

Does RCU Really Work?

And if so, how would we know?
© 2021 Facebook Corporation

Paul E. McKenney, Facebook

Northern Arizona University NAU 499/599, March 23, 2021

2

RCU Usage: Overview

● What is RCU supposed to do?
● Is there a real problem?
● What is currently being done?
● Formal verification and Linux-kernel regression tests?
● Formal verification and memory models?
● Could better things happen???
● Summary

3

What is RCU Supposed to Do?

Hide

4

What is RCU Supposed to Do?

● Example multithreaded rwlock use case
● RCU semantics: English, usage restrictions,

“show me the code”, graphical, memory
ordering, “exercise the code” and
temporal/spatial.

● RCU performance
● RCU usage

5

Example Multithreaded Use Case

● Configuration information in variables a and b:
– int a, b; // Current configuration values

– Infrequently updated based on external inputs
– Given reader access needs consistent values

● Reading “Oldish” values OK, if consistent
● Very frequent reader access to a and b

6

Reader-Writer Locked Use Case

7

Reader-Writer Locked Use Case

DEFINE_RWLOCK(myrwlock);
int a, b; // Current configuration values

void get(int *cur_a, int *cur_b)
{
 read_lock(&myrwlock);
 *cur_a = a;
 *cur_b = b;
 read_unlock(&myrwlock);
}

8

Reader-Writer Locked Use Case

void set(int new_a, int new_b)
{
 write_lock(&myrwlock);
 a = new_a;
 b = new_b;
 write_unlock(&myrwlock);
}

9

Reader-Writer Lock Semantics

10

Reader-Writer Lock Semantics

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()

Time

11

Reader-Writer Lock Semantics

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()1) Wait for prior conflicting operations

2) Block subsequent conflicting operations

Time

12

Reader-Writer Lock Semantics

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()1) Wait for prior conflicting operations

2) Block subsequent conflicting operations

Time

re
ad

er
s

w
rit

er
re

ad
er

s

Time-based mutual exclusion

13

Reader-Writer Lock Performance

14

Reader-Writer Lock Performance

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps

15

Reader-Writer Lock Performance

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz

W
or

st
 c

as
e

But
 re

ad
-o

nl
y!

!!
perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps

16

Reader-Writer Lock Performance

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz

W
or

st
 c

as
e

But
 re

ad
-o

nl
y!

!!
perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps

17

Not Just Contention: HW Latency

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/cpu/data/hps.2020.03.04b/cachetorture-latency-scatter.jpg

18

Lighter Weight Semantics

19

Lighter Weight Semantics

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()

1) Wait for prior conflicting operations
2) Block subsequent conflicting operations

Time

re
ad

er
s

w
rit

er
re

ad
er

s

Time-based mutual exclusion

20

Lighter Weight Semantics

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()

1) Wait for prior conflicting operations, but only before freeing
2) Block subsequent conflicting operations

Time

re
ad

er
s

w
rit

er
re

ad
er

s

Time-based mutual exclusion

21

Lighter Weight Semantics???

write_lock()
...
a = new_a;
b = new_b;
write_unlock()

read_lock()
*cur_a = a;
*cur_b = b;
read_unlock()

read_lock()
...
*cur_a = a;
*cur_b = b;
read_unlock()

Time

re
ad

er
s

re
ad

er
s

an
d

w
rit

er
?

Time-based mutual exclusion

X

1) Wait for prior conflicting operations, but only before freeing
2) Block subsequent conflicting operations

22

RCU Semantics (English)

● Semantics weakened from reader-writer locking:
1) Writers wait for read-holders, but only before freeing

2) Readers wait for the writer-holders

● Compensate for weak temporal semantics by adding
restrictions and spatial semantics to RCU use cases

● Restated for RCU:
– If synchronize_rcu() cannot prove that it started before a given

rcu_read_lock(), it must wait until the matching rcu_read_unlock()
completes (asynchronous call_rcu() also available)

23

RCU Semantics (Restrictions)

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

U
p

d
a

te
-M

o
st

ly
,

N
e

e
d

F
re

sh
 C

o
n

si
st

e
n

t
D

a
ta

(R
C

U
 N

o
t

S
o

 G
o

o
d

)1,
2

Read-Write,
Need Consistent Data
(RCU Might Be OK)

Read-Mostly,
Need Consistent Data

(RCU Works OK) R
e

a
d

-M
o

st
ly

,
S

ta
le

&
 I

n
co

n
si

st
e

n
t

D
a

ta
 O

K
(R

C
U

 W
o

rk
s

G
re

a
t!

!!
)

24

RCU Semantics (Restrictions)

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

U
p

d
a

te
-M

o
st

ly
,

N
e

e
d

F
re

sh
 C

o
n

si
st

e
n

t
D

a
ta

(R
C

U
 N

o
t

S
o

 G
o

o
d

)1,
2

Read-Write,
Need Consistent Data
(RCU Might Be OK)

Read-Mostly,
Need Consistent Data

(RCU Works OK) R
e

a
d

-M
o

st
ly

,
S

ta
le

&
 I

n
co

n
si

st
e

n
t

D
a

ta
 O

K
(R

C
U

 W
o

rk
s

G
re

a
t!

!!
)

And RCU is most frequently used for linked data structures.

25

RCU Semantics (Show Me The Code)

nothin
g

26

Example Application (Redux)

● Configuration information in variables a and b:
– int a, b; // Current configuration values

– Infrequently updated based on external inputs
– Given reader access needs consistent values

● Reading “Oldish” values OK, if consistent
● Very frequent reader access to a and b

27

Design of RCU Use Case

● Put a & b into a structure to obtain consistency
– “All problems in computer science can be solved by

another level of indirection.”
David Wheeler

● Update: Create new structure & update pointer
● Free old structure “when it is safe to do so”

28

Core RCU API

● rcu_read_lock(): Begin reader

● rcu_read_unlock(): End reader

● synchronize_rcu(): Wait for pre-existing readers

● call_rcu(): Invoke function after pre-existing readers complete

● rcu_dereference(): Load RCU-protected pointer

● rcu_dereference_protected(): Ditto, but update-side locked

● rcu_assign_pointer(): Update RCU-protected pointer

For the full Linux-kernel RCU API as of January 2019: https://lwn.net/Articles/777036/

29

RCU Use Case: Reader

30

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Initialized

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a;
 *cur_b = mcp->b;
 rcu_read_unlock();
}

31

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Initialized

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a;
 *cur_b = mcp->b;
 rcu_read_unlock();
}

37,46

32

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Initialized

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a;
 *cur_b = mcp->b;
 rcu_read_unlock();
}

37,46

33

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Initialized

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b;
 rcu_read_unlock();
}

37,46

34

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Initialized

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b;
 rcu_read_unlock();
}

37,46

39,44

35

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Updated

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b; (46)
 rcu_read_unlock();
}

39,44

37,46

36

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Updated

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b; (46)
 rcu_read_unlock();
}

39,44

37,46

37

RCU Use Case: Reader

struct myconfig { int a, b; } *curconfig; // Updated

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b; (46)
 rcu_read_unlock();
}

Despite change, got consistent values!

39,44

37,46

38

RCU Use Case: Writer

39

RCU Use Case: Typical Writer
DEFINE_SPINLOCK(mylock);

void set(int new_a, int new_b)
{
 struct myconfig *mcp = kmalloc(...);
 struct myconfig *oldmcp;

 BUG_ON(!mcp);
 mcp->a = new_a;
 mcp->b = new_b;
 spin_lock(&mylock);
 oldmcp = rcu_dereference_protected(curconfig, lockdep_is_held(&mylock));
 rcu_assign_pointer(curconfig, mcp);
 spin_unlock(&mylock);
 synchronize_rcu();
 kfree(oldmcp);
}

40

RCU Use Case: Typical Writer
DEFINE_SPINLOCK(mylock); // RCU doesn’t care how writers synchronize!!!

void set(int new_a, int new_b)
{
 struct myconfig *mcp = kmalloc(...);
 struct myconfig *oldmcp;

 BUG_ON(!mcp);
 mcp->a = new_a;
 mcp->b = new_b;
 spin_lock(&mylock);
 oldmcp = rcu_dereference_protected(curconfig, lockdep_is_held(&mylock));
 rcu_assign_pointer(curconfig, mcp);
 spin_unlock(&mylock);
 synchronize_rcu();
 kfree(oldmcp);
}

41

RCU Use Case: Typical Writer
DEFINE_SPINLOCK(mylock); // RCU doesn’t care how writers synchronize!!!

void set(int new_a, int new_b)
{
 struct myconfig *mcp = kmalloc(...);
 struct myconfig *oldmcp;

 BUG_ON(!mcp);
 mcp->a = new_a;
 mcp->b = new_b;
 spin_lock(&mylock);
 oldmcp = rcu_dereference_protected(curconfig, lockdep_is_held(&mylock));
 rcu_assign_pointer(curconfig, mcp);
 spin_unlock(&mylock);
 synchronize_rcu();
 kfree(oldmcp);
}

Need writer and two readers on single slide!!!

42

RCU Use Case: Atomic Writer

void set(int new_a, int new_b)
{
 struct myconfig *mcp = kmalloc(...);

 mcp->a = new_a;
 mcp->b = new_b;
 mcp = xchg(&curconfig, mcp);
 synchronize_rcu();
 kfree(mcp);
}

43

RCU Use Case: Atomic Writer

void set(int new_a, int new_b)
{
 struct myconfig *mcp = kmalloc(...);

 mcp->a = new_a;
 mcp->b = new_b;
 mcp = xchg(&curconfig, mcp);
 synchronize_rcu();
 kfree(mcp);
} These will represent one writer

44

RCU Semantics

45

RCU Semantics (English, Redux)

● Semantics weakened from reader-writer locking:
1) Writers wait for read-holders, but only before freeing

2) Readers wait for the writer-holders

● Compensate for weak temporal semantics by adding
restrictions and spatial semantics to RCU use cases

● Restated for RCU:
– If synchronize_rcu() cannot prove that it started before a given

rcu_read_lock(), it must wait until the matching rcu_read_unlock()
completes (asynchronous call_rcu() also available)

46

RCU Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()

rcu_read_unlock()
synchronize_rcu()

[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
:::
:::
:::

[return]

Remove

Free Old Memory

Remove

Remove

Free Old Memory

Free Old Memory

Time

47

RCU Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()

rcu_read_unlock()
synchronize_rcu()

[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
:::
:::
:::

[return]

Remove

Free Old Memory

Remove

Remove

Free Old Memory

Free Old Memory

Time (really ordering)

48

RCU Semantics (Memory Ordering)
rcu_read_lock()

rcu_read_unlock()

call_rcu(callback)

callback invocation

If happens before...

…
 t

he
n

ha
pp

en
s

be
fo

re

rcu_read_lock()

rcu_read_unlock()

…
 t

he
n

ha
pp

en
s

be
fo

re

If happens before ...

49

RCU Semantics (Memory Ordering)

rcu_barrier() call

rcu_barrier() return

call_rcu(callback)

callback invocation

If
 h

ap
pe

ns
 b

ef
or

e.
..

… then happens before

50

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

51

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

52

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

53

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

54

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

55

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

56

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

57

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

58

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

59

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

60

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

61

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

62

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a;
*cur_b = mcp->b;
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

63

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b;
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
kfree(mcp);

64

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
kfree(mcp);

65

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

66

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig37,46

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

67

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

68

RCU Semantics (Exercise The Code)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock(); rcu_read_lock();

mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,44curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

69

RCU Semantics: (Temporal)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time

re
ad

er
s

G
P

*

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46 curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

* “Grace Period”re
ad

er
s

70

RCU Semantics: (Temporal & Spatial)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time

re
ad

er
s

G
P

*

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46

Address Space

curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

re
ad

er
s

* “Grace Period”

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard

71

Space/Time Synchronization

72

Core RCU API: Temporal vs. Spatial

● rcu_read_lock(): Begin reader

● rcu_read_unlock(): End reader

● synchronize_rcu(): Wait for pre-existing readers

● call_rcu(): Invoke function after pre-existing readers complete

● rcu_dereference(): Load RCU-protected pointer

● rcu_dereference_protected(): Ditto, but update-side locked

● rcu_assign_pointer(): Update RCU-protected pointer

– With xchg() standing in for these last two

For the full Linux-kernel RCU API as of January 2019: https://lwn.net/Articles/777036/

73

Space/Time Synchronization Outline

● Readers:
– Time via rcu_read_lock() and rcu_read_unlock()
– Space via rcu_dereference() and friends

● Updates are split into reader-visible and not
– Add: Initialize, then use rcu_assign_pointer()
– Delete: Remove, wait for grace period, then free

74

Updater Space/Time Synchronization

void set(int *cur_a, int *cur_b)
{
 struct myconfig *mcp = kmalloc(...);

 mcp->a = a;
 mcp->b = b;
 mcp = xchg(&curconfig, mcp);
 synchronize_rcu();
 kfree(mcp);
} Temporal synchronization

Spatial synchronization

75

Updater Space/Time Synchronization

Temporal synchronization
(Wait for pre-existing readers)

Spatial synchronization
(Make old data inaccessible
and new data accessible to
future readers)

void set(int *cur_a, int *cur_b)
{
 struct myconfig *mcp = kmalloc(...);

 mcp->a = a;
 mcp->b = b;
 mcp = xchg(&curconfig, mcp);
 synchronize_rcu();
 kfree(mcp);
}

76

Updater Space/Time Synchronization

Temporal synchronization 2

Spatial synchronization

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b; (46)
 rcu_read_unlock();
}

Temporal synchronization 1

77

Updater Space/Time Synchronization

Temporal synchronization 2
(End read-side critical section)

Spatial synchronization
(Get current version)

Temporal synchronization 1
(Start read-side critical section)

void get(int *cur_a, int *cur_b)
{
 struct myconfig *mcp;

 rcu_read_lock();
 mcp = rcu_dereference(curconfig);
 *cur_a = mcp->a; (37)
 *cur_b = mcp->b; (46)
 rcu_read_unlock();
}

78

RCU: Exploiting Both Temporal and
Spatial Synchronization for Decades!

Paolo Neo, Public Domain

79

Who Does Spatial Synchronization?!?

80

Who Does Spatial Synchronization?!?

● Per-task stack locations
● Per-CPU/-thread variables
● Hash tables with per-bucket locks

– And sharding in general (the “data locking” of old)

● Hazard pointers & other deferred reclamation

81

Who Does Spatial Synchronization?!?

● Per-task stack locations
● Per-CPU/-thread variables
● Hash tables with per-bucket locks

– And sharding in general (the “data locking” of old)

● Hazard pointers & other deferred reclamation
● In short, pretty much everybody!!!

82

Performance: rwlock vs RCU

83

Scalability for Empty Critical Sections

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps

84

… And Non-Empty Critical Sections

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps

85

Linux Kernel Usage?

86

Overall RCU Usage in v5.6?

Subsystem Calls to RCU APIs Lines of Code Uses/KLoc

ipc 91 9,550 9.53

net 6,959 1,116,949 6.23

security 449 99,352 4.52

kernel 1,407 361,593 3.89

virt 85 26,624 3.19

block 126 58,148 2.17

...

drivers 4,806 16,928,229 0.28

...

“RCU Usage In the Linux Kernel: Eighteen Years Later”, https://dl.acm.org/doi/10.1145/3421473.3421481

87

RCU Usage Trend in Linux Kernel

88

Is There a Real Problem?

89

Is There a Real Problem?

● RCU Semantics Viewpoint
– “Show me the textbook implementation!!!”

● Software-Engineering Viewpoint
● Installed-Base Viewpoint
● Software-Stack Depth Viewpoint
● Natural-Selection Viewpoint

90

RCU Semantics Viewpoint
● RCU has simple semantics:

– RCU grace period must wait for all pre-existing RCU readers
● Textbook read-side primitives:

#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(*p) *__p1 = READ_ONCE(p); \
 __p1; \
})
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

91

Here is Your Elegant Synchronization Mechanism:

Photo by "Golden Trvs Gol twister", CC by SA 3.0

92

Here is Your Elegant Synchronization Mechanism
Equipped to Survive in The Linux Kernel:

Photo by Луц Фишер-Лампрехт, CC by SA 3.0

93

A Few Linux-Kernel Issues...
● Systems with 1000s of CPUs
● Sub-20-microsecond real-time response requirements
● CPUs can come and go (“CPU hotplug”)
● If you disturb idle CPUs. you enrage low-power embedded folks
● Forward progress requirements: callbacks, network DoS attacks
● RCU grace periods must provide extremely strong ordering
● RCU uses the scheduler, and the scheduler uses RCU
● Firmware sometimes lies about the number and age of CPUs
● RCU must work during early boot, even before RCU initialization
● Preemption can happen, even when interrupts are disabled (vCPUs!)

● RCU should identify errors in client code (maintainer self-defense!)

94

Two Definitions and a Consequence

95

Two Definitions and a Consequence

● A non-trivial software system contains at least one bug
● A reliable software system contains no known bugs

96

Two Definitions and a Consequence

● A non-trivial software system contains at least one bug
● A reliable software system contains no known bugs

● Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

97

Two Definitions and a Consequence

● A non-trivial software system contains at least one bug
● A reliable software system contains no known bugs

● Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

● I assert that Linux-kernel RCU is both non-trivial and reliable,
thus contains at least one bug that I don't (yet) know about

98

Two Definitions and a Consequence

● A non-trivial software system contains at least one bug
● A reliable software system contains no known bugs

● Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

● I assert that Linux-kernel RCU is both non-trivial and reliable,
thus contains at least one bug that I don't (yet) know about
– But how many bugs? Analyze from a software-engineering viewpoint...

99

Software-Engineering Viewpoint

● RCU contains 17,682 LoC (including comments, etc.)
● 1-3 bugs/KLoC for production-quality code: 18-53 bugs

– Best case I have seen: 0.04 bugs/KLoC for safety-critical code
● Extreme code-style restrictions, single-threaded, formal methods, …
● And still way more than zero bugs!!! :-)

● What is the median age of Linux-kernel RCU code?
– Because young code tends to be buggier than old code!

Linux kernel v5.11

100

Median Age of RCU Code

Tree SRCU

RCU flavor
consolidation

Simplifications

Stall-Warning
Consolidation

~/paper/RCU/intro/LinuxPrimHist

101

Median Age of RCU Code, Assessed

Tree SRCU

RCU flavor
consolidation

Simplifications

Stall-Warning
Consolidation

~/paper/RCU/intro/LinuxPrimHist

102

Linux-Kernel Maintainer Viewpoint

● Greg Kroah-Hartman: “I need to go rebase 500
commits.”

● Paul E. McKenney: “Rebasing 500 commits
would kill me!”

● Greg Kroah-Hartman: “500 RCU commits would
kill the kernel!”

103

Software-Engineering Viewpoint

● RCU contains 17,682 LoC (including comments, etc.)
● 1-3 bugs/KLoC for production-quality code: 18-53 bugs

– Best case I have seen: 0.04 bugs/KLoC for safety-critical code
● Extreme code-style restrictions, single-threaded, formal methods, …
● And still way more than zero bugs!!! :-)

● Median age of an RCU LoC is less than four years
– And young code tends to be buggier than old code!

● We should therefore expect a few tens more bugs!!!

Linux kernel v5.11

104

Installed-Base Viewpoint

105

Installed-Base Viewpoint

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!

106

Installed-Base Viewpoint

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...

107

Installed-Base Viewpoint

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...
...maybe in geologic time

108

Installed-Base Viewpoint

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once in Ten Millennia

109

Installed-Base Viewpoint

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once per Century

110

Installed-Base Viewpoint

2005
Linux

100K

10K

10M

1K

100

10

1

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once a Month

111

Installed-Base Viewpoint

2005
Linux

100K

10K

10M

1K

100

10

1

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

100K

10K

10M

2015
Linux

1K

100

10

1

10G

Million-Year Bug? Several Times per Day

112

Installed-Base Viewpoint

2005
Linux

100K

10K

10M

1K

100

10

1

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2017
Linux

1K

100

10

1

10G
100G

Million-Year Bug? Several Times per Hour

113

Installed-Base Viewpoint

2005
Linux

100K

10K

10M

1K

100

10

1

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2017
Linux

1K

100

10

1

10G
100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

IoT

1TMillion-Year Bug? You don't want to know...

114

Installed-Base Viewpoint

2005
Linux

100K

10K

10M

1K

100

10

1

1995
SQNT

10K

1K

100

10

11

1975
NHS

100

10

1

1985
Various

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2019
Linux

1K

100

10

1

10G
100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

IoT

1TMillion-Year Bug? You don't want to know...
But has Murphy transitioned
from a nice guy into a
homicidal maniac?

115

Software-Stack Depth Viewpoint

116

Software-Stack Depth Viewpoint???

RCU

?

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

117

Software-Stack Depth Viewpoint!!!

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

RCU

Row
Hammer!

DRAM

118

Obligatory Row Hammer Diagram
Different protection domains,
for example, different pages

Manipulating this bit... … can change this bit, protection domain notwithstanding.

http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

119

Obligatory Row Hammer Diagram
Different protection domains,
for example, different pages

Manipulating this bit... … can change this bit, memory protection notwithstanding.

http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Can’t abstract our way out of this!!!

120

Not Just a Theoretical Possibility...

RCU

!

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

linux.conf.au video:

linux.conf.au video:

http://youtu.be/hZX1aokdNiY

http://youtu.be/hZX1aokdNiY

121

Natural Selection Viewpoint

122

Natural Selection Viewpoint

123

Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Robust
Software

124

Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

125

Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports:
Improve

Validation

126

Natural Selection: Not Just Lifeforms

● There are bugs in there somewhere!!!
– A failing test is usually a bug in the code under test
– A passing test is a bug in the test

● The price of robust software is eternal bugs!
– And eternal test development

● But no zero-day bugs in Linux-kernel RCU!!!

127

What Is Currently Being Done?

128

What Is Currently Being Done?
● Stress-test suite: “rcutorture”

– http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/
● “Intelligent fuzz testing”: “trinity”, syzkaller

– http://codemonkey.org.uk/projects/trinity/, https://github.com/google/syzkaller
● Test suites including static analysis: “0-day test robot”, “hulk robot”, ...

– https://lwn.net/Articles/514278/
● Integration testing: “linux-next tree”

– https://lwn.net/Articles/571980/
● Kernel Sanitizers

– https://github.com/google/ktsan, https://github.com/google/kasan,
https://github.com/google/ktsan/wiki/KCSAN

● Lock dependency checker (lockdep)
● But it does appear that more is needed...

129

RCU Validation Options

● Other failures mask RCU’s, including HW
– But Linux used in safety-critical systems

● More CPUs in tests (4,000 last weekend)
● Force rare critical operations more frequently
● Tests targeted to possible race conditions
● Formal verification for regression tests?

130

Formal Verification & Regression Tests?

131

Formal Verification & Regression Tests?
● “To err is human”
● The Linux kernel supports 25 CPU architectures (was 31)
● New Linux-kernel release every 2-3 months
● Finite available hardware and personnel
● Bugs are known to exist: What else can you tell us?
● Adding scaffolding/specifications adds bugs: Breakeven?

● Fixing bugs with some probability adds bugs: Breakeven?

132

Formal Verification & Regression Tests?
● “To err is human”
● The Linux kernel supports 25 CPU architectures (was 31)
● New Linux-kernel release every 2-3 months
● Finite available hardware and personnel
● Bugs are known to exist: What else can you tell us?
● Adding scaffolding/specifications adds bugs: Breakeven?

● Fixing bugs with some probability adds bugs: Breakeven?

● Other validation techniques: Investment tradeoffs?

133

Formal Verification & Regression Tests

● Automatic translation or no translation
– Automatically discard irrelevant code

– Manual translation: Opportunity for human error!

● Correctly mode environment
– Including memory model

– QRCU benchmark: An excellent cautionary tale

● Reasonable memory & CPU overhead
– Bugs located in practice as well as in theory

– Linux-kernel RCU is 17KLoC (plus 8KLoC tests)
and release cycles are short

● Map to source line(s) containing the bug
– “Something is wrong somewhere” is not helpful

– One bug reported thus far this week!!!

● Modest input outside of code under test
– Glean the specification from the source code itself

(empirical/incomplete spec!)

– Specifications are large bodies of software and
can therefore have their own bugs

● Find relevant bugs
– Low false-positive rate, weight towards likelihood

of occurrence (fixes create bugs!)

Many of these are at best acquired tastes for FV researchers

134

A Few Formal Verification Tools

● Promela/spin, TLA
● PPCMEM, ARMMEM, RMEM (new!)
● Herd
● Linux-kernel memory model (LKMM)
● CBMC
● Nidhugg

135

Promela/spin & TLA: Design-Time Verification

● 1993: Shared-disk/network election algorithm (pre-Linux)
– Single-point-of failure bug in specification: Fixed during coding

– But fix had bug that propagated to field: Cluster partition

– Conclusion: Formal verification is trickier than expected!!!

● 2007: “Quick” RCU (QRCU) – fast updaters
– http://lwn.net/Articles/243851/, but never accepted into Linux kernel

● 2008: RCU idle-detection energy-efficiency logic
– http://lwn.net/Articles/279077/

– Verified, but much simpler approach found two years later

– Hypothesis: Need for formal verification: Symptom of too-complex design?

Holzmann: “The Spin Model Checker”

136

Promela/spin & TLA: Design-Time Verification

● 2012: Verify userspace RCU, emulating weak memory
– Two independent models (Desnoyers and myself), bug injection

● 2014: NMIs can nest!!! Affects energy-efficiency logic
– Verified, and no simpler approach apparent thus far!!!

– Note: Excellent example of empirical specification (AKA “incomplete specification”)

● 2018: TLA & queued spinlock (Catalin Marinas and Will Deacon)
– Liveness: https://linuxplumbersconf.org/event/2/contributions/60/

https://lamport.azurewebsites.net/tla/tla.html

137

PPCMEM, ARMMEM, RMEM, and Herd

● Verified suspected bug in Power Linux atomic primitives
● Found bug in Power Linux spin_unlock_wait()
● Verified ordering properties of locking primitives
● Excellent memory-ordering teaching tools

– Starting to be used more widely within IBM as a design-time tool

– And within the wider Linux-kernel community

● PPCMEM: (http://lwn.net/Articles/470681/)
– Accurate but slow

● Herd: (http://lwn.net/Articles/608550/)
– Faster, but still not able to handle 10,000-line programs

Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:
“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory Models”
Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation, Testing, and Data-mining for Weak Memory”

138

Linux-Kernel Memory Model (LKMM)

● Set of .bell and .cat files processed by herd
– Quasi-C-language input, otherwise like assembly-language tests

– Very roughly: Intersection of guarantees from CPUs supporting Linux

● Handles READ_ONCE(), WRITE_ONCE(), barriers, atomic operations, locking, RCU, SRCU
– Accepted into Linux kernel in 2018: tools/memory-model

– Helped shape RISC-V architecture-specific code

– Helped abolish spin_unlock_wait(): No agreement on semantics :-)

● Limitations similar to those of herd's assembly features:
– Small size, exponential complexity, no structs/arrays, …

– Also does not yet handle plain C-language accesses, seqlock, …

● LKMM is nevertheless useful to Linux kernel hackers

https://lwn.net/Articles/718628/, https://lwn.net/Articles/720550/, http://diy.inria.fr/linux/ (ASPLOS 2018 extended),
https://www.youtube.com/watch?v=ULFytshTvIY (linux.conf.au 2017)

139

Progression of Memory Models

Hardware Hardware

Compiler

Hardware

Arch Code

Compiler

Code Style

Hardware
Memory
Model

Language
Memory
Model

Linux-Kernel
Memory
Model

140

LKMM Points of Interest

● Loads and stores
● Atomic read-modify-write operations
● Data-race detection
● Locking, RCU, and SRCU modeled directly
● Moral equivalent of full state-space search

141

CBMC (Very) Rough Schematic

Logic Expression

Trace generation
(if counterexample

located)

C Code

SAT Solver

Verification Result

CBMC

Kroening, Clarke, and Lerda, “A
tool for checking ANSI-C
programs”, Tools and Algorithms
for the Construction and Analysis
of Systems, 2004, pp. 168-176.
https://github.com/diffblue/cbmc

142

C Bounded Model Checker (CBMC)
● Nascent concurrency and weak-memory functionality
● Valuable property: “Just enough specification”

– Assertions in code act as specifications!
– Can provide additional specifications in “verification driver” code

● Verified rcu_dereference() and rcu_assign_pointer()
– Alglave et al.: https://dl.acm.org/citation.cfm?id=2526873

● I used CBMC to verify Tiny RCU
– But when I say “Tiny”, I really do mean tiny!!!

● Substantial portion of Tree RCU verified as tour de force
– Lihao Liang, Oxford, et al.: https://arxiv.org/abs/1610.03052

● Linux-kernel SRCU verified on more routine basis, for awhile, anyway
– Lance Roy: https://www.spinics.net/lists/kernel/msg2421833.html

143

C Bounded Model Checker (CBMC)
● Formal verification of Linux-kernel RCU?

– Sure, I can also write printf(“VERIFIED\n”);
● I therefore maintain bug-injected RCU versions

– https://paulmck.livejournal.com/46993.html
● How did CBMC do? Only 2 failures out of 30.

– Interrupt over-approximation, memory exhaustion
– Up to 90.4M SAT variables, 75GB, ~70 CPU hours

● Ran on 64-bit 2.4GHz Xeon, 12 cores & 96GB memory

● CBMC is promising, especially if SAT progress continues

144

Nidhugg (Very) Rough Schematic

LLVM IR

Trace generation
(if counterexample

located)

C Code

Dynamic partial
order reduction

(DPOR) algorithm

Verification Result

Nidhugg

https://github.com/nidhugg/nidhugg
https://link.springer.com/chapter/10.1007/978-3-662-46681-0_28

145

Nidhugg: Stateless Model Checker
● Good concurrency, nascent weak-memory functionality

– Uses Clang/LLVM, emits LLVM-IR, then analyzes it

● Like CBMC, “Just enough specification”
– Assertions in code act as specifications!
– Can provide additional specifications in “verification driver” code

● And also substantial portion of Tree RCU verified
– Kokologiannakis et al., NTUA: https://doi.org/10.1145/3092282.3092287

● Tentative conclusions comparing to CBMC:
– Less capable than CBMC (CBMC handles data non-determinism)
– More scalable than CBMC (Nidhugg analyzes more code faster)
– But neither found a Linux-kernel bug I didn't already know about
– Future work includes more detailed comparison

● And hopefully finding bugs that I don't already know about!

146

Scorecard For Linux-Kernel C Code (Incomplete)

Promela PPCMEM Herd LKMM CBMC Nidhugg

(1) Automated

(2) Handle env. (MM) (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source

(5) Modest input

(6) Relevant bugs ??? ??? ??? ??? ??? ???

Paul's first use 1993 2011 2014 2015 2015 2017

Promela/TLA MM: Only SC: Weak memory must be implemented in model
Herd MM: Some PowerPC and ARM corner-case issues
CBMC MM: SC, TSO, and PSO (Want LKMM!)
Nidhugg MM: Only SC, TSO, and nascent Power (Want LKMM!)
Note: All handle concurrency! (Promela has done so for 30 years!!!)

147

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd LKMM CBMC Nidhugg Test

(1) Automated

(2) Handle env. (MM) (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source

(5) Modest input

(6) Relevant bugs ??? ??? ??? ??? ??? ???

Paul's first use 1993 2011 2014 2015 2015 2017 1973

148

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd LKMM CBMC Nidhugg Test

(1) Automated

(2) Handle env. (MM) (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source

(5) Modest input

(6) Relevant bugs ??? ??? ??? ??? ??? ???

Paul's first use 1993 2011 2014 2015 2015 2017 1973

So why do anything other than testing?

149

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd LKMM CBMC Nidhugg Test

(1) Automated

(2) Handle env. (MM) (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source

(5) Modest input

(6) Relevant bugs ??? ??? ??? ??? ??? ???

Paul's first use 1993 2011 2014 2015 2015 2017 1973

So why do anything other than testing?
● Low-probability bugs can require excessively expensive testing regimen
● Large installed base will encounter low-probability bugs
● Safety-critical applications are sensitive to low-probability bugs

150

More to Life Than Regression Testing!!!
Promela PPCMEM Herd LKMM CBMC Nidhugg Test

(1) Automated

(2) Handle env. (MM) (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source

(5) Modest input

(6) Relevant bugs ??? ??? ??? ??? ??? ???

Paul's first use 1993 2011 2014 2015 2015 2017 1973

Design? * * * * * * **

Verify bug? * * * * * * ***

Verify fix? * * * * * * ***

* Assuming no bugs in tool ** Design-time testing *** Weak form of probabilistic testing

151

Could Better Things Happen?

152

Challenges/Limitations/Future Work
● Better modeling of interrupts & kernel threads

– For CBMC: model concurrent linked lists for call_rcu()

● Incorporate Linux-kernel memory model
– And/or ARM, PowerPC, RISC-V, ...

● Forward progress: Detect hangs & deadlocks
– Can already detect unconditional hangs/deadlocks

● Fully analyze unbounded looping
– Or at least automatically derive unrolling bounds

● Larger programs: Automatic decomposition?
– RacerD is a small but important step in this direction

153

Why Automatic Decomposition???

LKMM Locking: Modeling vs. Emulation

Modeling Emulation

threads lock.cat CAS Filter xchg() Filter CAS Exists xchg() Exists

2 0.004 0.022 0.027 0.039 0.058

3 0.041 0.743 0.968 1.653 3.203

4 0.374 59.565 74.818 151.962 500.96

5 4.905

CAS Filter: Emulate with cmpxchg_acquire() and “filter” clause
xchg() Filter: Emulate with xchg_acquire() and “filter” clause
CAS Exists: Emulate with cmpxchg_acquire() and “exists” clause
xchg() Exists: Emulate with xchg_acquire() and “exists” clause

154

Why Automatic Decomposition???
● Exponential runtime is expected behavior

– On a bad day, you instead get undecidability!!!
● Therefore, huge performance and scalability benefits from:

– Goal: Combinatorial implosion
– Higher levels of abstraction (vertical decomposition)

● Verify use of locking instead of both use and implementation!!!

– Partitioning code to be verified (horizontal decomposition)
● Decomposition is common practice in hardware verification

– And starting to appear in software, but a very long way to go

● Automation is required for use in regression test suites

155

Why Automatic Decomposition???

LKMM Locking: Modeling vs. Emulation

Modeling Emulation

threads lock.cat CAS Filter xchg() Filter CAS Exists xchg() Exists

2 0.004 0.022 0.027 0.039 0.058

3 0.041 0.743 0.968 1.653 3.203

4 0.374 59.565 74.818 151.962 500.96

5 4.905

Decomposed

Not decomposed

156

Verification Challenge
● Find Linux-kernel bugs that I don't already know about!

– Find bug in rcu_preempt_offline_tasks()
● http://paulmck.livejournal.com/37782.html

– Find bug in RCU_NO_HZ_FULL_SYSIDLE
● http://paulmck.livejournal.com/38016.html

– Find bug in RCU linked-list use cases
● http://paulmck.livejournal.com/39793.html

– Verification Challenges 6 and 7
● https://paulmck.livejournal.com/46993.html
● https://paulmck.livejournal.com/50441.html

● Or find bugs in other popular open-source SW

157

Linux-Kernel RCU Bug Expectations

The usual influx of bugs that I don't expect at all...

158

Linux-Kernel RCU Bug Expectations

The usual influx of bugs that I don't expect at all...

Because Murphy Never Sleeps!!!

159

Case in Point From 2018
Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
 <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sat Mar 3 17:54:39 2018

[Adding Al, Paul and Tejun and to the cc too for various reasons]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[. . .]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

 Linus

linux.conf.au video:

linux.conf.au video:

http://youtu.be/hZX1aokdNiY

http://youtu.be/hZX1aokdNiY

security@kernel.org

LKML

160

What Was The Problem???

void reader(void)
{
 rcu_read_lock_sched();
 /*
 * Access RCU-
 * protected data.
 */
 rcu_read_unlock_sched();
}

void updater(void)
{
 /* Remove old data. */
 synchronize_rcu();
 /* Free old data. */
}

This is about as healthy for your kernel as acquiring the wrong lock!!!

161

Consistency Required, Which is Bad!

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu_bh();

synchronize_sched();

synchronize_rcu();

To err is human...
Plus userspace controls content of much kernel data!!!

162

Desired State (Usability & Security)

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu();

163

But Non-Trivial to Fix

● 8 patches to consolidate the three flavors of RCU

164

But Non-Trivial to Fix

● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

165

But Non-Trivial to Fix

● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

166

But Non-Trivial to Fix

● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

167

But Non-Trivial to Fix

● 17 patches to add debugging code
● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

168

But Non-Trivial to Fix

● 42 patches to add rcutorture tests
● 17 patches to add debugging code
● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

169

But Non-Trivial to Fix

● 107 patches to remove RCU-bh & RCU-sched and simplify
● 42 patches to add rcutorture tests
● 17 patches to add debugging code
● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

170

But Non-Trivial to Fix

● 17 patches for drive-by optimizations
● 107 patches to remove RCU-bh & RCU-sched and simplify
● 42 patches to add rcutorture tests
● 17 patches to add debugging code
● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

171

But Non-Trivial to Fix

● 17 patches for drive-by optimizations
● 107 patches to remove RCU-bh & RCU-sched and simplify
● 42 patches to add rcutorture tests
● 17 patches to add debugging code
● 15 patches for pre-existing rcutorture failures
● 3 patches to funnel-lock grace-period start
● 35 patches to merge grace-period counters
● 8 patches to consolidate the three flavors of RCU

And formal verification would not have helped to find this one...

172

Summary

173

Summary

● Making your software do exactly what you want it to is a difficult undertaking
– And it is insufficient: You might be confused about requirements

● Ease-of-use issues can result in security holes
– Testing and reliability statistics are subject to misuse “Black Swans”

– On the other hand, fixing these issues can simplify your code

● RCU currently seems to be in pretty good shape
– But recent change means opportunity for formal verification

– And there is some risk due to lack of synchronize_sched()

174

Summary

● Making your software do exactly what you want it to is a difficult undertaking
– And it is insufficient: You might be confused about requirements

● Ease-of-use issues can result in security holes
– Testing and reliability statistics are subject to misuse “Black Swans”

– On the other hand, fixing these issues can simplify your code

● RCU currently seems to be in pretty good shape
– But recent change means opportunity for formal verification

– And there is some risk due to lack of synchronize_sched()

● For most validation tasks, testing still has highest ROI
● But testing does have limitations, so additional validation help would be extremely

welcome!!!

175

For More Information
● “RCU Usage In the Linux Kernel: One Decade Later”:

– http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
– http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
– 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481

● “Structured Deferral: Synchronization via Procrastination”:
http://doi.acm.org/10.1145/2488364.2488549

● Linux-kernel RCU API, 2019 Edition: https://lwn.net/Articles/777036/

● “Stupid RCU Tricks: So you want to torture RCU?”: https://paulmck.livejournal.com/57769.html

● Documentation/RCU/* in kernel source

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”, “Deferred Processing”
chapter: https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

● Folly-library RCU implementation (also C-language user-space RCU)

● Large piles of information: http://www.rdrop.com/~paulmck/RCU/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175

