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The torus is a standard example in introductory discussions of the curvature of surfaces.
However, calculation of some measures of its curvature are hard to find in the literature.
This paper offers full calculation of the torus’s shape operator, Riemann tensor, and
related tensorial objects. In addition, we examine the torus’s geodesics by comparing a
solution of the geodesic equation with results obtained from the Clairaut parameter-
ization. Families of geodesics are classified. Open questions are considered. The
connection form and parallel transport on the torus are investigated in an appendix.

1. The Line Element and Metric

Our model of a torus has major radawand minor radiua. We only consider the ring torus, for
which c>a.

We use au,v coordinate system for which planes of constapass through the torus’s axis.

x = (c+acosv) cosu
We parameterize the surfacdy x(u,v) =4 y=(c+acosv)sinu
z=asinv
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We begin by calculating the coefficierEsF, andG of the first fundamental form.

Xy = (=(c+acosv) sinu,(c + acosv) cosu,0)

Xy = (-acosusinv, —asinusinv,acosv)

E=x,-Xy
= (-(c+acosv) sinu)” +((c +acosv) cosu)’ +0
=(c+acosv)’

F =Xy Xy
= (-(c+acosv) sinu)(—asinvcosu) + ((c + acosv) cosu)(-asinvsinu) + (0)(acosv)
= asinvcosusinu(c+acosv) —asinvcosusinu(c + acosv)
=0

G =Xy Xy
= (-asinvcosu)® + (-asinvsinu)® + (acosv)?
= a?sinvcosu + a2 sinvsin®u + a2 cosv
= a?sin’v+a?cosv

=a?

This gives us the line elemem = (c+acosv)’du? +a2dv?  and metric:

ij =
’

| (c+acosv)®> 0
ij = 0 a2

1
(ctacosv)? 0 l
o =

For later computations we’ll need the partial derivatives of the metric:
Gij.u :[ 8 8 }, andgij,\, :[ _ZaSinV(C0+aCOS\/) (()) }
2. The Shape Operator

The normal to the surfaceMs= (cosucosy, sinucosv,sinv) . Taking the partial derivativé$ of
with respect ta andv gives the shape operator in those directions:

-9x,) =N, = (-sinucosv, cosu cosv,0)

- Sxy) =N, = (-cosusinv, — sinusinv, cosv)
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Comparing these to, andx,, the partial derivatives of the parameterizatipwe find that they
are multiples:

cosv
Sxu) = ~cFacosvXu

ng) = _%Xv

The Gaussian curvatukeis the determinant @&, and the mean curvatukkis the trace o8.

__ cosv 0
K = cracosv _ cosv
- 0 _1 | 7 alctacosv)
a
H = 1 (_ cosv. _ 1 ) _1 ( acosv__ _ _ctacosv_ ) _ _ct2acosv
2 c+acosv a 2 a(ct+acosv) a(ct+acosv) 2a(ctacosv)

3. The Curvature Tensor

The Christoffel symbols of the second kind

Il = %[g””(guu,u + Quuu ~ Guuu) + ™(Gvuu + Gvuu — Guuy)]
= $[g"(0+0~0) +0(Quu * Guuu — Guu)]
=0

T = %[g““(guv,u + Guuy = Guvw) + 9"(Gwu + Gvuv ~ Guwy)]
= 2[9"(0+ Guuy — 0) + 0@ * Guuy ~ Guuy)]

= %guuguu,v

_ ;[ —2asinv(c+acosv) ]
2 (c+acosv)?

____asinv
(c+acosv)

r'iu= %[g““(guu,v +Juvu — gvu,u) + g“"(gvuv +Jwu — gvu,v)]

= %[guu(guu,v +0-0)+ O(gvu,v +Owu— gvu,v)] = %guuguu,v =T

—___asinv
(c+acosv)

rl\;\/ = %[guu(guv,v + guv,v - gw,u) + guv(gvv,v + gvv,v - gw,v)]

= %[g””(o + O - O) + o(gvv,v + gw,v - gvv,v)]
=0
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M= %[O(QUU,U + Quuu — guu,u) + g""(O +0- guu,v)]

= —%gwguu,v

= —%é(—Zasinv(c +acosv))

sinv(c +acosv)

[9"(9uvu + Guuy = Guvu) +9"(Guvu + Gvuy ~ Guww)]
= S10(Guvu + Guuy ~ Guu) + (0 +0-0)]
=0

Iy = 319"(Guuy * Gons ~ Guuw) + 8™ (Gvuy + G ~ Q)]
= 210Gy + Gus = Guuw) + (0 +0-0)]
=0

= %[g“(guv,v *+ Quvy = Gwu) + 9" (Quwy + vy = Gvw)]
= Z10(Guuy + iy = ) +9™(0+0-0)]
=0

Partial derivatives of the nonzero Christoffel symbols:

'Y, =TI, = -[(asinv)(-1)(c + acosv) *(-asinv) + (c +acosv) “(acosv) |
=—(asinv)?(c+acosv) % - (c+acosv) *(acosv)

(asinv)®> acosv
(c+acosv)? (c+acosv)

My = %[sinv(—asinv) +(c+acosv) cosv] = %[ccosv+ acos’v-asin?y]

The Riemann tensor

Throughout this section we use the idenfy = -R,

Ruuuu = 1—‘Hu,u - FHU,U - rHUFHU - F\L;urnu + rﬂur Hu + F\L}IUFMU
=0-0-0-Ty,x0+0+0=0

Rbw=-Rbtw= 1—‘Hv,u - 1—‘Hu,v i —TWe + Thul oy + T Yy
=0-0-0-0+0+0=0

RL{JVV = Iﬁﬂv,v - FHv,v - FHVFHV - WVF‘JV + FHVFHV + F\L;vrﬁv

=Y,y -TY, - TY)?-0+(Y)?+0=0
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RL</uu = F\L;u,u - Fvu,u - FHUF\L}IU - Feurgu + Fﬂurvu + F\L;urxu
=0-0-0-0+0+0=0

RL{/uv = _Rlilvu = l—‘\l;v,u - reu,v - FHVWU - F\Lfku + rﬂur\l;v + WUWV
=0-TY,-(Y%)*-0+0-0

__( asinv_\?> __ acosv _( asinv )2
= C+acosv C+acosv C+acosv

_(_asinv )2 acosv _( asinv_\?
=(c+acosv c+acosv ~\C+acosv

_ __acosv
— ct+acosv

Ryw =Ty — Ty —Tolw—TWlw + T + Ty
=0-0-0-0+0+0=0

R\{Juu = rKu,u _Fﬁu,u _F\L/Jurldu_qurﬁu"'rﬁurldu'i'rxur\lju
=0-0-0-0+0+0=0

RVuuv = _Rvuvu = an,u - 1—‘nu,v - anrﬂu - szr\lju + FMUFHV + Wul"ﬁv
=0-Tly=0-0+T} Iy +0

= —%(sinv(—asinv) +cosv(c+acosv)) + % sinv(c + acosv)(—%

= —L[-asin?v+ cosv(c +acosv) +asin?v]

= —% cosv(c+acosv)

R\{va = r\dv,v - r\dv,v - rnvrﬂv - rgvr\tgv + r\dvrﬂv + rgvr\dv
=0-0-0-0+0+0=0

R\</uu = quu - qu,u - F\durvu - Wuﬂu + Fﬁurvu + qurxu
=0-0-TY Y -0+TY Y +0=0

R\</uv = _R\</vu = va,u - 1ﬂxu,v - 1—‘\l.llvl—‘eu - vau + 1—‘\l.llur\lﬂv + qurxv
=0-0-0-0+0+0=0

R\</vv = va,v - va,v - F\tjvr\t;v - WVWV + F‘dev + WVWV

=0-0-0-0+0+0=0

The Ricci tensor
Rij = Ry

Ru=RMm, = % cosv(c+acosv)

- __acosv
Rw = RUmy =

C+acosv
Lcosvc+acosv) O
ij= 0 _acosv

(c+acosv)
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The Ricci scalar, a.k.a. the curvature scalar

R= gij Rij = 9"'Ru+ 9" "R

= 1 1 1 \r_acosv
- (m](a cosv(c+ acosv)) (_2) c+acosv

cosv + cosv
a(c+acosv) alc+acosv)

- __ 2cowv
a(c+acosv)

Ris twice the Gaussian curvature, as expected.

4. The Geodesic Equation

Let’s look at the geodesic equatiw+T3x°x°=0 . Plugging in Christoffel symbols and
components of the Riemann tensor yields two equations.

(i) d+2ruu=i-&mw=0

(i) v+TYu2=v+<sinvic+acosv)u?=0

To solve (i), letw=c+acosv . Divide (i) by and integrate:

w = —a(sinv)v
- 2W = 2a(sinv)v
fhu=1 -
Inu=-2Inw+Ink
=lnw?+Ink
=In(kw2)
u=kw?
-k
=
k.
(c+acosv)?
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To solve (i) multiply by and integrate, using the satr¥ec +acosv substitution:

W+ % sinv(c +acosv)(u)v = 0
2
W+%sinv(c+acosv)k—4\'/=0
(c+acosv)
.. K2 1 . .
W+ 5 ————=sin(vyv=0
8 (c+acosv)®
(sinv)\'/:—%w
oo k21 1N,
W + aw —E)W—O
L k21
W=32wsW
.. k? 1
Jw=2z [ aw
1.-_ k? 1
SV = + =]
2 2a2(c+acosv)® 2
) k?
v2 = +1
a2(c+acosv)?
Which yields
u=—FK —
(c+acosv)?

2
v=t¢t k > +1
a2(c+acosv)

This is the general solution to the geodesic equation. To find actual geodesics, we must find a
unit speed parameterization of the curve defined, by

But first we check the solution. For convenience in the checks, we comnputeé and

_ _ 2kasinv__..
_—3V
(c+acosv)
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NI

V= (I - g—z(c+ acosv)_zj

||
N|H N N
Ve ~\ I—l / ~\

(c+acosv) ) 1( g—z(—z)(c+acosv)_3) —asinv)v

(
——(c+acosv) ) i( —;—z(c+acosv)'2);](—;—Z(—Z)(C+acosv)'3)(—asinv)

( 2)(c+acosv)” )( asinv)

V= k23|nv
a(c+acosv)®
i. Check of {):
2kasinv_ .. 2asinv Kk _
(c+acosv)® (c+tacosv) (c+ acosv)
Zkasinv__,__ 2kasinv__.,_q

(c+acosv)® (c+acosv)®

ii. Check of {i)
K?sinv sinv(c+acosv)( K Jz _
alc+acosv)® a (c+acosv)?
k?sinv k?sinv(c+acosv) _

alc+acosv)® alc+acosv)*
2 of 2 o
k? sinv 4 k?sinv ~=0 v
a(c+acosv)® alc+acosv)

The unclear geometric role ok and |

One problem with this solution to the geodesic equation is that we have two constants of
integration k andl, yet given a point on a surface a geodesic’s path is determined by only one
extra parameter, its direction. It's unclear from this solution preciselkrawll encode this
information. This makes the solution to the geodesic equation useless for determining the paths
of geodesics.

No unit speed parameterization

For a curver to be a geodesic, it must be a unit speed duiyik£ 1 ). Unfortunately, that
pesky constant of integratidnmakes a general solution to this problem difficult.
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la(®) I = Vuz +v?

= \/ K - k* +1
(c+acosv(t))? a2(c+acosv(t))?

If | were; , we could complete the square under the radical and integrate. However, we can't

da4 !

make that assumption. The meridian geodesics defingdbyi = 1 are a counterexample.

Since we’re not making much headway here, let's see whether the Clairaut parameterization
helps.

5. The Clairaut Parameterization

Unfortunately, the parameterization we initially chose is the reverse of what is normally used for
a Clairaut parameterization, so in this section the rolésapfdG are reversed.

x = (c+acosv) cosu
Recall our parameterization of the torys: (c+ acosv)sinu~ » @nd the first fundamental form

z=asinv

E=(c+acosv)’,F=0,G=a?.

From O’Neill 87.5.5, a geodesic can be parameterizgd/as x(u(v),v) where

du

.G

dv. = JE JE-h?

. ah

~ (c+acosv)(c+acosv)? -h?

If we could integrate this, we’'d have a nice formulauan terms ofv:

u(v) =u(vo) +ah |

v dv
Vo (cracosv) | (cracosy)’—?

Alas, this integral likely has no closed form solution. But the formuldfor s nice: it depends
on only one parametdr, the geodesic’s slant. Following O’Neill 87.5.3q ¥ x(a;,a,) isa
unit-speed geodesic apd the angle fsqm ¢'to , there is a cohsach that
h=E(a;)a,
= JE (a;) sing

=(c+acosa;)sing

Henceh measures of the angle between the geodesic amg the  curves.
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The possible values bfgives us an idea of the different kinds of geodesics that exist on the
torus. The term under the radical must be real, hencgcosv)’ > h? > [h| <c+a . This allows

us to classify the possible geodesics into several families. (We’'ll only consider positive values of
h; negative values yield mirror image geodesics.) Note that technically we're considering
pregeodesichere: to make them true geodesics, we’'d need to find unit-speed parameterizations.

h=0- % =0. These are the meridians:

An intuitive way to see that meridians are geodesics is to realize that the torus has a mirror
symmetry through meridians. Anything that would push the geodesic off a meridian in one
direction is balanced on the opposite side, so a geodesic that starts on a meridian cannot leave it.

A similar argument can be made for both the inner and outer equators, which means they
must be geodesics as well.

0<|hl <c-a. These geodesics cross both the inner and outer equators. We call these geodesics
unboundegdbecause they can pass through all points on the surface.

A consequence of the Clairaut relatioa (c+acosa;) sing is that these geodesics cross the

inner and outer equators at different angles. Note how the slant of the illustrated geodesic varies
with v. A second consequence is thahascreases, geodesics will approach tangency to the

inner equator faster than to outer equator.
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h=c-a. Ash approaches this value from below, the angle a geodesic makes with the inner
equator approaches zero. Hence wiher - a , one geodesic is the inner equator.

What of the geodesics wittrc-a  which pass through other points on the torus? They're
similar to the unbounded geodesics, but are asymptotic to the inner equator. (Our diagrams don’t

have enough resolution to show that these geodesics circle the inner equator endlessly without
touching it.)

These “asymptotic” geodesics are an edge case of the next family of geodesics. This geodesic is
unique barring rotation about tiexis and reflection through thxg plane.

c-a<|h| <c+a. Another consequence of the Clairaut relation is that a geadesic cannot leave
the regionE > h? . For unbounded geodesics this restriction has no impact, but it does when
c-a<lhl<c+a. If p =7 for somev, g istangenttothe parallel. In that case,

(c+acosv)® > (c+acosvy)?
C+acosv> C+acosv,

COSV > COSVo

i.e.,a is confined to the outer part of the torus betweemsthe —\and parallels (the geodesic’s
barrier curve3. We call these geodesibsunded Here is one of the simplest bounded
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geodesics, which touches each barrier curve once:

As v, - 7, the region between the barrier curves grows to encompass the entire torus.

h=c+a. Ash approaches+a , the barrier curves approach the outer equator. Hence the one
geodesic for whiclhh=c+a is the outer equator.

Summary

We can characterize all geodesics in terms of the absolute value of thdir: slant

[hl Geodesics

0 Meridians

O<lhl<c-a Alternately cross both equators ("unbounded" geodesics)
c-a The inner equator, and geodesics asymptotic to it

c-a<lhl<c+e Cross outer equator but not inner equator (“bounded” geodesics)

c+a The outer equator

For|h| >c+a, there are no real solutions to the geodesic equation.
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6. The Clairaut Parameterization and the Geodesic Equation

The mystery ofk and| solved

Returning to the question of the meaning of the constants of integkadimai which came out
of the geodesic equation, we find that the formulatiorfifor  that comes from the Clairaut
parameterization offers an answer.

—le2 2(c + 2
Vet k - la?(c acosv)2
a2(c+acosv)” a2(c+acosv)
K yos | K+la*c+acosy)®
~ (c+acosv)? 1 a¥eracosy)®
v=+ k? ol . Jla?(c+acosv)? - k2

| a2(c+acosv)? - a(c+acosv)

(from the geodesic equation) u_, K a(c+acosv)
;T 2
V. (c+acosv)” [laz(c+acosv)? - k2
u =+ ak
v =T

(c+acosv),/laz(c+acosv)? - k2

4 is identical to the Clairaut parameterization-derived formulgfor Wwhkeén | -agd

The two approaches are complementary. The formulasvfor  derived from the geodesic
equation can be used to compute geodesics that are singular in the formula derived from the
Clairaut parameterization. In particular, the Clairaut parameterization-derived formula can’t be
used to compute the inner and outer equator geodesics, but the formulas derived from the
geodesic equation can.

7. A Gallery of Geodesics

The majority of geodesics on the torus are not aesthetically pleasing. They are aperiodic and
cover either the entire surface (if the geodesic is unbounded) or the outer region of the surface
bounded by the barrier curves (if bounded). The rare exceptions are the geodesics which return
to their starting point after just a few circuits aroundzlaeis.

Define the period of a geodesic as the number of circuits it makes arounaiedefore

returning to its starting point. Most geodesics never return to their starting point, eventually
covering either the entire torus surface or the region between barrier curves. However, there are
geodesics that are pleasing; these are the unbounded geodesics of period 1, and the bounded
geodesics of period 1 or 2.
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The unbounded geodesics with period 1 cross each equatoss (> 1).

n=1 n=>5

The interesting bounded geodesics fall into two groups. Those of period 1 do not self-intersect.
(For bounded geodesiasdenotes how many times the geodesic touches each barrier curve.)

For bounded geodesics the allowed valuesdépend on the ratida. Unbounded geodesics
are not affected bg/a.

8. Open Questions
The influence ofc/a on bounded geodesics

The kinds of bounded geodesics one can find on a particular torus are determined nohpnly by
but also by the ratio/a. For instance, given a torus wigh=2 | there is no period 1 bounded
geodesic which touches each barrier curve more than once. Yet for a tor@s-With , there is a
period 1 bounded geodesic which touches each barrier curve twice, and another which touches
each barrier curve three times.
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This raises a question: what is the range/@bf the toruses that contain bounded period 1
geodesics which touch each barrier curve exadilyes, as a function of? How about for
different periods? There is no analytic apparatus | know of with which we can approach the
problem. Calculation appears to be the only way to go.

Note that this restriction appears to apply only to bounded geodesics. There is no corresponding
restriction for unbounded geodesics; by choosing an approfriates can find a period 1
geodesic which crosses both equators as often as one pleases.

Questions about critical values oh

Another open question concerns the valugswhich yield crowd-pleasing geodesics with

periods 1 and 2. As/a changes, so does the valuéhafhich yields a particular pleasing

geodesic (say, a period 1 geodesic which crosses both equators three times). Is there a simple
relation between these two quantities?

A similar question exists for values lofor a givenc/a. Defineh, as the value df which yields
a period 1 geodesic which crosses both equatbnses. Asp increases, at what rate ddgs
converge to 07 Is this governed by a simple rule? What about periath@dabgeodesics?

9. Numerically Calculating Geodesic Paths

Numerically calculating points on these geodesics is a little tricky; for bounded geofiesics, s
undefined where the geodesic touches a barrier curve. After initial experiments with a
spreadsheet, a short Perl script was used to generate points. A second script used successive
approximation to findh values which yielded geodesics with integral periodicity. The images in
this paper are as accurate as | could make them, but there was a slight tradeoff between precise
numeric solutions and illustrative power. Take the images with a grain of salt.

On a puzzling note, the second script worked extremely well for unbounded geodesics, but was
less successful for bounded geodesics. The reason for the discrepancy is not clear.
10. Lessons Learned

The search for the geodesics of the torus led to the creation of Irons’ First Law of Exdmples:
an example seems obvious but you can’t find it in the literature, it's more complex than you
expect.
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Appendix A: Parallel Transport on the Torus

Our surface parameterization is an orthogonal pa&chx(, - x, =0 ), SO we can easily compute
the associated frame fiel, E..

Xy .
E,= = (-sinu, cosu, 0)
1 \/E

Xy . .
E,= = (- cosusinv, —sinusinv, cosv)
T /G

Let’s check that their dot product is zero and their cross product is the normal
N = (cosucosv, sinucosv, sinv).

E: - E> =sinucosusinv—sinucosusinv+0
=0 Vv
X y Z

EixEy= -sinu cosu 0
—Ccosusinv —sinusinv cosv

= (cosu cosv, sinucosy, sinfusinv + cosusinv)
= (cosucosv, sinucosy, sinv)
=NV
We can use partial derivativesfndG to compute the connection fom, , which encodes

pretty much everything we’d ever want to know about how vectors change when parallel
transported on the torus:

_(E)
w12 = \/6

v (\/G)u _ asinv o
du+ E dv=-3-du+0=sinvdu

Thedu term tells us that parallel transport along lines of constélongitude lines) doesn’t
affect vectors. We could have predicted this from the symmetry of the torus; along a line of
longitude, the neighborhoods to the left and right are mirror images, so there’s no preferred
direction for a vector to rotate.

X
TS 5;

—
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Thesinv term tells us that parallel transport along lines of congf@atitude lines) causes

vectors to rotate througtrz sinv  during their journey back to their starting point. Let's look at
some specific cases, starting with parallel transport along the outer equat@inderé , which
means the vectors do not rotate as they are parallel transported along the outer equator.

At the top of the torusv(=% 9inv=1 , so a vector rotates through &#tull  during its journey.
Note the angle between the blue vector and its path (red) as the vector is parallel transported.

Something else interesting is happening simultaneously: the vector’s origin is also rotating
througl®r . These rotations cancel, leaving the blue vector pointing in the same direction in the
embedding space. Someone living on the torus would say the vector rotates as it is parallel
transported, while someone living outside the surface would not.£At the torus’s Gaussian
curvature is zero, so it's not surprising that vectors parallel transported along that path don’t
appear to rotate in the embedding space.)

Parallel transport along other lines of latitude causes vectors to rotate varying ar2osints ( ).
In the next illustration, four frames aligned with thandv axes (at/ =0, §, 3, and% ) are
parallel transported widdershins around the torus.
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The second line of latitude from the bottom is atg , SO vectors parallel transported along it
will have rotated througBzsin% =273 =z , as indeed they have.

1 ‘-é/
1 =z ,
Y 2.
N N /
77 \

Putting all of this together, here’s how a whole bunch of frames rotate while being parallel
transported widdershins along lines of latitude, starting at the red longitude line.

B S iy A
e T L 1 B, ERC =
-

N ‘( NV AV

When creating these images, | was surprised by how quickly the valZesio® change near
v=0. Then | remembered th&}* = cosv , which has extremes at integer multiptes of . So the

rate of change of the effect of parallel transport along lines of latitude is most extreme at the
outer and inner equators.
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Finally, parallel transport on the bottom half of the torus is the same except for direction of
rotation, sincesinv is negative there.

P R, S | t

1 i -1

| ol e, "~ ~l
\ il g M ~
> . ~ ’1'1:—‘._1,7301"7 e ~
\ i > /h" U o = T L, . /
- 41 e \\I\)\ L
/ ~ AP @ N
pY 1 Y & L
/ e { . *\ A v ke \\\
' /’ //\p\‘\ f'l//’ AR < L V
[ g \“ Y L }
‘\ ~ i 4 i ",kj I\I\I—*T—’r’f’ Zdf i /
/ r | ‘ | J b v
h i { i -
\ | e v y
{ | e r~ 4 4
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Students of differential geometry may have noticedgmatdu is alsosthe of the sphere.
The difference is that for the sphere, the domamwis{ -7, %] while for the torus it ib-z, x]
Parallel transport on the outer half of the torus mirrors parallel transport on the sphere.

While we're at it, let’'s recompute the Gaussian curvature E@ndG:

K = —=L ((\/E)U + (VE)v _ -1 (—asinV) __(sinv)y,  _  cosv v
- JEG JE J4 JG J,) = alcracosv) & Jv 7 a(cracosv) ~ alc+acosv)

This agrees with the value for the Gaussian curvature we computed from the shape operator, but
unlike that calculation this one doesn’t require a normal to the surface. Thus, if we lived on the
torus, we could compute our space’s Gaussian curvature directly from measurements made
within our space, without assuming the existence of an embedding space. That's the beauty of
differential geometry.
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