
© 2013 IBM Corporation

Accommodating the Laws of Physics: RCU

The SIGPLAN Programming Languages Mentoring Workshop

Paul E. McKenney, IBM Distinguished Engineer (Linux Technology Center)

Member, IBM Academy of Technology

January 22, 2013



© 2013 IBM Corporation2

The Laws of Physics

What Is RCU?

And other trivial issues...



© 2013 IBM Corporation3

Speed of Light (to Say Nothing of Electrons) is Finite;
Size of Computers is Non-Zero

What Is RCU?

Upcoming
CPU Chip

12
.7

 m
m

12.7 mm

Source:  http://en.wikipedia.org/wiki/List_of_upcoming_intel_processors

Diagonally across chip and back (35.8mm):
  3.6 clocks at 1GHz
17.9 clocks at 5GHz

Out for the request, back to return the data

http://en.wikipedia.org/wiki/List_of_upcoming_intel_processors


© 2013 IBM Corporation4

Problem With Physics #1: Finite Speed of Light

What Is RCU?

(c) 2012 Melissa Broussard, Creative Commons Share-Alike



© 2013 IBM Corporation5

Problem With Physics #2: Atomic Nature of Matter

What Is RCU?

(c) 2012 Melissa Broussard, Creative Commons Share-Alike



© 2013 IBM Corporation6

Performance of Synchronization Mechanisms

What Is RCU?



© 2013 IBM Corporation7

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

That 3.6 and 17.9 clocks now looks pretty good...That 3.6 and 17.9 clocks now looks pretty good...
Buffering, queueing and caching result in substantialBuffering, queueing and caching result in substantial
additional performance degradation!additional performance degradation!

What Is RCU?



© 2013 IBM Corporation8

But What Do The Operation Timings Really Mean???

What Is RCU?



© 2013 IBM Corporation9

But What Do The Operation Timings Really Mean???

Single instruction protected by contended lock

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258.7 CPUs  
breaks even 
w/single CPU!

514.4 CPUs
breaks even
w/single CPU!!!

A
rb

itr
a

ril
y  

la
rg

e 
nu

m
be

r 
of

 C
P

U
s

to
 b

re
ak

 e
ve

n 
w

ith
 s

in
gl

e 
C

P
U

!!
!

N
ot

 s
o 

go
od

 f
or

 r
ea

l-t
im

e!
!!

What Is RCU?



© 2013 IBM Corporation10

Also Applies to Reader-Writer Locking, Non-Blocking 
Synchronization and Transactional Memory

Though read-only transactions can be heavily optimized,Though read-only transactions can be heavily optimized,
but not as heavily as RCU can.but not as heavily as RCU can.

What Is RCU?



© 2013 IBM Corporation11

Can't Hardware Do Better Than This???

What Is RCU?

There might be some ways to improve hardware:
–3D lithography: Too bad about power and heat dissipation!
–Extreme ultraviolet lithography: Making progress, but limited
–Liquid immersion lithography: Making progress, but limited
–Asynchronous logic: big in the '60s, starting to be used again
–Exotic materials (e.g., graphene): Promising, but still a research toy
–Light rather than electrons: Promising, but still a research toy
–Quantum tunneling: Tantalizing, but no way to send data faster
–Wormholes:  Works great on Star Trek!!!
–Hyperspace:  Works great on Star Wars!!!

Although hardware will continue to improve, software 
needs to do its part: “Free lunch” exponential 
performance improvement of 80s and 90s is over



© 2013 IBM Corporation12

How Can Software Live With This Hardware???

What Is RCU?



© 2013 IBM Corporation13

Two Basic Ways To Proceed...

What Is RCU?

Uncontended

Acquire

Release

Critical
Section

256.7 cycles

1
cycle

1: Reduce synchronization overhead

2: Increase critical section duration

We will focus on option #1, for readers.
(In real life, you need to do both.)



© 2013 IBM Corporation14

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Design Principle: Avoid Expensive Operations

What Is RCU?

U
se

 c
he

ap
-a

nd
-c

he
er

fu
l o

pe
r a

tio
ns



© 2013 IBM Corporation15

Taking It To The Limit...

What Is RCU?

“Only those who have gone too far
can possibly tell you how far you can go!!!”



© 2013 IBM Corporation16

Taking It To The Limit...

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

What Is RCU?



© 2013 IBM Corporation17

Taking It To The Limit...

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

But how can these possibly be useful???

What Is RCU?



© 2013 IBM Corporation18

Publication of And Subscription to New Data

A gptr

->a=?
->b=?
->c=?

gptrgptr gptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
()

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

rc
u_

de
re

f e
re

nc
e(

)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

What Is RCU?



© 2013 IBM Corporation19

RCU Removal From Linked List

One Version

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???

 Combines waiting for readers and multiple versions:
– Writer removes element B from the list (list_del_rcu())

– Writer waits for all pre-existing readers to finish (synchronize_rcu())

– Writer can then free B (kfree())

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

kf
re

e(
)

What Is RCU?



© 2013 IBM Corporation20

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency That is, without re-introducing all of the overhead and latency 
inherent to other synchronization mechanisms...inherent to other synchronization mechanisms...

What Is RCU?



© 2013 IBM Corporation21

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

What Is RCU?



© 2013 IBM Corporation22

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

 CPU context switch means all that CPU's prior readers are done

 Grace period ends after all CPUs execute a context switch

What Is RCU?



© 2013 IBM Corporation23

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

 CPU context switch means all that CPU's prior readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t  

sw
itc

h

Grace Period

RCU re
ad

er

What Is RCU?

list_del_rcu()



© 2013 IBM Corporation24

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); \
        ACCESS_ONCE(p) = (v); \
})
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

What Is RCU?



© 2013 IBM Corporation25

Toy Implementation of RCU: 20 Lines of Code

void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

And some people still insist that RCU is complicated...  ;-)

What Is RCU?



© 2013 IBM Corporation26

Performance

What Is RCU?



© 2013 IBM Corporation27

Linux Kernel write() System Call: SELinux (Logscale)

Adding CPUs makes SELinux slower!!!

What Is RCU?



© 2013 IBM Corporation28

Linux Kernel write() System Call: SELinux (RCU)

RCU provides linear scalabilty and order-of-magnitude improvements

What Is RCU?



© 2013 IBM Corporation29

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Unlikely to be the Right Tool For The Job, But It Can:

(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

What Is RCU?



© 2013 IBM Corporation30

RCU Applicability to the Linux Kernel

What Is RCU?



© 2013 IBM Corporation31

Open Questions

What Is RCU?



© 2013 IBM Corporation32

Open Questions: RCU Validation and Verification

What Is RCU?

Formal semantics for dependency ordering
–Peter Sewell et al., Cambridge University

Formal semantics for RCU; formal validation of uses of RCU
–WIP by Alexey Gotsman et al., IMDEA Software Institute

Key challenge: Formal validation of software in the large
–When I have needed to validate small software artifacts, this has 

almost always indicated that a better approach existed
–But I am certainly not going to validate 13MLOC of the Linux kernel!

• This is a job for large-scale formal validation
• Needs to accommodate multiple synchronization mechanisms

–WIP by many: Richard Bornat, Alexey Gotsman, Philippa Gardner, 
Peter Sewell, Peter O'Hearn, …

• But a huge amount of work required – this is decidedly non-trivial



© 2013 IBM Corporation33

Open Questions: RCU for User-Space Applications

What Is RCU?

RCU for user-level crowd simulation
–Vigueras et al., Universidad de Valencia

RCU for user-level relational databases
–WIP by Giani et al., University of Toronto

User-level networking
–Stephen Hemminger, Vyatta

Memcached (network-connected hash table)
–Some work by Josh Triplett, Portland State University (2011 USENIX)

Accelerate other parallel frameworks
–OpenMP, etc.

Key challenge: Huge number of applications and libraries



© 2013 IBM Corporation34

Open Questions: RCU Algorithms & Data Structures

What Is RCU?

Lists, queues, stacks, hash tables, radix trees
–Numerous uses in the Linux kernel

Red-black trees
–Linux community members have prototyped these
–Phil Howard, Portland State University (HOTPAR'2011)

Bonsai trees
–Austin Clements, MIT (ASPLOS 2012)

WIP for Judy arrays
–Mathieu Desnoyers, Efficios (liburcu)



© 2013 IBM Corporation35

Open Questions: Other Specialized Mechanisms?

What Is RCU?

RCU achieves spectacular performance via specialization

A few other specializations have extreme performance:
–Partitioning:

• Split counters, see Chapter 4 of 
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 

• Per-bucket-locked hash tables
• Data ownership or sharding

–Read-side sharing:
• Hazard pointers
• Sequence locking

–Probabilistic computing (see RACES'2012)

Additional classes of useful specialized mechanisms?



© 2013 IBM Corporation36

Summary

What Is RCU?



© 2013 IBM Corporation37

Summary

Two SW design techniques can help meet the severe 
challenge posed by the laws of physics:

–Reduce synchronization overhead (“Cheap and cheerful!!!”)
–Increase critical-section size (“Get your money's worth!!!”)

RCU is part of the “cheap and cheerful” solution
–RCU synchronization operates via social engineering and 

demonstrates the awesome power of procrastination

“The best way to predict the future is to invent it”
–But even this method is not foolproof
–In fact, I cannot even tell you how far you can go...

What Is RCU?



© 2013 IBM Corporation38

Summary

Two SW design techniques can help meet the severe 
challenge posed by the laws of physics:

–Reduce synchronization overhead (“Cheap and cheerful!!!”)
–Increase critical-section size (“Get your money's worth!!!”)

RCU is part of the “cheap and cheerful” solution
–RCU synchronization operates via social engineering and 

demonstrates the awesome power of procrastination

“The best way to predict the future is to invent it”
–But even this method is not foolproof
–In fact, I cannot even tell you how far you can go...
–… because I went as far as I could imagine, and it still worked!!!

What Is RCU?



© 2013 IBM Corporation39

To Probe Further:
 http://www.seas.gwu.edu/~gparmer/ospert12/bigrt.2012.07.10a.pdf

– Real-Time Response on Multicore Systems: It is Bigger Than You Think
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and 

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

What Is RCU?



© 2013 IBM Corporation40

Legal Statement

 This work represents the view of the author and does not necessarily represent 
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International 
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks 
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant 

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged 

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold, Mingming Cao, and Jonathan Walpole.

What Is RCU?



© 2013 IBM Corporation41

Questions?

What Is RCU?



© 2013 IBM Corporation42

Backup

What Is RCU?



© 2013 IBM Corporation43

Why All These Low-Level Details???

What Is RCU?

Would you trust a bridge designed by someone who did not 
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy 
transition temperatures?

–Or a house designed by someone who did not understand that 
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion 
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the 
temperature limitations of O-rings?

 If not, why would you trust algorithms from someone ignorant 
of the properties of the underlying hardware???



© 2013 IBM Corporation44

RCU Usage Within the Linux Kernel

Design Use Cases:
–Publish-Subscribe
–Wait for Completion
–Restricted Reference Count
–Bulk Reference Count
–Existence Guarantees
–Type-Safe Memory
–Poorhouse Garbage Collector
–Reader-Writer Lock Replacement

Algorithmic Transformations
–Impose Level of Indirection
–Mark Obsolete Object
–Retry Readers

What Is RCU?



© 2013 IBM Corporation45

Linux Kernel write() System Call: SELinux (RCU)

What Is RCU?

Keep SELinux off the x-axis...



© 2013 IBM Corporation46

RCU Without Disabling Preemption

User-level RCU allows preemption with free readers
–“User-Level Implementation of Read-Copy Update”
–http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159
–Or liburcu package on recent Linux distributions
–Instead of context switch, momentary quiescent state:

• rcu_quiescent_state(): End of polling loop, transaction, whatever
–Or extended quiescent state for long-term blocking:

• rcu_thread_online(): Beginning of event handling
• rcu_thread_offline(): End of event handling

–Either way, application tells RCU when to ignore a given thread
• And rcu_read_lock() and rcu_read_unlock() can still be free

 In-kernel preemptible RCU has non-free readers
–But extremely lightweight in the common case
–Local counter increment, decrement, and check

What Is RCU?



© 2013 IBM Corporation47

But Isn't RCU Only For OS Kernels?

What Is RCU?



© 2013 IBM Corporation48

But Isn't RCU Only For OS Kernels?  Not at All!!!

What Is RCU?

User-space RCU has been available for some years
–http://lttng.org/urcu: Project page
–git://lttng.org/userspace-rcu.git: Git tree
–“User-Level Implementations of Read-Copy Update”, Mathieu 

Desnoyers, Paul E. McKenney, Alan Stern, Michel Dagenais, and 
Jonathan Walpole, IEEE Transactions on Parallel and Distributed 
Systems, v23, February 2012, pp 375-382

A few users:
–LTTng (http://lttng.org/)
–Knot DNS (http://www.knot-dns.cz/)
–Crowd simulation (http://dx.doi.org/10.1007/s11227-012-0766-x)

Available in a number of recent distros as liburcu



© 2013 IBM Corporation49

RCU Usage Within the Linux Kernel

Design Use Cases:
–Wait for Completion
–Restricted Reference Count
–Bulk Reference Count
–Existence Guarantees
–Type-Safe Memory
–Poorhouse Garbage Collector
–Reader-Writer Lock Replacement

Algorithmic Transformations
–Impose Level of Indirection
–Mark Obsolete Object
–Retry Readers

What Is RCU?



© 2013 IBM Corporation50

Reader-Writer Locking Replacement

Problem:  Need low-overhead readers
–Avoid cache-miss overhead associated with locking
–In cases where temporal mutual exclusion is not critically important

Solution:  Use RCU readers with linked data structure
–Pack the variables into a structure, so that a pointer can be updated 

atomically to readers

What Is RCU?



© 2013 IBM Corporation51

Reader-Writer Locking

int search(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   read_lock(&fhp->mutex);
   list_for_each_entry_rcu(p, head, list) {
      if (p->key == k) {
         read_unlock(&fhp->mutex);
         return 1;
      }
   }
   read_unlock(&fhp->mutex);
   return 0;
}

int delete(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   write_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         list_del_rcu(p);
         write_unlock(&fhp->mutex);
         /* */
         kfree(p);
         return 1;
      }
   }
   write_unlock(&fhp->mutex);
   return 0;
}

struct foo_head {
   struct list_head list;
   rwlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
};

foo_head foo foo

What Is RCU?



© 2013 IBM Corporation52

RCU as Reader-Writer Locking Replacement

int search(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   rcu_read_lock();
   list_for_each_entry_rcu(p, head, list) {
      if (p->key == k) {
         rcu_read_unlock();
         return 1;
      }
   }
   rcu_read_unlock();
   return 0;
}

int delete(struct foo_head *fhp, int k)
{
   struct foo *p;
   struct list_head *head = &fhp->list;

   spin_lock(&fhp->mutex);
   list_for_each_entry(p, head, list) {
      if (p->key == k) {
         list_del_rcu(p);
         spin_unlock(&fhp->mutex);
         synchronize_rcu();
         kfree(p);
         return 1;
      }
   }
   spin_unlock(&fhp->mutex);
   return 0;
}

struct foo_head {
   struct list_head list;
   spinlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
};

foo_head foo foo

What Is RCU?



© 2013 IBM Corporation53

Imposing Level of Indirection

Problem:  Need consistent view of several unrelated variables
–RCU cannot provide a consistent view of these variables

Solution:  Impose level of indirection (ILOI)
–Pack the variables into a structure, so that a pointer can be updated 

atomically to readers

A

B

C

A

B

C

What Is RCU?



© 2013 IBM Corporation54

m
al

lo
c(

)

co
py

up
da

te

fr
ee

()

sy
nc

hr
on

i z
e_

rc
u(

)

Imposing Level of Indirection: Update Process

A

B

C

rc
u_

as
si

g n
_p

oi
nt

er
()

A

B

C

?

?

?

A

B

C

A

B

C

A

B

C

A'

B'

C'

A

B

C

A'

B'

C'

A

B

C

A'

B'

C'

A'

B'

C'

What Is RCU?



© 2013 IBM Corporation55

Marking Obsolete Objects

Problem:  Need low-overhead readers
–Avoid cache-miss overhead associated with locking
–In cases where temporal mutual exclusion is not critically important
–But where readers cannot tolerate stale data

Solution:  Use RCU as a reader-writer locking replacement
–And keep per-data-element lock and “deleted” flag
–When readers encounter a deleted data element, they pretend not to 

have found it – otherwise, they continue holding the element's lock

What Is RCU?



© 2013 IBM Corporation56

Marking Obsolete Objects

Struct foo
*search(struct foo_head *fhp, int k)
{
   struct foo *p, *q;
   struct list_head *head = &fhp->list;

   rcu_read_lock();
   list_for_each_entry_rcu(p, head, list) {
      if (p->key == k) {
         q = p;
         spin_lock(&p->mutex);
         if (p->deleted) {
            q = NULL;
            spin_unlock(&p->mutex);
         }
         rcu_read_unlock();
         return q;
      }
   }
   rcu_read_unlock();
   return NULL;
}

void delete(struct foo_head *fhp,
            struct foo *p)
{
   struct list_head *head = &fhp->list;

   spin_lock(&fhp->mutex);
   list_del_rcu(p);
   p->deleted = true;
   spin_unlock(&p->mutex);
   spin_unlock(&fhp->mutex);
   synchronize_rcu();
   kfree(p);
}

struct foo_head {
   struct list_head list;
   spinlock_t mutex;
};

struct foo {
   struct list_head list;
   int key;
   bool deleted;
   spinlock_t mutex;
};

What Is RCU?



© 2013 IBM Corporation57

Retrying Readers

Problem:  Need low-overhead readers
–Avoid cache-miss overhead associated with locking
–In cases where updates must be excluded

Solution:  Use RCU as a reader-writer locking replacement in 
conjunction with sequence locking

–RCU provides existence guarantees, protecting pointer traversals
–Sequence locking excludes updaters
–Read-side critical sections must be idempotent

What Is RCU?


	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

