
RCU Usage In the Linux Kernel: One Decade Later

Paul E. McKenney
Linux Technology Center

IBM Beaverton

Silas Boyd-Wickizer
MIT CSAIL

Jonathan Walpole
Computer Science Department

Portland State University

Abstract
Read-copy update (RCU) is a scalable high-performance
synchronization mechanism implemented in the Linux
kernel. RCU’s novel properties include support for con-
current reading and writing, and highly optimized inter-
CPU synchronization. Since RCU’s introduction into the
Linux kernel over a decade ago its usage has continued to
expand. Today, most kernel subsystems use RCU. This
paper discusses the requirements that drove the devel-
opment of RCU, the design and API of the Linux RCU
implementation, and how kernel developers apply RCU.

1 Introduction

The first Linux kernel to include multiprocessor support
is just over 15 years old. This kernel provided support
for concurrently running applications, but serialized all
execution in the kernel using a single lock. Concurrently
executing applications that frequently invoked the kernel
performed poorly.

Today the single kernel lock is gone, replaced by highly
concurrent kernel subsystems. Kernel intensive applica-
tions that would have performed poorly on dual-processor
machines 15 years ago, now scale and perform well on
multicore machines with many processors [2].

Kernel developers have used a variety of techniques to
improve concurrency, including fine-grained locks, lock-
free data structures, per-CPU data structures, and read-
copy-update (RCU), the topic of this paper. Uses of the
RCU API have increased from none in 2002 to over 6500
in 2013 (see Figure 1). Most major Linux kernel subsys-
tems use RCU as a synchronization mechanism. Linus
Torvalds characterized a recent RCU-based patch to the
virtual file system “as seriously good stuff” because de-
velopers were able to use RCU to remove bottlenecks
affecting common workloads [22]. RCU is not unique to
Linux (see [6, 12, 17] for other examples), but Linux’s
wide variety of RCU usage patterns is, as far as we know,

0

1000

2000

3000

4000

5000

6000

7000

2004 2006 2008 2010 2012

#
R

C
U

A
PI

ca
lls

Year

Figure 1: The number of uses of the RCU API in Linux
kernel code from 2002 to 2013.

unique among the commonly used kernels. Understand-
ing RCU is now a prerequisite for understanding the Linux
implementation and its performance.

The success of RCU is, in part, due to its high perfor-
mance in the presence of concurrent readers and updaters.
The RCU API facilitates this with two relatively simple
primitives: readers access data structures within RCU
read-side critical sections, while updaters use RCU syn-
chronization to wait for all pre-existing RCU read-side
critical sections to complete. When combined, these prim-
itives allow threads to concurrently read data structures,
even while other threads are updating them.

This paper describes the performance requirements that
led to the development of RCU, gives an overview of the
RCU API and implementation, and examines how ker-
nel developers have used RCU to optimize kernel perfor-
mance. The primary goal is to provide an understanding
of the RCU API and how to apply it.

The remainder of the paper is organized as follows. Sec-
tion 2 explains the important requirements for production-
quality RCU implementations. Section 3 gives an

1



overview of RCU’s API and overall design. Section 4
introduces a set of common usage patterns that cover most
uses of RCU, illustrating how RCU is used in Linux. In
some cases its use as a replacement for existing synchro-
nization mechanisms introduces subtle semantic prob-
lems. Section 5 discusses these problems and commonly
applied solutions. Section 6 highlights the importance of
RCU by documenting its use in Linux over time and by
specific subsystems. Section 7 discusses related work and
Section 8 presents conclusions.

2 RCU Requirements

RCU fulfills three requirements dictated by the kernel:
(1) support for concurrent readers, even during updates;
(2) low computation and storage overhead; and (3) deter-
ministic completion time. The first two are performance-
related requirements, while the third is important for real-
time response and software engineering reasons. This
section describes the three requirements and the next two
sections describe how RCU is designed to fulfill these
requirements and how kernel developers use RCU.

The primary RCU requirement is support for concur-
rent reading of a data structure, even during updates. The
Linux kernel uses many data structures that are read and
updated intensively, especially in the virtual file system
(VFS) and in networking. For example, the VFS caches
metadata, called dentrys, for recently accessed files. Ev-
ery time an application opens a file, the kernel walks the
file path and reads the dentry for each path component
out of the dentry cache. Since applications might access
many files, some only once, the kernel is frequently load-
ing dentrys into the cache and evicting unused dentrys.
Ideally, threads reading from the cache would not inter-
fere with each other or be impeded by threads performing
updates.

The second RCU requirement is low space and execu-
tion overhead. Low space overhead is important because
the kernel must synchronize access to millions of kernel
objects. On a server in our lab, for example, the kernel
caches roughly 8 million dentrys. An overhead of more
than a few bytes per-dentry is an unacceptable storage
overhead.

Low execution overhead is important because the ker-
nel accesses data structures frequently using extremely
short code paths. The SELinux access vector cache
(AVC) [19] is an example of a performance critical data
structure that the kernel might access several times during
a system call. In the absence of spinning to acquire a
lock or waiting to fulfill cache misses, each read from
the AVC takes several hundred cycles. Incurring a single
cache miss, which can cost hundreds of cycles, would
double the cost of accessing the AVC. RCU must coor-

dinate readers and updaters in a way that provides low
overhead synchronization in the common case.

A third requirement is deterministic completion times
for read operations. This is critical to real-time re-
sponse [10], but also has important software-engineering
benefits, including the ability to use RCU within non-
maskable interrupt (NMI) handlers. Accessing shared
data within NMI handlers is tricky, because a thread might
be interrupted within a critical section. Using spin locks
can lead to deadlock, and lock-free techniques utilizing
optimistic concurrency control lead to non-deterministic
completion times if the operation must be re-tried many
times.

Related synchronization primitives, such as read-write
locks, Linux local-global locks, and transactional mem-
ory, do not fulfill the requirements discussed here. None
of these primitives provide concurrent read and write
operations to the same data. They all impose a storage
overhead. Even the storage overhead for a read-write lock,
which is a single integer, is unacceptable for some cases.
Read-write locks and local-global locks use expensive
atomic instructions or memory barriers during acquisition
and release.

The next section describes an RCU design and API
that provides concurrent reads and writes, low space and
execution overhead, and deterministic execution times.

3 RCU Design

RCU is a library for the Linux kernel that allows ker-
nel subsystems to synchronize access to shared data in
an efficient manner. The core of RCU is based on two
primitives: RCU read-side critical sections, which we
will refer to simply as RCU critical sections, and RCU
synchronization. A thread enters an RCU critical sec-
tion by calling rcu_read_lock and completes an RCU
critical section by calling rcu_read_unlock. A thread
uses RCU synchronization by calling synchronize_rcu,
which guarantees not to return until all the RCU critical
sections executing when synchronize_rcu was called
have completed. synchronize_rcu does not prevent
new RCU critical sections from starting, nor does it wait
for the RCU critical sections to finish that were started
after synchronize_rcu was called.

Developers can use RCU critical sections and RCU
synchronization to build data structures that allow con-
current reading, even during updates. To illustrate one
possible use, consider how to safely free the memory
associated with a dentry when an application removes
a file. One way to implement this is for a thread to ac-
quire a pointer to a dentry only from the directory cache
and to always execute in an RCU critical section when
manipulating a dentry. When an application removes a
file, the kernel, possibly in parallel with dentry readers,

2



void rcu_read_lock()
{
preempt_disable[cpu_id()]++;

}

void rcu_read_unlock()
{
preempt_disable[cpu_id()]--;

}

void synchronize_rcu(void)
{
for_each_cpu(int cpu)
run_on(cpu);

}

Figure 2: A simplified version of the Linux RCU imple-
mentation.

removes the dentry from the directory cache, then calls
synchronize_rcu to wait for all threads that might be
accessing the dentry in an RCU critical section. When
synchronize_rcu returns, the kernel can safely free the
dentry. Memory reclamation is one use of RCU; we
discuss others in Section 4.

RCU allows threads to wait for the completion of pre-
existing RCU critical sections, but it does not provide
synchronization among threads that update a data struc-
ture. These threads coordinate their activities using an-
other mechanism, such as non-blocking synchronization,
single updater thread, or transactional memory [14]. Most
threads performing updates in the Linux kernel use lock-
ing.

The kernel requires RCU to provide low storage and
execution overhead and provide deterministic RCU criti-
cal section completion times. RCU fulfills these require-
ments with a design based on scheduler context switches.
If RCU critical sections disable thread preemption (which
implies a thread cannot context switch in an RCU critical
section), then synchronize_rcu need only wait until
every CPU executes a context switch to guarantee all nec-
essary RCU critical sections are complete. No additional
explicit communication is required between RCU critical
sections and synchronize_rcu.

Figure 2 presents a simplified version of the Linux
RCU implementation. Calls to rcu_read_lock disable
preemption and can be nested, while rcu_read_unlock
re-enables preemption. preempt_disable is a CPU-
local variable, so threads do not contend when modifying
it. To ensure every CPU executes a context switch, the
thread calling synchronize_rcu briefly executes on ev-
ery CPU. Notice that the cost of synchronize_rcu is
independent of the number of times threads execute rcu_
read_lock and rcu_read_unlock.

In practice Linux implements synchronize_rcu by
waiting for all CPUs in the system to pass through a con-
text switch, instead of scheduling a thread on each CPU.
This design optimizes the Linux RCU implementation for
low-cost RCU critical sections, but at the cost of delaying
synchronize_rcu callers longer than necessary. In prin-
ciple, a writer waiting for a particular reader need only
wait for that reader to complete an RCU critical section.
The reader, however, must communicate to the writer
that the RCU critical section is complete. The Linux
RCU implementation essentially batches reader-to-writer
communication by waiting for context switches. When
possible, writers can use an asynchronous version of
synchronize_rcu, call_rcu, that will asynchronously
invokes a specified callback after all CPUs have passed
through at least one context switch.

The Linux RCU implementation tries to amortize
the cost of detecting context switches over many
synchronize_rcu and call_rcu operations. Detect-
ing context switches requires maintaining state shared
between CPUs. A CPU must update state, which other
CPUs read, that indicate it executed a context switch. Up-
dating shared state can be costly, because it causes other
CPUs to cache miss. RCU reduces this cost by reporting
per-CPU state roughly once per scheduling clock tick. If
the kernel calls synchronize_rcu and call_rcu many
times in that period, RCU will have reduced the average
cost of each call to synchronize_rcu and call_rcu at
the cost of higher latency. Linux can satisfy more than
1,000 calls to synchronize_rcu and call_rcu in a sin-
gle batch [20]. For latency sensitive kernel subsystems,
RCU provides expedited synchronization functions that
execute without waiting for all CPUs to execute multiple
context switches.

An additional consideration with the Linux RCU im-
plementation is handling memory ordering. Since RCU
readers and updaters run concurrently, special considera-
tion must be given to compiler and memory re-ordering
issues. Without proper care, a reader accessing a data
item that a updater concurrently initialized and inserted
could observe that item’s pre-initialized value.

Therefore, RCU helps developers manage reorder-
ing with rcu_dereference and rcu_assign_pointer.
Readers use rcu_dereference to signal their intent to
read a pointer in a RCU critical section. Updaters use
rcu_assign_pointer to mutate these pointers. These
two primitives contain architecture-specific memory-
barrier instructions and compiler directives to enforce
correct ordering. Both primitives reduce to simple assign-
ment statements on sequentially consistent systems. The
rcu_dereference primitive is a volatile access except
on DEC Alpha, which also requires a memory barrier [3].

Figure 3 summarizes the Linux RCU API. The next sec-
tion describes how Linux developers have applied RCU.

3



rcu_read_lock() Begin an RCU critical section.
rcu_read_unlock() Complete an RCU critical section.
synchronize_rcu() Wait for existing RCU critical sections to complete.
call_rcu(callback, arguments...) Call the callback when existing RCU critical sections complete.
rcu_dereference(pointer) Signal the intent to deference a pointer in an RCU critical section.
rcu_assign_pointer(pointer_addr, pointer) Assign a value to a pointer that is read in RCU critical sections.

Figure 3: Summary of the Linux RCU API.

4 Using RCU

A decade of experience using RCU in the Linux kernel
has shown that RCU synchronization is powerful enough
to support a wide variety of different usage patterns. This
section outlines some of the most common patterns, ex-
plaining how to use RCU and what special considerations
arise when using RCU to replace existing mechanisms.

We performed the experiments described in this section
on a 16-CPU 3GHz Intel x86 system. The experiments
were written as a kernel module and use the RCU imple-
mentation in Linux 2.6.23.

4.1 Wait for Completion

The simplest use of RCU is waiting for pre-existing
activities to complete. In this use case, the waiters
use synchronize_rcu, or its asynchronous counterpart
call_rcu, and waitees delimit their activities with RCU
read-side critical sections.

The Linux NMI system uses RCU to unregister NMI
handlers. Before unregistering a NMI handler, the kernel
must guarantee that no CPU is currently executing the
handler. Otherwise, a CPU might attempt to execute code
in invalid or free memory. For example, when the kernel
unloads a module that registered an NMI handler, the
kernel frees memory that contains the code for the NMI
handler.

Figure 4 shows pseudocode for the Linux NMI sys-
tem. The nmi_list is a list of NMI handlers that re-
quires a spin lock to protect against concurrent updates,
but allows lock-free reads. The rcu_list_t abstracts
a common pattern for accessing linked lists. The func-
tion rcu_list_for_each calls rcu_dereference for
every list element, and rcu_list_add and rcu_list_
remove call rcu_assign_pointer when modifying the
list. The NMI system executes every NMI handler within
an RCU critical section. To remove a handler, the NMI
system removes the handler from the list, then calls
synchronize_rcu. When synchronize_rcu returns,
every call to the handler must have returned.

Using RCU in the NMI system has three nice properties.
One is that it is high performance. CPUs can execute
NMI handlers frequently without causing cache misses
on other CPUs. This is important for applications like

Perf or OProfile which rely on frequent invocations of
NMI handlers.

The second property, which is important for real time
applications, is that entering and completing an RCU
critical section always executes a deterministic number of
instructions. Using a blocking synchronization primitive,
like read-write locks, could cause handle_nmi to block
for long periods of time.

The third property is that the implementation of the
NMI system allows dynamically registering and unreg-
istering NMI handlers. Previous kernels did not allow
this because it was difficult to implement in a way that
was performant and guaranteed absence of deadlock. Us-
ing a read-write lock is difficult because a CPU might
be interrupted by an NMI while while holding the lock
in unregister_nmi_handler. This would cause dead-
lock when the CPU tried to acquire the lock again in
nmi_handler.

4.2 Reference Counting

RCU is a useful substitute for incrementing and decre-
menting reference counts. Rather than explicitly counting
references to a particular data item, the data item’s users
execute in RCU critical sections. To free a data item, a
thread must prevent other threads from obtaining a pointer
to the data item, then use call_rcu to free the memory.

This style of reference counting is particularly efficient
because it does not require updates, memory barriers,
or atomic operations in the data-item usage path. Conse-
quently, it can be orders of magnitude faster than reference
counting that is implemented using atomic operations on
a shared counter.

To demonstrate the performance difference we wrote an
experiment that creates one thread per CPU. All threads
loop and either increment and decrement a shared ref-
erence count, or execute an empty RCU critical section.
Figure 5 presents the results of the experiment. The y-
axis shows the time to either enter and complete an RCU
critical section, or to increment and decrement a reference
count. The number of CPUs using RCU or accessing the
reference count varies along the x-axis.

On one core, it takes 6 nanoseconds to execute an
empty RCU critical section, but it takes 66 nanoseconds to
increment and decrement a reference count. The overhead

4



rcu_list_t nmi_list;
spinlock_t nmi_list_lock;

void handle_nmi()
{
rcu_read_lock();
rcu_list_for_each(&nmi_list, handler_t cb)
cb();

rcu_read_unlock();
}

void register_nmi_handler(handler_t cb)
{
spin_lock(&nmi_list_lock);
rcu_list_add(&nmi_list, cb);
spin_unlock(&nmi_list_lock);

}

void unregister_nmi_handler(handler_t cb)
{
spin_lock(&nmi_list_lock);
rcu_list_remove(cb);
spin_unlock(&nmi_list_lock);
synchronize_rcu();

}

Figure 4: Pseudocode for the Linux NMI system. The
RCU list functions contain the necessary calls to rcu_
dereference and rcu_assign_pointer.

of RCU is constant as the number of CPUs increases.
The overhead of reference counting increases to 2819
nanoseconds on 16 cores, or more than 400× the cost of
RCU.

The Linux networking stack uses RCU to implement
high performance reference counting. Figure 6 shows an
example that uses RCU to hold a reference to IP options
while the kernel networking stack copies the IP options
into a packet. udp_sendmsg calls rcu_read_lock be-
fore copying the IP options. Once the options are copied,
udp_sendmsg calls rcu_read_unlock to complete the
critical section. An application can change the IP op-
tions on a per-socket basis by calling sys_setsockopt,
which eventually causes the kernel to call setsockopt.
setsockopt sets the new IP options, then uses call_
rcu to asynchronously free the memory storing the old IP
options. Using call_rcu ensures all threads that might
be manipulating the old options will have released their
reference by exiting the RCU critical section.

Holding a reference to an object using an RCU critical
section is useful if the operation on the object is relatively
short. However, if the thread executing the operation must
sleep it must exit the RCU critical section. To retain its
reference to the object, a thread can increment a tradi-

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
/o

pe
ra

tio
n)

CPUs

reference counting
RCU

Figure 5: The overhead of entering using RCU as a ref-
erence count compared to the overhead of using a shared
integer.

tional reference count. To free the object, the kernel must
wait for the traditional reference count to reach zero and
synchronize with RCU critical sections.

Developers use RCU to reference an object not only
as a substitute for traditional reference counters, but also
to enforce general existence guarantees in code that has
never used traditional reference counters. To guarantee ob-
ject existence simply means an object’s memory will not
be reclaimed until all references to it have been dropped.

In some situations, subsystems implement existence
guarantees using synchronization mechanisms, like spin
locks. In other scenarios it might be difficult to guarantee
existence in a performant or practical manner, so imple-
mentations rely on other techniques, such as tagging the
upper bits of pointers to avoid an ABA race in a lock-free
algorithm. Linux developers have used RCU in many of
these cases to provide high performance existence guar-
antees. For example, developers refactored the System-V
IPC [1] code to provide existence guarantees using RCU
instead of spin locks.

4.3 Type Safe Memory

Type safe memory is memory that retains its type after
being deallocated. It is helpful in scenarios where a thread
might deallocate an object while other threads still hold
references to that object. If the object’s memory is reallo-
cated for a different purpose, but maintains the same type,
threads can detect the reuse and roll back their operations.
This approach is common in lock-free algorithms that use
optimistic concurrency control [9]. In general, RCU can
be used directly to remove the need for type safe memory,
because its existence guarantees ensure that object mem-
ory is not reused while threads hold references. However,
there are rare situations in which RCU can not be used

5



void udp_sendmsg(sock_t *sock, msg_t *msg)
{
ip_options_t *opts;
char packet[];

copy_msg(packet, msg);
rcu_read_lock();
opts = rcu_dereference(sock->opts);
if (opts != NULL)
copy_opts(packet, opts);

rcu_read_unlock();

queue_packet(packet);
}

void setsockopt(sock_t *sock, int opt,
void *arg)

{
if (opt == IP_OPTIONS) {

ip_options_t *old = sock->opts;
ip_options_t *new = arg;

rcu_assign_pointer(&sock->opts, new);
if (old != NULL)
call_rcu(kfree, old);

return;
}

/* Handle other opt values */
}

Figure 6: Linux pseudocode for handling IP options using
RCU to hold references.

directly to enforce existence guarantees. For example,
when attempts to asynchronously free an object might
block, using RCU runs the risk of stalling the thread that
executes an entire batch of call_rcu invocations. In
such situations, rather than using RCU to provide exis-
tence guarantees directly, it can be used to implement type
safe memory. An example of this usage pattern occurs in
Linux’s slab allocators.

Linux slab allocators provide typed object memory.
Each slab allocator uses pages of memory that are allo-
cated by the Linux page allocator and splits them up into
objects of a single type that can be individually allocated
and freed. When a whole page of objects becomes free,
the slab allocator returns it to the page allocator, at which
point it may be reallocated to a slab allocator of a differ-
ent type. If developers want to ensure that memory is not
reused for objects of a different type while references to
it are still active, they can set a special SLAB_DESTROY_
BY_RCU flag in the slab. In this case, rcu synchronization
is used prior to reallocating the slab to a different slab
allocator. If the objects in the slab are only ever accessed

in RCU critical sections, this approach has the effect of
implementing type safe memory.

One example of using type safe memory is in the re-
verse page map, which is responsible for mapping a phys-
ical page to all the virtual address mappings that include
that physical page. Each physical page in the Linux ker-
nel is represented by a page_t and a virtual address map-
ping is represented by an anon_vma_t 1. Each page_t
contains a pointer to a list of anon_vma_ts that the re-
verse map allocates from type safe memory. To read
an anon_vma_ts for a given page, the reverse map calls
rcu_read_lock, reads the anon_vma_t, and calls rcu_
read_unlock. A thread can unmap a page and deallo-
cate an anon_vma_t without waiting for all threads to re-
linquish references to the anon_vma_t, because threads
reading the anon_vma_t can tell if the object is being
reused by a different object instance by checking bits in
the object’s memory.

Type safe memory solves a challenge in implementing
the reverse map, which is to avoid the race where a thread
reads an anon_vma_t from a page_t, but the physical
page is unmapped by another thread and the thread then
frees the anon_vma_t. One option would be to add a
spin lock to the page_t; however, the size of a page_t
must be as small as possible, because there exists one for
every physical page in the system. Using RCU to hold a
reference and freeing the anon_vma_t using call_rcu
would work, except that the function that frees an anon_
vma_t might acquire a mutex, which would delay the
RCU thread responsible for executing RCU callbacks. In
principle it would be possible to remove the mutex, but it
would require an extensive effort.

Type safe memory provides a practical solution for
dealing with the complexities that arise in a large system
like Linux. In the example of the reverse page map, it
would be theoretically possible to rewrite the anon_vma_
t to avoid blocking, but it would require changing all
the code that depended on this behavior. Implementing
type safety with RCU provided an easily implementable
solution. In addition to the virtual memory systemâĂŹs
reverse-mapping data structures, there are several other
places in the Linux kernel where type-safe memory is
used, including signal-handling data structures and net-
working.

4.4 Publish-Subscribe
In the publish-subscribe usage pattern, a writer initial-
izes a data item, then uses rcu_assign_pointer to
publish a pointer to it. Concurrent readers use rcu_
dereference to traverse the pointer to the item, The
rcu_assign_pointer and rcu_dereference primi-
tives contain the architecture-specific memory barrier in-

1An anon_vma_t usually represents multiple physical pages.

6



syscall_t *table;
spinlock_t table_lock;

int invoke_syscall(int number, void *args...)
{
syscall_t *local_table;
int r = -1;

rcu_read_lock();
local_table = rcu_deference(table);
if (local_table != NULL)
r = local_table[number](args);

rcu_read_unlock();

return r;
}

void retract_table()
{
syscall_t *local_table;

spin_lock(&table_lock);
local_table = table;
rcu_assign_pointer(&table, NULL);
spin_unlock(&table_lock);

synchronize_rcu();
kfree(local_table);

}

Figure 7: Pseudocode of the publish-subscribe pattern
used to dynamically extend the system call table.

structions and compiler directives necessary to ensure that
the data is initialized before the new pointer becomes vis-
ible, and that any dereferencing of the new pointer occurs
after the data is initialized.

This pattern is often combined with existence guar-
antees in order to publish new versions and reclaim old
versions of objects, while permitting concurrent access to
those objects.

One example of using publish-subscribe in Linux is
to dynamically replace system calls. The PowerPC Cell
architecture, for example, appends to the system call ta-
ble at run time. The kernel appends to the system call
table by publishing a pointer to an extension table using
rcu_assign_pointer. The kernel always calls rcu_
read_lock before indexing into the extended portion of
the table and executing a system call. The kernel uses
rcu_dereference to read from the extended system call
table. The combination of rcu_assign_pointer and
rcu_dereference ensure that no threads will ever ob-
serve a partially initialized table extension. If the kernel
needs to change the extended portion of the table, it re-
tracts the extended table by setting the extended table

pointer to NULL with rcu_assign_pointer, then uses
the wait-for-completion pattern, calling synchronize_
rcu to guarantee no threads are executing system calls
contained in the extended table.

4.5 Read-Write Lock Alternative

The most common use of RCU in Linux is as an alterna-
tive to a read-write lock. Reading threads access a data
structure in an RCU critical section, and writing threads
synchronize with other writing threads using spin locks.
The guarantees provided by this RCU usage pattern are
different than the guarantees provided by read-write locks.
Although many subsystems in the Linux kernel can toler-
ate this difference, not all can. The next section describes
some complimentry techniques that developers can use
with RCU to provide the same guarantees as read-write
locking, but with better performance.

RCU provides higher performance than traditional read-
write locking and can make it easier to reason about dead-
lock. Linux implements read-write locks using a single
shared integer. To acquire the lock in read or write mode a
thread must modify the integer using expensive atomic in-
structions and memory barriers. If another thread running
on a different CPU acquires the lock next, that thread will
stall while the CPU fulfills the cache miss on the shared
integer. If the read operation being performed is relatively
short, cache misses from acquiring the lock in read-mode
essentially removes all read concurrency.

Figure 8 compares the overhead of two operations:
entering and completing an RCU critical section; and
acquiring a read-write lock in read-mode and releasing
it. The x-axis shows the number of cores and y-axis
shows the average time to complete an operation. On one
core, entering and completing an RCU critical section
takes 6 nanoseconds, while acquiring and releasing a read-
write lock, which executes two atomic instructions on x86,
takes 89 nanoseconds, almost 15× longer. The cost for
acquiring the read-write increases with the number of
cores, up to 6654 nanoseconds on 16 cores. The cost of
RCU remains relatively constant.

Another reason to choose RCU instead of a read-write
lock is deadlock immunity. The only way for RCU to
deadlock is if a thread blocks waiting for synchronize_
rcu in a RCU critical section. RCU does not otherwise
contribute to deadlock cycles. Developers do not need to
consider rcu_read_lock ordering with respect to other
locks to avoid deadlock, which would be necessary if a
thread was holding a read-write lock.

One example of using RCU as a read-write lock is to
synchronize access to the PID hash table. The Linux
PID table maps PIDs to sessions, process groups, and
individual processes. To access a process in the PID,
a thread calls rcu_read_lock, looks up the process in

7



0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(n

an
os

ec
on

ds
/o

pe
ra

tio
n)

CPUs

read-write lock
RCU

Figure 8: The overhead of entering and completing an
RCU critical section, and acquiring and releasing a read-
write lock.

the table, manipulates the process, then calls rcu_read_
unlock. To remove a process from the table, a thread
hashes the PID, acquires a per-bucket spin lock, adds the
process to the bucket, and releases the lock. Figure 9
presents pseudocode for the Linux PID table.

A key difference between RCU and read-write locking
is that RCU supports concurrent reading and writing of
the same data while read-write locking enforces mutual
exclusion. As a result, concurrent operations on an RCU
protected data structure can yield results that a read-write
lock would prevent. In the example above, suppose two
threads simultaneously add processes A and B to different
buckets in the table. A concurrently executing reading
thread searching for process A then process B, might
find process A, but not process B. Another concurrently
executing reader searching for process B then A, might
find process B, but not process A. This outcome is valid,
but could not occur if the PID table used read-write locks.

Developers considering using RCU must reason about
requirements of their application to decide if the addi-
tional orderings allowed by RCU, but disallowed by read-
write locks, are correct. In addition to the PID table,
other important kernel subsystems, such as the directory
cache, networking routing tables, the SELinux access vec-
tor cache, and the System V IPC implementation, use
RCU as an alternative to read-write locks. A tentative
conclusion to draw from RCU’s widespread use in Linux
is that many kernel subsystems are either able to tolerate
additional orderings allowed by RCU or use the tech-
niques described in the next section to avoid problematic
orderings.

pid_table_entry_t pid_table[];

process_t *pid_lookup(int pid)
{
process_t *p

rcu_read_lock();
p = pid_table[pid_hash(pid)].process;
if (p)
atomic_inc(&p->ref);

rcu_read_unlock();
return p;

}

void pid_free(process *p)
{
if (atomic_dec(&p->ref))
free(p);

}

void pid_remove(int pid)
{
process_t **p;

spin_lock(&pid_table[pid_hash(pid)].lock);
p = &pid_table[pid_hash(pid)].process;
rcu_assign_pointer(p, NULL);
spin_unlock(&pid_table[pid_hash(pid)].lock);

if (*p)
call_rcu(pid_free, *p);

}

Figure 9: Pseudocode for the Linux PID table imple-
mented using RCU as an alternative to read-write locks.
After calling pid_lookup, a thread calls pid_free to
release it’s reference to the process.

5 Algorithmic Transformations

Since RCU does not force mutual exclusion between read-
ers and updaters, mechanical substitution of RCU for
reader-writer locking can change the application’s seman-
tics. Whether this change violates correctness depends on
the specific correctness properties required.

Experience in the Linux kernel has uncovered a few
common scenarios in which the changes in semantics are
problematic, but are handled by the techniques described
below. The following subsections discuss three commonly
used techniques, explaining why they are needed, how
they are applied, and where they are used.

5.1 Impose Level of Indirection
Some uses of reader-writer locking depend on the prop-
erty that all of a given write-side critical section’s updates

8



become visible atomically to readers. This property is
provided by mutual exclusion between readers and up-
daters. However, since RCU allows concurrent reads and
updates, a mechanical conversion to RCU could allow
RCU readers to see intermediate states of updaters. For
example, consider the errors that might arise if the PID
table stored process_ts directly, instead of pointers to
process_ts. It would be possible for pid_lookup to
manipulate and return a partially initialized process_t.

This problem is often solved by imposing a level of
indirection, such that the values to be updated are all
reached via a single pointer which can be published atom-
ically by the writer. In this case, readers traverse the
RCU-protected pointer in order to reach the data. The
PID table, for example, stores pointers to process_ts in-
stead of process_ts. This approach ensures that updates
appear atomic to RCU readers. The indirection required
for this approach to work is often inherent in the linked
data structures that are widely used in the Linux kernel,
such as linked lists, hash tables, and various search trees.

5.2 Mark Obsolete Objects
The solution discussed in the previous section ensures that
updates appear atomic to readers, but it does not prevent
readers from seeing obsolete versions that updaters have
removed. The RCU approach has the advantage of allow-
ing expedited updates, but in some cases reader-writer
locking applications depend on the property that reads
not access obsolete versions. One solution is to use a flag
with each object that indicates if the object is obsolete.
Updaters set the flag when the object becomes obsolete
and readers are responsible for checking the flag.

The System V semaphore implementation uses this
technique [1]. Each semaphore_t has an obsolete flag
that the kernel sets when an application deletes the
semaphore. The kernel resolves a semaphore ID pro-
vided by an application into a semaphore_t by looking
up the semaphore ID in a hash table protected by rcu_
read_lock. If the kernel finds a semaphore_t with the
obsolete flag set, it acts as if the lookup failed.

5.3 Retry Readers
In some cases the kernel might replace an obsolete object
with an updated version. In these cases a thread using
RCU should retry the operation when it detects an ob-
solete object, instead of failing. If updates are rare, this
technique provides high performance and scalability.

One technique for detecting when a new version of
an object is available is to use a Linux sequence lock in
conjunction with rcu_read_lock. Before modifying an
object, an updater thread acquires the sequence lock in
write mode, which increments an internal counter from

an even value to an odd value. When done modifying the
object, the thread releases the sequence lock by increment-
ing the value by one. Before accessing an object a reader
thread reads the value of the sequence lock. If the value is
odd, the reader knows that an updater is modifying the ob-
ject, and spins waiting for the updater to finish. Then the
thread calls rcu_read_lock, reads the object, and calls
rcu_read_unlock to complete the RCU critical section.
The thread then must read the sequence lock again and
check that the value is the same. If the value changed, the
thread retries the operation.

The Linux kernel uses RCU with sequence locks
throughout the VFS subsystem [16]. For example, each
dentry has a sequence lock that a thread acquires in
write mode when it modifies a dentry (e.g. to move or to
rename it). When an application opens a file, the kernel
walks the file path by looking up each dentry in the path.
To prevent inconsistent lookup results, like opening a file
for which the path never existed, the path lookup code
reads the sequence lock, and retries if necessary.

6 RCU Usage Statistics

This section examines the usage of RCU in the Linux
kernel over time, by subsystem within the kernel, and by
type of RCU primitive. The purpose of this analysis is
to demonstrate that developers use RCU in many kernel
subsystems and that it’s likely RCU usage will increase
in future Linux kernels.

Figure 1 shows how the usage of RCU in the Linux
kernel has increased over time, where the number of RCU
API uses counts the number of occurrences of RCU prim-
itives in the kernel source. Although this increase has
been quite large, there are more than ten times as many
uses of locking (of all types) as there are of RCU. How-
ever, in the time that RCU went from zero to almost 7000,
reader-writer locking went from about 3000 uses to only
about 4000. In that same time, the Linux kernel source
code more than tripled. The slow growth of read-write
lock usage is due in part to conversions to RCU.

Figure 10 shows the usage of RCU in each kernel sub-
system. These counts exclude indirect uses of RCU via
wrapper functions or macros. Lines of code are computed
over all the .c and .h files in the Linux source tree.

Linux’s networking stack contains almost half of the
uses of RCU, despite comprising less than 5% of the ker-
nel. Networking is well-suited to RCU due to its large
proportion of read-mostly data describing network hard-
ware and software configuration. Interestingly enough,
the first uses of DYNIX/ptx’s RCU equivalent [17] also
involved networking.

The kernel-base virtual machine (virt) uses RCU most
intensively, with 1% of its lines of code invoking RCU.
The virt code contains many read-mostly data structures,

9



Subsystem Uses LoC Uses / KLoC
virt 72 6,749 10.67
net 3251 740,382 4.39
ipc 35 8,306 4.21
security 251 68,494 3.66
kernel 628 198,304 3.17
mm 196 88,904 2.20
block 58 27,975 2.07
lib 70 52,235 1.34
fs 666 1,057,713 0.63
init 2 3,382 0.59
include 279 552,507 0.50
crypto 12 64,537 0.19
drivers 1061 8,530,160 0.12
arch 183 2,459,105 0.07
Total 6764 13,858,753 0.49

Figure 10: Linux 3.7 RCU usage by subsystem.

such as emulated interrupt routers and memory manage-
ment units, that benefit from using RCU. The Linux net-
working achieves similar performance benefits by using
RCU critical sections to access read-mostly data, like
device configuration and routing tables. Linux’s drivers
contain the second-greatest number of uses of RCU, but
also have the second-lowest intensity: drivers have only
recently started using RCU.

The architecture specific code (arch) uses RCU the
least. One possible reason is that manipulating the hard-
ware state (e.g. programming interrupt controllers or
writing to MSRs) does not usually support the approach
of updating by creating a new version of hardware state
while threads might concurrently read an older version.
The kernel must update the hardware state in place. An-
other possible reason is that much of the architecture code
is used during boot and to periodically re-configuring
hardware, but is not invoked frequently enough to be a
performance concern.

Figure 11 breaks down RCU usage into types of RCU
API calls. RCU critical sections are used most frequently,
with 3035 uses. RCU critical sections access RCU-
protected data using rcu_deference or using RCU list
functions that automatically call rcu_deference when
accessing a list. Together, rcu_deference and RCU list
traversal functions account for 1546 RCU API uses. Up-
dates to RCU-protected data structures account for the
next three most commonly used RCU primitives, RCU
synchronization, RCU list update, and RCU pointer as-
signment. RCU update code accounts for 1578 uses of
the RCU API. The remaining uses of the RCU API help
analyze correctness (annotating RCU-protected pointers
for Linux Sparse and RCU lock dependency assertions)
and initialize and cleanup RCU data structures.

RCU was accepted into the Linux kernel a decade ago.

Type of Usage API Usage
RCU critical sections 3035
RCU dereference 972
RCU synchronization 696
RCU list traversal 574
RCU list update 524
RCU assign 358
Annotation of RCU-protected pointers 304
Initialization and cleanup 273
RCU lockdep assertion 28
Total 6764

Figure 11: Linux 3.7 RCU usage by RCU API function.

Each subsequent kernel has used RCU more heavily. To-
day RCU pervades the kernel source, with about one of
every 2,000 lines of code being an RCU primitive. De-
velopers use RCU critical sections more frequently than
other RCU API calls. RCU usage ranges from about one
of every 13,000 lines of code (architecture support) to
about one out of every 100 lines of code (virtualization).
RCU use will likely increase in future kernels as develop-
ers re-implement subsystems and implement new features
that rely on RCU for high performance.

7 Related Work

McKenney and Slingwine first implemented and docu-
mented RCU in the Sequent DYNIX/ptx OS [17], and
later in the Linux kernel [21]. Numerous other RCU-like
mechanisms have been independently invented [15, 12].
The Tornado and K42 kernels used an RCU-like mecha-
nism to enforce existence guarantees [6]. In these cases,
the reclamation of object memory was deferred until the
number of active threads reached zero on each CPU, rather
than waiting for each CPU to context switch, as is the
case with RCU. Michael’s Hazard Pointers technique [18]
is similar to RCU in that it can be used to defer collection
of memory until no references remain. However, unlike
RCU, it requires readers to write state (hazard pointers)
for each reference they hold. Writing this state requires
memory barriers too on architectures with weak memory
consistency semantics. Fraser solved the same deferred
reclamation problem using an epoch-based approach [5].
Recently, Gotsman used a combination of separation logic
and temporal logic to verify RCU, hazard pointers and
epoch-based reclamation, and showed that all three rely
on the same implicit synchronization pattern based on the
concept of a grace-period [7, 8]. The performance of the
three approaches has also been compared [11].

Although the discussion in this paper has focused on
one particular implementation of RCU, several other spe-
cialized RCU implementations exist within the Linux

10



kernel. These implementations make use of other system
events, besides context switches, and allow RCU critical
sections to be preempted and to sleep [10]. RCU is also
no longer restricted to the domain of kernel programming.
Desnoyers has produced an open source, user-level imple-
mentation of RCU, making RCU available to application
programmers [4].

Although the discussion in this paper has focused on a
Linux kernel implementation of RCU, RCU is no longer
restricted to Linux kernel programming. Desnoyers has
produced an open source, user-level implementation of
RCU, making RCU available to application program-
mers [4].

The challenges and opportunities presented by RCU’s
concurrent reading and writing are the focus of ongo-
ing research on relativistic programming (RP). Triplett
presented a causal ordering model that simplifies the
construction of scalable concurrent data structures us-
ing RCU-like primitives [23]. This work has led to
the development of numerous highly scalable concurrent
data structures, including hash tables [24] and Red-Black
Trees [13]. Howard has extended this work to show how
relativistic programming constructs such as RCU can be
combined with transactional memory [14] in order to
support automatic disjoint access parallelism for writes
concurrent with relativistic reads.

The use of RCU to defer memory reclamation has led
to comparisons to garbage collectors. RCU is not a com-
plete garbage collector. It automatically determines when
an item can be collected, but it does not automatically
determine which items can be collected. The programmer
must indicate which data structures are eligible for collec-
tion, and must enclose accesses in RCU read-side critical
sections. However, a garbage collector can be used to
implement something resembling RCU [15].

8 Conclusions

RCU for Linux was developed to meet performance and
programmability requirements imposed by the kernel and
not fulfilled by existing kernel synchronization primitives.
Over the last decade developers have applied RCU to most
subsytems in the Linux kernel, making RCU an essen-
tial component of the Linux kernel. This paper described
some of the notable usage patterns of RCU, including wait
for completion, reference counting, publish-subscribe,
type safe memory, and read-write locking. It also de-
scribed three design patterns, impose level of indirection,
mark obsolete objects, and retry readers, that developers
can use to transform incompatible applications to a form
suitable for RCU use. Given the trend of increasing RCU
usage, it is likely RCU will continue to play an important
role in Linux performance.

References

[1] ARCANGELI, A., CAO, M., MCKENNEY, P. E.,
AND SARMA, D. Using read-copy update tech-
niques for System V IPC in the Linux 2.5 kernel.
In Proceedings of the 2003 USENIX Annual Tech-
nical Conference (FREENIX Track) (June 2003),
USENIX Association, pp. 297–310.

[2] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO,
Y., PESTEREV, A., KAASHOEK, M. F., MORRIS,
R., AND ZELDOVICH, N. An analysis of Linux
scalability to many cores. In 9th USENIX Symposium
on Operating System Design and Implementation
(Vancouver, BC, Canada, October 2010), USENIX,
pp. 1–16.

[3] COMPAQ COMPUTER CORPORATION. Shared
memory, threads, interprocess communication.
Available: http://www.openvms.compaq.com/
wizard/wiz_2637.html, August 2001.

[4] DESNOYERS, M., MCKENNEY, P. E., STERN,
A., DAGENAIS, M. R., AND WALPOLE, J. User-
level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems 23
(2012), 375–382.

[5] FRASER, K., AND HARRIS, T. Concurrent pro-
gramming without locks. ACM Trans. Comput. Syst.
25, 2 (2007), 1–61.

[6] GAMSA, B., KRIEGER, O., APPAVOO, J., AND
STUMM, M. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor op-
erating system. In Proceedings of the 3rd Symposium
on Operating System Design and Implementation
(New Orleans, LA, February 1999), pp. 87–100.

[7] GOTSMAN, A., RINETZKY, N., AND YANG, H.
Verifying highly concurrent algorithms with grace
(extended version). Available: http://sites.
google.com/site/popl13grace/paper.pdf
[Viewed August 4, 2012], July 2012.

[8] GOTSMAN, A., RINETZKY, N., AND YANG, H.
Verifying concurrent memory reclamation algo-
rithms with grace. In ESOP’13: European Sympo-
sium on Programming (Rome, Italy, 2013), Springer,
pp. ???–??? To appear.

[9] GREENWALD, M., AND CHERITON, D. R. The
synergy between non-blocking synchronization and
operating system structure. In Proceedings of the
Second Symposium on Operating Systems Design
and Implementation (Seattle, WA, October 1996),
USENIX Association, pp. 123–136.

11

http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.openvms.compaq.com/wizard/wiz_2637.html
http://sites.google.com/site/popl13grace/paper.pdf
http://sites.google.com/site/popl13grace/paper.pdf


[10] GUNIGUNTALA, D., MCKENNEY, P. E.,
TRIPLETT, J., AND WALPOLE, J. The read-
copy-update mechanism for supporting real-time
applications on shared-memory multiprocessor
systems with Linux. IBM Systems Journal 47, 2
(May 2008), 221–236.

[11] HART, T. E., MCKENNEY, P. E., BROWN, A. D.,
AND WALPOLE, J. Performance of memory recla-
mation for lockless synchronization. J. Parallel
Distrib. Comput. 67, 12 (2007), 1270–1285.

[12] HENNESSY, J. P., OSISEK, D. L., AND SEIGH II,
J. W. Passive serialization in a multitasking envi-
ronment. Tech. Rep. US Patent 4,809,168 (lapsed),
US Patent and Trademark Office, Washington, DC,
February 1989.

[13] HOWARD, P. Extending Relativistic Programming
to Multiple Writers. PhD thesis, Portland State Uni-
versity, 2012.

[14] HOWARD, P. W., AND WALPOLE, J. A relativistic
enhancement to software transactional memory. In
Proceedings of the 3rd USENIX conference on Hot
topics in parallelism (Berkeley, CA, USA, 2011),
HotPar’11, USENIX Association, pp. 1–6.

[15] KUNG, H. T., AND LEHMAN, Q. Concurrent ma-
nipulation of binary search trees. ACM Transactions
on Database Systems 5, 3 (September 1980), 354–
382.

[16] MCKENNEY, P. E., SARMA, D., AND SONI, M.
Scaling dcache with RCU. Linux Journal 1, 118
(January 2004), 38–46.

[17] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-
copy update: Using execution history to solve con-
currency problems. In Parallel and Distributed Com-
puting and Systems (Las Vegas, NV, October 1998),
pp. 509–518.

[18] MICHAEL, M. M. Hazard pointers: Safe mem-
ory reclamation for lock-free objects. IEEE Trans-
actions on Parallel and Distributed Systems 15, 6
(June 2004), 491–504.

[19] MORRIS, J. [PATCH 2/3] SELinux
scalability - convert AVC to RCU.
http://marc.theaimsgroup.com/?l=
linux-kernel&m=110054979416004&w=2,
November 2004.

[20] SARMA, D., AND MCKENNEY, P. E. Making RCU
safe for deep sub-millisecond response realtime ap-
plications. In Proceedings of the 2004 USENIX An-
nual Technical Conference (FREENIX Track) (June
2004), USENIX Association, pp. 182–191.

[21] TORVALDS, L. Linux 2.5.43. Available:
http://lkml.org/lkml/2002/10/15/425
[Viewed March 30, 2008], October 2002.

[22] TORVALDS, L. Linux 2.6.38-rc1. Available:
https://lkml.org/lkml/2011/1/18/322
[Viewed March 4, 2011], January 2011.

[23] TRIPLETT, J. Relativistic Causal Ordering A Mem-
ory Model for Scalable Concurrent Data Structures.
PhD thesis, Portland State University, 2012.

[24] TRIPLETT, J., MCKENNEY, P. E., AND WALPOLE,
J. Resizable, scalable, concurrent hash tables via
relativistic programming. In Proceedings of the 2011
USENIX Annual Technical Conference (Portland,
OR USA, June 2011), The USENIX Association,
pp. 145–158.

12

http://marc.theaimsgroup.com/?l=linux-kernel&m=110054979416004&w=2
http://marc.theaimsgroup.com/?l=linux-kernel&m=110054979416004&w=2
http://lkml.org/lkml/2002/10/15/425
https://lkml.org/lkml/2011/1/18/322

	1 Introduction
	2 RCU Requirements
	3 RCU Design
	4 Using RCU
	4.1 Wait for Completion
	4.2 Reference Counting
	4.3 Type Safe Memory
	4.4 Publish-Subscribe
	4.5 Read-Write Lock Alternative

	5 Algorithmic Transformations
	5.1 Impose Level of Indirection
	5.2 Mark Obsolete Objects
	5.3 Retry Readers

	6 RCU Usage Statistics
	7 Related Work
	8 Conclusions

