
eo

rd
er

ed
A

ft
er

L
o
a
d
s?

A
to

m
ic

In
st

ru
ct

io
n
s

R
eo

rd
er

ed
W

it
h

L
o
a
d
s?

A
to

m
ic

In
st

ru
ct

io
n
s

R
eo

rd
er

ed
W

it
h

S
to

re
s?

D
ep

en
d
en

t
L
o
a
d
s

R
eo

rd
er

ed
?

In
co

h
er

en
t

In
st

ru
ct

io
n

C
a
ch

e/
P

ip
el

in
e?

Alpha Y Y Y Y Y Y Y Y

AMD64 Y

IA64 Y Y Y Y Y Y Y

(PA-RISC) Y Y Y Y

PA-RISC CPUs

POWER
TM

Y Y Y Y Y Y Y

(SPARC RMO) Y Y Y Y Y Y Y

(SPARC PSO) Y Y Y Y

SPARC TSO Y Y

x86 Y Y

(x86 OOStore) Y Y Y Y Y

zSeriesR© Y Y

Table 5: Summary of Memory Ordering

use simpler cache hardware, which in turn permit-
ted higher clock frequency in Alpha’s heyday.

The last column indicates whether a given CPU
has a incoherent instruction cache and pipeline. Such
CPUs require special instructions be executed for
self-modifying code.

Parenthesized CPU names indicate modes that are
architecturally allowed, but rarely used in practice.

The common ”just say no” approach to memory
barriers can be eminently reasonable where it applies,
but there are environments, such as the Linux ker-
nel, where direct use of memory barriers is required.
Therefore, Linux provides a carefully chosen least-
common-denominator set of memory-barrier primi-

tives, which are as follows:

• smp mb(): “memory barrier” that orders both
loads and stores. This means that loads and
stores preceding the memory barrier will be com-
mitted to memory before any loads and stores
following the memory barrier.

• smp rmb(): “read memory barrier” that orders
only loads.

• smp wmb(): “write memory barrier” that orders
only stores.

• smp read barrier depends() that forces subse-
quent operations that depend on prior opera-
tions to be ordered. This primitive is a no-op
on all platforms except Alpha.

• mmiowb() that forces ordering on MMIO writes
that are guarded by global spinlocks. This prim-
itive is a no-op on all platforms on which the
memory barriers in spinlocks already enforce
MMIO ordering. The platforms with a non-
no-op mmiowb() definition include some (but
not all) IA64, FRV, MIPS, and SH systems.
This primitive is relatively new, so relatively few
drivers take advantage of it.

The smp mb(), smp rmb(), and smp wmb() primi-
tives also force the compiler to eschew any opti-
mizations that would have the effect of reorder-
ing memory optimizations across the barriers. The
smp read barrier depends() primitive has a simi-
lar effect, but only on Alpha CPUs.

These primitives generate code only in SMP
kernels, however, each also has a UP ver-
sion (smp mb(), tt smp rmb(), smp wmb(), and
smp read barrier depends(), respectively) that
generate a memory barrier even in UP kernels. The
smp versions should be used in most cases. How-
ever, these latter primitives are useful when writing
drivers, because MMIO accesses must remain ordered
even in UP kernels. In absence of memory-barrier in-
structions, both CPUs and compilers would happily
rearrange these accesses, which at best would make
the device act strangely, and could crash your kernel
or, in some cases, even damage your hardware.

16

So most kernel programmers need not worry about
the memory-barrier peculiarities of each and every
CPU, as long as they stick to these interfaces. If
you are working deep in a given CPU’s architecture-
specific code, of course, all bets are off.

Furthermore, all of Linux’s locking primitives
(spinlocks, reader-writer locks, semaphores, RCU, ...)
include any needed barrier primitives. So if you are
working with code that uses these primitives, you
don’t even need to worry about Linux’s memory-
ordering primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debug-
ging, to say nothing of when writing architecture-
specific code or synchronization primitives.

Besides, they say that a little knowledge is a very
dangerous thing. Just imagine the damage you could
do with a lot of knowledge! For those who wish to un-
derstand more about individual CPUs’ memory con-
sistency models, the next sections describes those of
the most popular and prominent CPUs. Although
nothing can replace actually reading a given CPU’s
documentation, these sections give a good overview.

7.1 Alpha

It may seem strange to say much of anything about a
CPU whose end of life has been announced, but Al-
pha is interesting because, with the weakest memory
ordering model, it reorders memory operations the
most aggressively. It therefore has defined the Linux-
kernel memory-ordering primitives, which must work
on all CPUs, including Alpha. Understanding Alpha
is therefore surprisingly important to the Linux ker-
nel hacker.

The difference between Alpha and the other CPUs
is illustrated by the code shown in Figure 9. This
smp wmb() on line 9 of this figure guarantees that the
element initialization in lines 6-8 is executed before
the element is added to the list on line 10, so that the
lock-free search will work correctly. That is, it makes
this guarantee on all CPUs except Alpha.

Alpha has extremely weak memory ordering such
that the code on line 20 of Figure 9 could see the old
garbage values that were present before the initial-
ization on lines 6-8.

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 9: Insert and Lock-Free Search

Figure 10 shows how this can happen on an ag-
gressively parallel machine with partitioned caches,
so that alternating caches lines are processed by the
different partitions of the caches. Assume that the
list header head will be processed by cache bank 0,
and that the new element will be processed by cache
bank 1. On Alpha, the smp wmb() will guarantee that
the cache invalidates performed by lines 6-8 of Fig-
ure 9 will reach the interconnect before that of line 10
does, but makes absolutely no guarantee about the
order in which the new values will reach the reading
CPU’s core. For example, it is possible that the read-
ing CPU’s cache bank 1 is very busy, but cache bank
0 is idle. This could result in the cache invalidates for
the new element being delayed, so that the reading
CPU gets the new value for the pointer, but sees the
old cached values for the new element. See the Web
site called out earlier for more information, or, again,
if you think that I am just making all this up.6

One could place an smp rmb() primitive be-

6Of course, the astute reader will have already recognized
that Alpha is nowhere near as mean and nasty as it could be,
the (thankfully) mythical architecture in Section 6.1 being a
case in point.

17

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Writing CPU Core

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Reading CPU Core

6
Interconnect

Figure 10: Why smp read barrier depends() is Re-
quired

tween the pointer fetch and dereference. How-
ever, this imposes unneeded overhead on systems
(such as i386, IA64, PPC, and SPARC) that re-
spect data dependencies on the read side. A
smp read barrier depends() primitive has been
added to the Linux 2.6 kernel to eliminate overhead
on these systems. This primitive may be used as
shown on line 19 of Figure 11.

It is also possible to implement a software bar-
rier that could be used in place of smp wmb(), which
would force all reading CPUs to see the writing
CPU’s writes in order. However, this approach was
deemed by the Linux community to impose exces-
sive overhead on extremely weakly ordered CPUs
such as Alpha. This software barrier could be imple-
mented by sending inter-processor interrupts (IPIs)
to all other CPUs. Upon receipt of such an IPI,
a CPU would execute a memory-barrier instruction,
implementing a memory-barrier shootdown. Addi-
tional logic is required to avoid deadlocks. Of course,
CPUs that respect data dependencies would define
such a barrier to simply be smp wmb(). Perhaps this
decision should be revisited in the future as Alpha
fades off into the sunset.

The Linux memory-barrier primitives took their
names from the Alpha instructions, so smp mb() is mb,
smp rmb() is rmb, and smp wmb() is wmb. Alpha is the

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 smp_read_barrier_depends();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 11: Safe Insert and Lock-Free Search

only CPU where smp read barrier depends() is an
smp mb() rather than a no-op.

For more detail on Alpha, see the reference man-
ual [19].

7.2 AMD64

AMD64 is compatible with x86, and has recently up-
dated its memory model [2] to enforce the tighter or-
dering that actual implementations have provided for
some time. The AMD64 implementation of the Linux
smp mb() primitive is mfence, smp rmb() is lfence,
and smp wmb() is sfence. In theory, these might be
relaxed, but any such relaxation must take SSE and
3DNOW instructions into account.

7.3 IA64

IA64 offers a weak consistency model, so that in ab-
sence of explicit memory-barrier instructions, IA64 is
within its rights to arbitrarily reorder memory ref-
erences [8]. IA64 has a memory-fence instruction
named mf, but also has “half-memory fence” mod-
ifiers to loads, stores, and to some of its atomic

18

Figure 12: Half Memory Barrier

instructions [7]. The acq modifier prevents subse-
quent memory-reference instructions from being re-
ordered before the acq, but permits prior memory-
reference instructions to be reordered after the acq,
as fancifully illustrated by Figure 12. Similarly,
the rel modifier prevents prior memory-reference in-
structions from being reordered after the rel, but
allows subsequent memory-reference instructions to
be reordered before the rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out.
However, as one of the only CPUs with this property,
IA64 defines Linux’s semantics of memory ordering
associated with lock acquisition and release.

The IA64 mf instruction is used for the smp rmb(),
smp mb(), and smp wmb() primitives in the Linux ker-
nel. Oh, and despite rumors to the contrary, the “mf”
mneumonic really does stand for “memory fence”.

Finally, IA64 offers a global total order for “re-
lease” operations, including the “mf” instruction.
This provides the notion of transitivity, where if a
given code fragment sees a given access as having
happened, any later code fragment will also see that
earlier access has having happened. Assuming, that
is, that all the code fragments involved correctly use
memory barriers.

7.4 PA-RISC

Although the PA-RISC architecture permits full re-
ordering of loads and stores, actual CPUs run fully
ordered [14]. This means that the Linux kernel’s
memory-ordering primitives generate no code, how-
ever, they do use the gcc memory attribute to dis-
able compiler optimizations that would reorder code
across the memory barrier.

7.5 POWER

The POWER and Power PC R© CPU families have a
wide variety of memory-barrier instructions [6, 15]:

1. sync causes all preceding operations to appear
to have completed before any subsequent oper-
ations are started. This instruction is therefore
quite expensive.

2. lwsync (light-weight sync) orders loads with re-
spect to subsequent loads and stores, and also
orders stores. However, it does not order stores
with respect to subsequent loads. Interest-
ingly enough, the lwsync instruction enforces
the same ordering as does zSeries, and coinci-
dentally, SPARC TSO.

3. eieio (enforce in-order execution of I/O, in
case you were wondering) causes all preceding
cacheable stores to appear to have completed be-
fore all subsequent stores. However, stores to
cacheable memory are ordered separately from
stores to non-cacheable memory, which means
that eieio will not force an MMIO store to pre-
cede a spinlock release.

4. isync forces all preceding instructions to ap-
pear to have completed before any subsequent
instructions start execution. This means that
the preceding instructions must have progressed
far enough that any traps they might generate
have either happened or are guaranteed not to
happen, and that any side-effects of these in-
structions (for example, page-table changes) are
seen by the subsequent instructions.

Unfortunately, none of these instructions line up
exactly with Linux’s wmb() primitive, which requires

19

all stores to be ordered, but does not require the
other high-overhead actions of the sync instruction.
But there is no choice: ppc64 versions of wmb() and
mb() are defined to be the heavyweight sync in-
struction. However, Linux’s smp wmb() instruction is
never used for MMIO (since a driver must carefully
order MMIOs in UP as well as SMP kernels, after all),
so it is defined to be the lighter weight eieio instruc-
tion. This instruction may well be unique in having a
five-vowel mneumonic, which stands for “enforce in-
order execution of I/O”. The smp mb() instruction
is also defined to be the sync instruction, but both
smp rmb() and rmb() are defined to be the lighter-
weight lwsync instruction.

Power features “cumulativity”, which can be used
to obtain transitivity. When used properly, any code
seeing the results of an earlier code fragment will also
see the accesses that this earlier code fragment itself
saw. Much more detail is available from McKenney
and Silvera [18].

Many members of the POWER architecture have
incoherent instruction caches, so that a store to mem-
ory will not necessarily be reflected in the instruction
cache. Thankfully, few people write self-modifying
code these days, but JITs and compilers do it all
the time. Furthermore, recompiling a recently run
program looks just like self-modifying code from the
CPU’s viewpoint. The icbi instruction (instruction
cache block invalidate) invalidates a specified cache
line from the instruction cache, and may be used in
these situations.

7.6 SPARC RMO, PSO, and TSO

Solaris on SPARC uses TSO (total-store order), as
does Linux when built for the “sparc” 32-bit architec-
ture. However, a 64-bit Linux kernel (the “sparc64”
architecture) runs SPARC in RMO (relaxed-memory
order) mode [20]. The SPARC architecture also offers
an intermediate PSO (partial store order). Any pro-
gram that runs in RMO will also run in either PSO or
TSO, and similarly, a program that runs in PSO will
also run in TSO. Moving a shared-memory parallel
program in the other direction may require careful
insertion of memory barriers, although, as noted ear-
lier, programs that make standard use of synchroniza-

tion primitives need not worry about memory barri-
ers.

SPARC has a very flexible memory-barrier instruc-
tion [20] that permits fine-grained control of ordering:

StoreStore: order preceding stores before subse-
quent stores. (This option is used by the Linux
smp wmb() primitive.)

LoadStore: order preceding loads before subsequent
stores.

StoreLoad: order preceding stores before subse-
quent loads.

LoadLoad: order preceding loads before subse-
quent loads. (This option is used by the Linux
smp rmb() primitive.)

Sync: fully complete all preceding operations before
starting any subsequent operations.

MemIssue: complete preceding memory operations
before subsequent memory operations, impor-
tant for some instances of memory-mapped I/O.

Lookaside: same as MemIssue, but only applies to
preceding stores and subsequent loads, and even
then only for stores and loads that access the
same memory location.

The Linux smp mb() primitive uses the first
four options together, as in membar #LoadLoad

| #LoadStore | #StoreStore | #StoreLoad, thus
fully ordering memory operations.

So, why is membar #MemIssue needed? Because a
membar #StoreLoad could permit a subsequent load
to get its value from a write buffer, which would be
disastrous if the write was to an MMIO register that
induced side effects on the value to be read. In con-
trast, membar #MemIssue would wait until the write
buffers were flushed before permitting the loads to ex-
ecute, thereby ensuring that the load actually gets its
value from the MMIO register. Drivers could instead
use membar #Sync, but the lighter-weight membar

#MemIssue is preferred in cases where the additional
function of the more-expensive membar #Sync are not
required.

20

The membar #Lookaside is a lighter-weight ver-
sion of membar #MemIssue, which is useful when
writing to a given MMIO register affects the value
that will next be read from that register. However,
the heavier-weight membar #MemIssue must be used
when a write to a given MMIO register affects the
value that will next be read from some other MMIO
register.

It is not clear why SPARC does not define wmb() to
be membar #MemIssue and smb wmb() to be membar

#StoreStore, as the current definitions seem vulner-
able to bugs in some drivers. It is quite possible that
all the SPARC CPUs that Linux runs on implement a
more conservative memory-ordering model than the
architecture would permit.

SPARC requires a flush instruction be used be-
tween the time that an instruction is stored and exe-
cuted [20]. This is needed to flush any prior value for
that location from the SPARC’s instruction cache.
Note that flush takes an address, and will flush only
that address from the instruction cache. On SMP
systems, all CPUs’ caches are flushed, but there is
no convenient way to determine when the off-CPU
flushes complete, though there is a reference to an
implementation note.

7.7 x86

Since the x86 CPUs provide “process ordering” so
that all CPUs agree on the order of a given CPU’s
writes to memory, the smp wmb() primitive is a no-
op for the CPU [10]. However, a compiler directive
is required to prevent the compiler from performing
optimizations that would result in reordering across
the smp wmb() primitive.

On the other hand, x86 CPUs have tradition-
ally given no ordering guarantees for loads, so
the smp mb() and smp rmb() primitives expand to
lock;addl. This atomic instruction acts as a barrier
to both loads and stores.

More recently, Intel has published a memory model
for x86 [11]. It turns out that Intel’s actual CPUs en-
forced tighter ordering than was claimed in the pre-
vious specifications, so this model is in effect simply
mandating the earlier de-facto behavior. Even more
recently, Intel published an updated memory model

for x86 [12], which mandates a total global order for
stores, although individual CPUs are still permitted
to see their own stores as having happened earlier
than this total global order would indicate. This ex-
ception to the total ordering is needed to allow impor-
tant hardware optimizations involving store buffers.
Software may use atomic operations to override these
hardware optimizations, which is one reason that
atomic operations tend to be more expensive than
their non-atomic counterparts. This total store order
is not guaranteed on older processors.

However, note that some SSE instructions are
weakly ordered (clflush and non-temporal move in-
structions [9]). CPUs that have SSE can use mfence

for smp mb(), lfence for smp rmb(), and sfence for
smp wmb().

A few versions of the x86 CPU have a mode bit
that enables out-of-order stores, and for these CPUs,
smp wmb() must also be defined to be lock;addl.

Although many older x86 implementations accom-
modated self-modifying code without the need for
any special instructions, newer revisions of the x86
architecture no longer requires x86 CPUs to be so ac-
commodating. Interestingly enough, this relaxation
comes just in time to inconvenience JIT implemen-
tors.

7.8 zSeries

The zSeries machines make up the IBM
TM

main-
frame family, previously known as the 360, 370,
and 390 [13]. Parallelism came late to zSeries, but
given that these mainframes first shipped in the mid
1960s, this is not saying much. The bcr 15,0 in-
struction is used for the Linux smp mb(), smp rmb(),
and smp wmb() primitives. It also has comparatively
strong memory-ordering semantics, as shown in Ta-
ble 5, which should allow the smp wmb() primitive to
be a nop (and by the time you read this, this change
may well have happened). The table actually un-
derstates the situation, as the zSeries memory model
is otherwise sequentially consistent, meaning that all
CPUs will agree on the order of unrelated stores from
different CPUs.

As with most CPUs, the zSeries architecture does
not guarantee a cache-coherent instruction stream,

21

hence, self-modifying code must execute a serializing
instruction between updating the instructions and ex-
ecuting them. That said, many actual zSeries ma-
chines do in fact accommodate self-modifying code
without serializing instructions. The zSeries instruc-
tion set provides a large set of serializing instructions,
including compare-and-swap, some types of branches
(for example, the aforementioned bcr 15,0 instruc-
tion), and test-and-set, among others.

8 Are Memory Barriers For-

ever?

There have been a number of recent systems that are
significantly less aggressive about out-of-order exe-
cution in general and re-ordering memory references
in particular. Will this trend continue to the point
where memory barriers are a thing of the past?

The argument in favor would cite proposed mas-
sively multi-threaded hardware architectures, so that
each thread would wait until memory was ready, with
tens, hundreds, or even thousands of other threads
making progress in the meantime. In such an archi-
tecture, there would be no need for memory barriers,
because a given thread would simply wait for all out-
standing operations to complete before proceeding to
the next instruction. Because there would be poten-
tially thousands of other threads, the CPU would be
completely utilized, so no CPU time would be wasted.

The argument against would cite the extremely
limited number of applications capable of scaling up
to a thousand threads, as well as increasingly se-
vere realtime requirements, which are in the tens of
microseconds for some applications. The realtime-
response requirements are difficult enough to meet as
is, and would be even more difficult to meet given the
extremely low single-threaded throughput implied by
the massive multi-threaded scenarios.

Another argument in favor would cite increas-
ingly sophisticated latency-hiding hardware imple-
mentation techniques that might well allow the CPU
to provide the illusion of fully sequentially consis-
tent execution while still providing almost all of the
performance advantages of out-of-order execution.

A counter-argument would cite the increasingly se-
vere power-efficiency requirements presented both by
battery-operated devices and by environmental re-
sponsibility.

Who is right? We have no clue, so are preparing
to live with either scenario.

9 Advice to Hardware Design-

ers

There are any number of things that hardware de-
signers can do to make the lives of software people
difficult. Here is a list of a few such things that we
have encountered in the past, presented here in the
hope that it might help prevent future such problems:

1. I/O devices that ignore cache coherence.

This charming misfeature can result in DMAs
from memory missing recent changes to the out-
put buffer, or, just as bad, cause input buffers
to be overwritten by the contents of CPU caches
just after the DMA completes. To make your
system work in face of such misbehavior, you
must carefully flush the CPU caches of any loca-
tion in any DMA buffer before presenting that
buffer to the I/O device. And even then, you
need to be very careful to avoid pointer bugs,
as even a misplaced read to an input buffer can
result in corrupting the data input!

2. Device interrupts that ignore cache coherence.

This might sound innocent enough — after all,
interrupts aren’t memory references, are they?
But imagine a CPU with a split cache, one bank
of which is extremely busy, therefore holding
onto the last cacheline of the input buffer. If the
corresponding I/O-complete interrupt reaches
this CPU, then that CPU’s memory reference
to the last cache line of the buffer could return
old data, again resulting in data corruption, but
in a form that will be invisible in a later crash
dump. By the time the system gets around to
dumping the offending input buffer, the DMA
will most likely have completed.

22

3. Inter-processor interrupts (IPIs) that ignore
cache coherence.

This can be problematic if the IPI reaches its
destination before all of the cache lines in the
corresponding message buffer have been commit-
ted to memory.

4. Context switches that get ahead of cache coher-
ence.

If memory accesses can complete too wildly out
of order, then context switches can be quite har-
rowing. If the task flits from one CPU to an-
other before all the memory accesses visible to
the source CPU make it to the destination CPU,
then the task could easily see the corresponding
variables revert to prior values, which can fatally
confuse most algorithms.

5. Overly kind simulators and emulators.

It is difficult to write simulators or emulators
that force memory re-ordering, so software that
runs just fine in these these environments can
get a nasty surprise when it first runs on the
real hardware. Unfortunately, it is still the rule
that the hardware is more devious than are the
simulators and emulators, but we hope that this
situation changes.

Again, we encourage hardware designers to avoid
these practices!

Acknowledgements

I own thanks to many CPU architects for patiently
explaining the instruction- and memoyr-reordering
features of their CPUs, particularly Wayne Cardoza,
Ed Silha, Anton Blanchard, Brad Frey, Cathy May,
Derek Williams, Tim Slegel, Juergen Probst, Ingo
Adlung, and Ravi Arimilli. Wayne deserves special
thanks for his patience in explaining Alphas reorder-
ing of dependent loads, a lesson that I resisted quite
strenu- ously!

Legal Statement

This work represents the view of the author and does not

necessarily represent the view of IBM.

IBM, zSeries, and Power PC are trademarks or registered

trademarks of International Business Machines Corpora-

tion in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

i386 is a trademarks of Intel Corporation or its sub-

sidiaries in the United States, other countries, or both.

Other company, product, and service names may be

trademarks or service marks of such companies.

Copyright c© 2005 by IBM Corporation.

Answers to Quick Quizzes

Quick Quiz 1:
Answer: What happens if two CPUs attempt to
invalidate the same cache line concurrently?
One of the CPUs gains access to the shared bus
first, and that CPU “wins”. The other CPU must
invalidate its copy of the cache line and transmit an
“invalidate acknowledge” message to the other CPU.
Of course, the losing CPU can be expected to
immediately issue a “read invalidate” transaction, so
the winning CPU’s victory will be quite ephemeral.

Quick Quiz 2:
Answer: When an “invalidate” message appears
in a large multiprocessor, every CPU must give
an “invalidate acknowledge” response. Wouldn’t
the resulting “storm” of “invalidate acknowledge”
responses totally saturate the system bus?
It might, if large-scale multiprocessors were in fact
implemented that way. Larger multiprocessors,
particularly NUMA machines, tend to use so-called
“directory-based” cache-coherence protocols to avoid
this and other problems.

Quick Quiz 3:
Answer: If SMP machines are really using message

23

passing anyway, why bother with SMP at all?
There has been quite a bit of controversy on this
topic over the past few decades. One answer is that
the cache-coherence protocols are quite simple, and
therefore can be implemented directly in hardware,
gaining bandwidths and latencies unattainable by
software message passing. Another answer is that
the real truth is to be found in economics due to the
relative prices of large SMP machines and that of
clusters of smaller SMP machines. A third answer
is that the SMP programming model is easier to
use than that of distributed systems, but a rebuttal
might note the appearance of HPC clusters and
MPI. And so the argument continues.

Quick Quiz 4:
Answer: How does the hardware handle the delayed
transitions described above?
Usually by adding additional states, though these
additional states need not be actually stored with
the cache line, due to the fact that only a few lines
at a time will be transitioning. The need to delay
transitions is but one issue that results in real-world
cache coherence protocols being much more complex
than the over-simplified MESI protocol described
in this appendix. Hennessy and Patterson’s classic
introduction to computer architecture [5] covers
many of these issues.

Quick Quiz 5:
Answer: What sequence of operations would put
the CPUs’ caches all back into the “invalid” state?

There is no such sequence, at least in absence
of special “flush my cache” instructions in the
CPU’s instruction set. Most CPUs do have such
instructions.

Quick Quiz 6:
Answer: Does the guarantee that each CPU sees
its own memory accesses in order also guarantee
that each user-level thread will see its own memory
accesses in order? Why or why not?

No. Consider the case where a thread migrates from
one CPU to another, and where the destination
CPU perceives the source CPU’s recent memory
operations out of order. To preserve user-mode
sanity, kernel hackers must use memory barriers
in the context-switch path. However, the locking
already required to safely do a context switch
should automatically provide the memory barriers
needed to cause the user-level task to see its own
accesses in order. That said, if you are designing a
super-optimized scheduler, either in the kernel or at
user level, please keep this scenario in mind!

Quick Quiz 7:
Answer: Could this code be fixed by inserting
a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not?
No. Such a memory barrier would only force order-
ing local to CPU 1. It would have no effect on the
relative ordering of CPU 0’s and CPU 1’s accesses,
so the assertion could still fail. However, all main-
stream computer systems provide one mechanism
or another to provide “transitivity”, which provides
intuitive causal ordering: if B saw the effects of A’s
accesses, and C saw the effects of B’s accesses, then
C must also see the effects of A’s accesses.

Quick Quiz 8:
Answer: Suppose that lines 3-5 for CPUs 1 and 2
are in an interrupt handler, and that the CPU 2’s
line 9 is run at process level. What changes, if any,
are required to enable the code to work correctly, in
other words, to prevent the assertion from firing?
The assertion will need to coded so as to ensure
that the load of “e” precedes that of “a”. In the
Linux kernel, the barrier() primitive may be used
to accomplish this in much the same way that the
memory barrier was used in the assertions in the
previous examples.

References

[1] Advanced Micro Devices. AMD x86-64 Ar-

24

chitecture Programmer’s Manual Volumes 1-5,
2002.

[2] Advanced Micro Devices. AMD x86-64 Ar-
chitecture Programmer’s Manual Volume 2: Sys-
tem Programming, 2007.

[3] Culler, D. E., Singh, J. P., and Gupta,

A. Parallel Computer Architecture: a Hard-
ware/Software Approach. Morgan Kaufman,
1999.

[4] Gharachorloo, K. Memory consistency mod-
els for shared-memory multiprocessors. Tech.
Rep. CSL-TR-95-685, Computer Systems Lab-
oratory, Departments of Electrical Engineer-
ing and Computer Science, Stanford Univer-
sity, Stanford, CA, December 1995. Avail-
able: http://www.hpl.hp.com/techreports/

Compaq-DEC/WRL-95-9.pdf [Viewed: October
11, 2004].

[5] Hennessy, J. L., and Patterson, D. A.

Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufman, 1995.

[6] IBM Microelectronics and Motorola.
PowerPC Microprocessor Family: The Program-
ming Environments, 1994.

[7] Intel Corporation. Intel Itanium Architec-
ture Software Developer’s Manual Volume 3: In-
struction Set Reference, 2002.

[8] Intel Corporation. Intel Itanium Archi-
tecture Software Developer’s Manual Volume 3:
System Architecture, 2002.

[9] Intel Corporation. IA-32 Intel Architec-
ture Software Developer’s Manual Volume 2B:
Instruction Set Reference, N-Z, 2004. Avail-
able: ftp://download.intel.com/design/

Pentium4/manuals/25366714.pdf [Viewed:
February 16, 2005].

[10] Intel Corporation. IA-32 Intel Archi-
tecture Software Developer’s Manual Volume
3: System Programming Guide, 2004. Avail-
able: ftp://download.intel.com/design/

Pentium4/manuals/25366814.pdf [Viewed:
February 16, 2005].

[11] Intel Corporation. Intel 64 Architec-
ture Memory Ordering White Paper, 2007.
Available: http://developer.intel.com/

products/processor/manuals/318147.pdf

[Viewed: September 7, 2007].

[12] Intel Corporation. Intel 64 and IA-32
Architectures Software Developers Manual,
Volume 3A: System Programming Guide, Part
1, 2009. Available: http://download.intel.

com/design/processor/manuals/253668.pdf

[Viewed: September 7, 2007].

[13] International Business Machines Cor-

poration. z/Architecture principles of oper-
ation. Available: http://publibz.boulder.

ibm.com/epubs/pdf/dz9zr003.pdf [Viewed:
February 16, 2005], May 2004.

[14] Kane, G. PA-RISC 2.0 Architecture. Hewlett-
Packard Professional Books, 1996.

[15] Lyons, M., Silha, E., and Hay, B. PowerPC
storage model and AIX programming. Available:
http://www-106.ibm.com/developerworks/

eserver/articles/powerpc.html [Viewed:
January 31, 2005], August 2002.

[16] McKenney, P. E. Memory ordering in
modern microprocessors, part I. Linux Journal
1, 136 (August 2005), 52–57. Available: http:

//www.linuxjournal.com/article/8211

http://www.rdrop.com/users/paulmck/

scalability/paper/ordering.2007.09.19a.

pdf [Viewed November 30, 2007].

[17] McKenney, P. E. Memory ordering in modern
microprocessors, part II. Linux Journal 1, 137
(September 2005), 78–82. Available: http:

//www.linuxjournal.com/article/8212

http://www.rdrop.com/users/paulmck/

scalability/paper/ordering.2007.09.19a.

pdf [Viewed November 30, 2007].

[18] McKenney, P. E., and Silvera, R. Exam-
ple power implementation for c/c++ memory

25

model. Available: http://www.rdrop.com/

users/paulmck/scalability/paper/N2745r.

2009.02.27a.html [Viewed: April 5, 2009],
February 2009.

[19] Sites, R. L., and Witek, R. T. Alpha AXP
Architecture, second ed. Digital Press, 1995.

[20] SPARC International. The SPARC Archi-
tecture Manual, 1994.

26

