
© 2019 IBM Corporation

RCU's First-Ever CVE

And How I Lived to Tell the Tale

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

Member, IBM Academy of Technology

linux.conf.au, January 23, 2019

© 2019 IBM Corporation2

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Overview

 Isn't RCU a bit low-level to be involved in a CVE?

What is the CVE number?

What was the real problem?

What would a fix even look like???

Possible solutions

Other consequences

Summary

© 2019 IBM Corporation3

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Isn't RCU a Bit Low-Level to be Involved in a CVE?

© 2019 IBM Corporation4

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Isn't RCU a Bit Low-Level to be Involved in a CVE?

RCU

?

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation5

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Isn't RCU a Bit Low-Level to be Involved in a CVE?

RCU

Row
Hammer!

DRAM

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation6

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Obligatory Row Hammer Diagram

Different protection domains,
for example, different pages

Manipulating this bit... … can change this bit, protection domain notwithstanding.

http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

© 2019 IBM Corporation7

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Obligatory Row Hammer Diagram: Cannot Virtualize
EMI Out of Existence!!!

Different protection domains,
for example, different pages

Manipulating this bit... … can change this bit, protection domain notwithstanding.

http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

© 2019 IBM Corporation8

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

If Black Hats Can Hit DRAM, They Can Hit RCU!!!

RCU

!

DRAM

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation9

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

This is No Longer Strictly Theoretical...

© 2019 IBM Corporation10

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Minding My Own Business When This Email Arrived

Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
 <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sat Mar 3 17:54:39 2018

[Adding Al, Paul and Tejun and to the cc too for various reasons]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[. . .]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

 Linus

© 2019 IBM Corporation11

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Minding My Own Business When This Email Arrived

Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
 <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sat Mar 3 17:54:39 2018

[Adding Al, Paul and Tejun and to the cc too for various reasons]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[. . .]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

 Linus

security@kernel.org

© 2019 IBM Corporation12

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Minding My Own Business When This Email Arrived

Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
 <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sat Mar 3 17:54:39 2018

[Adding Al, Paul and Tejun and to the cc too for various reasons]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[. . .]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

 Linus

security@kernel.org

LKML

© 2019 IBM Corporation13

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

A Prototype RCU-Usage Fix, And Then This Email

Date: Sun, 4 Mar 2018 10:53:54 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Tejun Heo <tj@kernel.org>
Cc: Jann Horn <jannh@google.com>, Paul McKenney <paulmck@linux.vnet.ibm.com>,
 Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sun Mar 4 10:56:59 2018

[. . .]

I've been confused before, and this time it was an actual security
bug. Admittedly one that is probably almost impossible to ever hit in
practice or mis-use, but still.

I repeat: I really love the traditional RCU, but I *despise* how there
are a million different and confusing versions of it. It clearly
causes real problems.

The only reason for rcu-sched to exist in the first place is that the
regular RCU had been made so much slower with PREEMPT_RCU. In other
words, the proliferation of different insane RCU implementations ends
up feeding on itself, and causing more and more of the proliferation.

Paul, is there really no way out of this mess?

 Linus

© 2019 IBM Corporation14

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

A Prototype RCU-Usage Fix, And Then This Email

Date: Sun, 4 Mar 2018 10:53:54 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Tejun Heo <tj@kernel.org>
Cc: Jann Horn <jannh@google.com>, Paul McKenney <paulmck@linux.vnet.ibm.com>,
 Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sun Mar 4 10:56:59 2018

[. . .]

I've been confused before, and this time it was an actual security
bug. Admittedly one that is probably almost impossible to ever hit in
practice or mis-use, but still.

I repeat: I really love the traditional RCU, but I *despise* how there
are a million different and confusing versions of it. It clearly
causes real problems.

The only reason for rcu-sched to exist in the first place is that the
regular RCU had been made so much slower with PREEMPT_RCU. In other
words, the proliferation of different insane RCU implementations ends
up feeding on itself, and causing more and more of the proliferation.

Paul, is there really no way out of this mess?

 Linus

Paul, is there really no way out of this mess?

© 2019 IBM Corporation15

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

A Prototype RCU-Usage Fix, And Then This Email

Date: Sun, 4 Mar 2018 10:53:54 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Tejun Heo <tj@kernel.org>
Cc: Jann Horn <jannh@google.com>, Paul McKenney <paulmck@linux.vnet.ibm.com>,
 Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sun Mar 4 10:56:59 2018

[. . .]

I've been confused before, and this time it was an actual security
bug. Admittedly one that is probably almost impossible to ever hit in
practice or mis-use, but still.

I repeat: I really love the traditional RCU, but I *despise* how there
are a million different and confusing versions of it. It clearly
causes real problems.

The only reason for rcu-sched to exist in the first place is that the
regular RCU had been made so much slower with PREEMPT_RCU. In other
words, the proliferation of different insane RCU implementations ends
up feeding on itself, and causing more and more of the proliferation.

Paul, is there really no way out of this mess?

 Linus

Which is the topic of this talk!

Paul, is there really no way out of this mess?

© 2019 IBM Corporation16

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

© 2019 IBM Corporation17

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

I have no idea.

© 2019 IBM Corporation18

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

I have no idea.
I am not cleared for embargoed security issues.

© 2019 IBM Corporation19

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

I have no idea.
I am not cleared for embargoed security issues.

Is there really a CVE number for this issue?

© 2019 IBM Corporation20

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

I have no idea.
I am not cleared for embargoed security issues.

Is there really a CVE number for this issue?
Again, I have no idea.

© 2019 IBM Corporation21

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But First, What is the CVE Number???

I have no idea.
I am not cleared for embargoed security issues.

Is there really a CVE number for this issue?
Again, I have no idea.

But there was an exploitable bug.

© 2019 IBM Corporation22

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

What Was The Real Problem???

© 2019 IBM Corporation23

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

What Was The Real Problem???
Abuse of RCU...

void reader(void)
{
 rcu_read_lock_sched();
 /*
 * Access RCU-
 * protected data.
 */
 rcu_read_unlock_sched();
}

void updater(void)
{
 /* Remove old data. */
 synchronize_rcu();
 /* Free old data. */
}

© 2019 IBM Corporation24

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Why is This an Abuse of RCU???

© 2019 IBM Corporation26

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

What Was The Real Problem???

void reader(void)
{
 rcu_read_lock_sched();
 /*
 * Access RCU-
 * protected data.
 */
 rcu_read_unlock_sched();
}

void updater(void)
{
 /* Remove old data. */
 synchronize_rcu();
 /* Free old data. */
}

This is about as healthy for your kernel as acquiring the wrong lock!!!

© 2019 IBM Corporation29

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Why is This a Problem??? Pictorial Form...

rcu_read_lock_sched();

rcu_read_lock() in effect?
No, so report quiescent state!

A B C

Still using B!!!

list_del_rcu(B);

synchronize_rcu();

kfree(B);

rcu_read_unlock_sched()

list_for_each_entry_rcu(...)
 Get reference to B

What are developers
supposed to do

instead?

© 2019 IBM Corporation30

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

What Are Developers Supposed to do Instead?

rcu_read_lock();

rcu_read_lock() in effect?
Yes, so no quiescent state.

A B C

Still using B,
but that's OK!

list_del_rcu(B);

synchronize_rcu();

kfree(B);

rcu_read_unlock()

list_for_each_entry_rcu(...)
 Get reference to B

© 2019 IBM Corporation31

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Or, Alternatively, Adjust the Updater:

rcu_read_lock_sched(); A B C

list_del_rcu(B);

list_for_each_entry_rcu(...)
 Get reference to B

synchronize_sched();

kfree(B);

Still using B,
but that's OK!

Preemption disabled?
Yes, so no quiescent state.

rcu_read_unlock_sched();

© 2019 IBM Corporation34

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Consistency is Required, But That is a Problem!

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu_bh();

synchronize_sched();

synchronize_rcu();

To err is human...
Plus userspace controls content of much kernel data!!!

© 2019 IBM Corporation35

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

What Would A Fix Even Look Like???

© 2019 IBM Corporation36

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Desired State From Usability/Security Viewpoint:

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu();

© 2019 IBM Corporation37

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Desired State From Usability/Security Viewpoint
Except That Things Are Never Quite That Simple...

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();
local_bh_disable();
local_bh_enable();
. . .

rcu_read_lock_sched();
rcu_read_unlock_sched();
preempt_disable();
preempt_enable();
local_irq_disable();
local_irq_enable();

. . .

synchronize_rcu();

© 2019 IBM Corporation38

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Elaborations on Desired State

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

© 2019 IBM Corporation39

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Elaborations on Desired State

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

© 2019 IBM Corporation40

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Elaborations on Desired State...
But Please Keep This to a Minimum in Kernel Code!!!

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

There are a lot of possible combinations of elaborations!!!
So rcutorture does up to eight randomly selected elaborations per reader

© 2019 IBM Corporation41

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Thankfully, There Is Some Good News

© 2019 IBM Corporation42

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Thankfully, There Is Some Good News
For PREEMPT=n, RCU Already Handles This!!! *

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

But too bad about PREEMPT=y kernels...* Give or take RCU-bh quiescent states

© 2019 IBM Corporation43

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solutions

© 2019 IBM Corporation44

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Add Explicit RCU Readers

© 2019 IBM Corporation47

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Add Explicit RCU Readers
Example: preempt_disable() and preempt_enable()

preempt_disable()

preempt_enable()

preempt_disable()

rcu_read_lock()

preempt_enable()

rcu_read_unlock()

Adds some overhead on some fastpaths, but security!!!

© 2019 IBM Corporation48

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Add Explicit RCU Readers

Try easy approaches first!!! Add RCU readers:
–Make local_bh_disable() do rcu_read_lock() just before returning and

local_bh_enable() do rcu_read_unlock() just after being called
–Make preempt_disable() do rcu_read_lock() just before returning and

preempt_enable() do rcu_read_unlock() just after being called
–Make local_irq_disable() do rcu_read_lock() just before returning and

local_irq_enable() do rcu_read_unlock() just after being called
• And same for the many other disable/enable functions

© 2019 IBM Corporation49

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Add Explicit RCU Readers

Try easy approaches first!!! Add RCU readers:
–Make local_bh_disable() do rcu_read_lock() just before returning and

local_bh_enable() do rcu_read_unlock() just after being called
–Make preempt_disable() do rcu_read_lock() just before returning and

preempt_enable() do rcu_read_unlock() just after being called
–Make local_irq_disable() do rcu_read_lock() just before returning and

local_irq_enable() do rcu_read_unlock() just after being called
• And same for the many other disable/enable functions

How many people find this a bit scary?

© 2019 IBM Corporation50

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Add Explicit RCU Readers

Try easy approaches first!!! Add RCU readers:
–Make local_bh_disable() do rcu_read_lock() just before returning and

local_bh_enable() do rcu_read_unlock() just after being called
–Make preempt_disable() do rcu_read_lock() just before returning and

preempt_enable() do rcu_read_unlock() just after being called
–Make local_irq_disable() do rcu_read_lock() just before returning and

local_irq_enable() do rcu_read_unlock() just after being called
• And same for the many other disable/enable functions

How many people find this a bit scary?

So test it first: Instead of rcu_read_lock(), increment counter
and instead of rcu_read_unlock(), decrement same counter

–Complain if counter non-zero where everything is enabled

© 2019 IBM Corporation51

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Try easy approaches first!!! Add RCU readers:
–Make local_bh_disable() do rcu_read_lock() just before returning and

local_bh_enable() do rcu_read_unlock() just after being called
–Make preempt_disable() do rcu_read_lock() just before returning and

preempt_enable() do rcu_read_unlock() just after being called
–Make local_irq_disable() do rcu_read_lock() just before returning and

local_irq_enable() do rcu_read_unlock() just after being called
• And same for the many other disable/enable functions

How many people find this a bit scary?

So test it first: Instead of rcu_read_lock(), increment counter
and instead of rcu_read_unlock(), decrement same counter

–Complain if counter non-zero where everything is enabled

Possible Solution: Add Explicit RCU Readers
Too Bad About All That Fastpath Assembly Code...

FailFail

© 2019 IBM Corporation52

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer Reporting Quiescent States

© 2019 IBM Corporation53

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer Reporting Quiescent States

 If preemption/irq/bh disabled across rcu_read_unlock(), don't
report the quiescent state until everything is enabled

© 2019 IBM Corporation54

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer Reporting Quiescent States

 If preemption/irq/bh disabled across rcu_read_unlock(), don't
report the quiescent state until everything is enabled

The algorithm can be described in one sentence, so the
implementation cannot possibly be all that hard, right?

© 2019 IBM Corporation55

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer Reporting Quiescent States

 If preemption/irq/bh disabled across rcu_read_unlock(), don't
report the quiescent state until everything is enabled

The algorithm can be described in one sentence, so the
implementation cannot possibly be all that hard, right?

–Just plumb it into RCU's quiescent-state reporting infrastructure!!!

© 2019 IBM Corporation56

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer Reporting Quiescent States

 If preemption/irq/bh disabled across rcu_read_unlock(), don't
report the quiescent state until everything is enabled

The algorithm can be described in one sentence, so the
implementation cannot possibly be all that hard, right?

–Just plumb it into RCU's quiescent-state reporting infrastructure!!!

But first, what on earth is an RCU quiescent state???
–Let's review RCU deletion from a linked list...

© 2019 IBM Corporation57

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers?
Only old ones!

No readers

One Version

kf
re

e(
)

Quiescent states tell synchronize_rcu() how long to wait.

© 2019 IBM Corporation58

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

RCU Removal From Linked List: Quiescent States

 CPU quiescent state means all that CPU's readers are done
–Quiescent states include context switch, idle, offline, cond_resched():

Special cases of enabled code not in an RCU read-side critical section

 Grace period ends after everything passes through a quiescent state

synchronize_rcu()

CPU 0

Task A

CPU 1

qu
ies

ce
nt

 st
at

e

Grace Period

RCU re
ad

er

remove cat free cat

© 2019 IBM Corporation59

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

From Quiescent States to Grace Periods

For example, rcu_note_context_switch() is a quiescent state

Simple approach?

void synchronize_rcu(void)
{
 atomic_set(&nqsneeded, num_online_cpus());
 wait_event(gp_wait, nqsneeded == 0);
}

void rcu_note_context_switch(bool preempt)
{
 If (atomic_dec_and_test(&nqsneeded))
 wake_up(&gp_wait);
}

© 2019 IBM Corporation61

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

From Quiescent States to Grace Periods

For example, rcu_note_context_switch() is a quiescent state

Simple approach?

void synchronize_rcu(void)
{
 atomic_set(&nqsneeded, num_online_cpus());
 wait_event(gp_wait, nqsneeded == 0);
}

void rcu_note_context_switch(bool preempt)
{
 If (atomic_dec_and_test(&nqsneeded))
 wake_up(&gp_wait);
}

FailFail
CPU hotplug, scalability,CPU hotplug, scalability,

multiple quiescent states,multiple quiescent states,
......

First bug report against RCU on 512-CPU system in 2004...

© 2019 IBM Corporation62

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Improve Scalability With Combining Tree (Tree RCU)

->qsmask

->qsmask ->qsmask

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

© 2019 IBM Corporation63

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Improve Scalability With Combining Tree (Tree RCU)

Start grace period: Set all ->cpu_no_qs flags and ->qsmask
bits corresponding to online CPUs

Quiescent state:
–If CPU's rcu_data structure's ->cpu_no_qs flag is set, clear it and

proceed to leaf rcu_node structure
–If CPU's bit in leaf rcu_node structure's ->qsmask is set, clear it and if

all bits are now clear, proceed to root rcu_node structure
• Protected by leaf rcu_node structure's ->lock field

–If corresponding bit in root rcu_node structure's ->qsmask is set, clear
it, and if all bits are now clear, end of grace period!

• Protected by root rcu_node structure's ->lock field

Constant lock contention no matter how deep the tree!!!

© 2019 IBM Corporation64

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Defer Quiescent States With Combining Tree:
Atomic Count of CPUs w/Deferred Quiescent States

->qsmask

->qsmask
->deferq

->qsmask
->deferq

->cpu_no_qs
->defer_qs

->cpu_no_qs
->defer_qs

->cpu_no_qs
->defer_qs

->cpu_no_qs
->defer_qs

rcu_node

rc
u_

da
ta

© 2019 IBM Corporation65

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Improve Scalability With Combining Tree, Including
Deferred Quiescent States (1/2)

Start grace period:
–Set all ->cpu_no_qs flags and ->qsmask bits per online CPUs
–Clear all ->deferq and ->defer_qs flags

Quiescent state:
–If CPU's rcu_data's ->cpu_no_qs flag is set and if ->defer_qs is clear,

clear ->cpu_no_qs and proceed to leaf rcu_node structure
–If CPU's bit in leaf rcu_node's ->qsmask is set, clear it and if all bits

and ->deferq are now clear, proceed to root rcu_node structure
–If corresponding bit in root rcu_node structure's ->qsmask is set, clear

it, and if all bits are now clear, end of grace period!

Disabled during rcu_read_unlock():
–Set ->defer_qs and atomically increment ->deferq

When enabled... (Next slide)

© 2019 IBM Corporation66

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Improve Scalability With Combining Tree, Including
Deferred Quiescent States (2/2)

When enabled and rcu_data's ->defer_qs is set:
–Clear rcu_data's ->defer_qs
–Atomically decrement rcu_node's ->deferq, and if zero proceed to

the leaf rcu_node
– If CPU's bit in leaf rcu_node's ->qsmask is set, clear it and if all

bits and ->deferq are now clear, proceed to root rcu_node
structure

– If corresponding bit in root rcu_node structure's ->qsmask is set,
clear it, and if all bits are now clear, end of grace period!

© 2019 IBM Corporation67

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Improve Scalability With Combining Tree, Including
Deferred Quiescent States (2/2)

When enabled and rcu_data's ->defer_qs is set:
–Clear rcu_data's ->defer_qs
–Atomically decrement rcu_node's ->deferq, and if zero proceed to

the leaf rcu_node
– If CPU's bit in leaf rcu_node's ->qsmask is set, clear it and if all

bits and ->deferq are now clear, proceed to root rcu_node
structure

– If corresponding bit in root rcu_node structure's ->qsmask is set,
clear it, and if all bits are now clear, end of grace period!

Time to start coding!!!

© 2019 IBM Corporation68

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Combining Tree With Deferred Quiescent States
(Part of a Page, Five Pages Total)

© 2019 IBM Corporation69

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Combining Tree With Deferred Quiescent States
(Part of a Page, Five Pages Total)

But wait! Preempted task queuing, stall warnings, expedited grace periods, …

© 2019 IBM Corporation70

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Combining Tree With Deferred Quiescent States
(Part of a Page, Five Eight Pages Total)

© 2019 IBM Corporation72

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

But Eight Pages is Still Imperfect for PREEMPT=y!!!

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

This rcu_read_lock() must block the
grace period, but won't because of
the prior rcu_read_unlock()!!!

© 2019 IBM Corporation73

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

OK, Maybe Not A Hard Failure, But...

© 2019 IBM Corporation74

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

OK, Maybe Not A Hard Failure, But...

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

This rcu_read_lock() must block the
grace period, but might not because
of the prior rcu_read_unlock()!!!

So we need to carry more state.

© 2019 IBM Corporation75

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

OK, Maybe Not A Hard Failure, But...

Debugging is twice as hard as writing
the code in the first place. Therefore, if

you write the code as cleverly as
possible, you are, by definition, not

smart enough to debug it.

Brian W. Kernighan

© 2019 IBM Corporation76

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

OK, Maybe Not A Hard Failure, But...

Debugging is twice as hard as writing
the code in the first place. Therefore, if

you write the code as cleverly as
possible, you are, by definition, not

smart enough to debug it.

Brian W. Kernighan

For that matter, am I even smart enough to test it???

© 2019 IBM Corporation77

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

OK, Maybe Not A Hard Failure, But...

Debugging is twice as hard as writing
the code in the first place. Therefore, if

you write the code as cleverly as
possible, you are, by definition, not

smart enough to debug it.
Brian W. Kernighan

For that matter, am I even smart enough to test it???

Back to the drawing board...

FailFail
RCU read-side critical sectionsRCU read-side critical sections

linked by preempt-disable...linked by preempt-disable...
Excessive complexity!!!Excessive complexity!!!

© 2019 IBM Corporation78

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Possible Solution: Defer rcu_read_unlock() Dequeue

© 2019 IBM Corporation80

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Running Task A

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

© 2019 IBM Corporation81

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Preempted, Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

© 2019 IBM Corporation82

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Preempted, Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task A

CPU switches to Task B

© 2019 IBM Corporation83

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task B's priority is lowered, Task A resumes

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task A

© 2019 IBM Corporation84

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Blocks Current Grace Period, Task B Does Not

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

© 2019 IBM Corporation85

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Executes rcu_read_unlock()

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

© 2019 IBM Corporation86

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A No Longer Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

Task A must remove itself from ->blkd_tasks and update ->gp_tasks
But there is no next task, so set ->gp_tasks to NULL

© 2019 IBM Corporation87

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Grace Period No Longer Blocked by Preempted Task

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A has removed itself from ->blkd_tasks and updated ->gp_tasks

© 2019 IBM Corporation88

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

More Detail on Current Quiescent State Handling

Quiescent state:
–If CPU's rcu_data structure's ->cpu_no_qs flag is set, clear it and

proceed to leaf rcu_node
–If CPU's bit in leaf rcu_node structure's ->qsmask is set, clear it and if all

bits are clear and if ->gp_tasks is NULL, proceed to root rcu_node
–If corresponding bit in root rcu_node's ->qsmask is set, clear it, and if all

bits are now clear, end of grace period!

“Special” situation in rcu_read_unlock():
–Remove self from ->blkd_tasks, adjust ->gp_tasks if references self
– If ->gp_tasks now NULL and all ->qsmask bits are clear, proceed to

root rcu_node and handle it as above

© 2019 IBM Corporation90

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

More Detail on Current Quiescent State Handling

Quiescent state:
–If CPU's rcu_data structure's ->cpu_no_qs flag is set, clear it and

proceed to leaf rcu_node
–If CPU's bit in leaf rcu_node structure's ->qsmask is set, clear it and if all

bits are clear and if ->gp_tasks is NULL, proceed to root rcu_node
–If corresponding bit in root rcu_node's ->qsmask is set, clear it, and if all

bits are now clear, end of grace period!

“Special” situation in rcu_read_unlock():
–Remove self from ->blkd_tasks, adjust ->gp_tasks if references self
– If ->gp_tasks now NULL and all ->qsmask bits are clear, proceed to

root rcu_node and handle it as above

Key point: RCU already knows all about ->blkd_tasks and ->gp_tasks
So defer ->blkd_tasks removal until enabled!!!

© 2019 IBM Corporation91

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Defer Dequeuing to Defer Quiescent State Handling

Quiescent state:
–If CPU's rcu_data structure's ->cpu_no_qs flag is set, clear it and

proceed to leaf rcu_node
–If CPU's bit in leaf rcu_node structure's ->qsmask is set, clear it and if all

bits are clear and if ->gp_tasks is NULL, proceed to root rcu_node
–If corresponding bit in root rcu_node's ->qsmask is set, clear it, and if all

bits are now clear, end of grace period!

 “Special” situation in rcu_read_unlock():
–Only if fully enabled, remove self from ->blkd_tasks, adjust ->gp_tasks

if references self
–If ->gp_tasks now NULL and all ->qsmask bits are clear, proceed to root

rcu_node and handle it as above

Periodically check for deferred quiescent states
–Dequeue task, if needed, and report deferred quiescent state

© 2019 IBM Corporation92

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Does This Really Work on That Example???

© 2019 IBM Corporation94

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Does This Really Work on That Example???

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

Preemption disabled, so leave
task queued on ->blkd_tasks[]...

… which means that the task is
already queued, and thus already
blocking the grace period!!!

One big reader, as required!!!

© 2019 IBM Corporation96

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Scheduling Things For Later

Leverage local_bh_enable()
–If bottom halves disabled, raise_softirq()

• Very cheap from interrupt handler
–RCU_SOFTIRQ will be invoked shortly after local_bh_enable()
–But preemption might still be disabled...

Leverage preempt_enable() and/or interrupt enabling
–Tell the scheduler to force a context switch

• Even if no context switch is needed
–Context switch informs RCU: Cannot happen until after fully enabled

This can be expensive!!!
–Fortunately, only happens when RCU reader is long and/or preempted

© 2019 IBM Corporation97

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Scheduling Things For Later

Leverage local_bh_enable()
–If bottom halves disabled, raise_softirq()

• Very cheap from interrupt handler
–RCU_SOFTIRQ will be invoked shortly after local_bh_enable()
–But preemption might still be disabled...

Leverage preempt_enable() and/or interrupt enabling
–Tell the scheduler to force a context switch

• Even if no context switch is needed
–Context switch informs RCU: Cannot happen until after fully enabled

This can be expensive!!!
–Fortunately, only happens when RCU reader is long and/or preempted

Time to start coding!!!

© 2019 IBM Corporation98

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Scheduling Things For Later

Leverage local_bh_enable()
–If bottom halves disabled, raise_softirq()

• Very cheap from interrupt handler
–RCU_SOFTIRQ will be invoked shortly after local_bh_enable()
–But preemption might still be disabled...

Leverage preempt_enable() and/or interrupt enabling
–Tell the scheduler to force a context switch

• Even if no context switch is needed
–Context switch informs RCU: Cannot happen until after fully enabled

This can be expensive!!!
–Fortunately, only happens when RCU reader is long and/or preempted

Time to start coding!!! (Again!)

© 2019 IBM Corporation99

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Defer rcu_read_unlock() Current-Task Dequeue
(Part of a Page, Down to Three Pages Total!!!)

© 2019 IBM Corporation100

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

The Full Set of Commits

1.3e3100989869 rcu: Defer reporting RCU-preempt quiescent states when disabled
2.27c744e32a9a rcu: Allow processing deferred QSes for exiting RCU-preempt readers
3.fcc878e4dfb7 rcu: Remove now-unused ->b.exp_need_qs field from the rcu_special union
4.d28139c4e967 rcu: Apply RCU-bh QSes to RCU-sched and RCU-preempt when safe
5.ba1c64c27239 rcu: Report expedited grace periods at context-switch time
6.fced9c8cfe6b rcu: Avoid resched_cpu() when rescheduling the current CPU
7.05f415715ce4 rcu: Speed up expedited GPs when interrupting RCU reader
8.94fb70aa876b rcu: Make expedited IPI handler return after handling critical section

© 2019 IBM Corporation101

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

The Full Set of Commits

1.3e3100989869 rcu: Defer reporting RCU-preempt quiescent states when disabled
2.27c744e32a9a rcu: Allow processing deferred QSes for exiting RCU-preempt readers
3.fcc878e4dfb7 rcu: Remove now-unused ->b.exp_need_qs field from the rcu_special union
4.d28139c4e967 rcu: Apply RCU-bh QSes to RCU-sched and RCU-preempt when safe
5.ba1c64c27239 rcu: Report expedited grace periods at context-switch time
6.fced9c8cfe6b rcu: Avoid resched_cpu() when rescheduling the current CPU
7.05f415715ce4 rcu: Speed up expedited GPs when interrupting RCU reader
8.94fb70aa876b rcu: Make expedited IPI handler return after handling critical section

Adjusts for RCU-bh

© 2019 IBM Corporation102

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

The Full Set of Commits: In Theory, Anyway...

1.3e3100989869 rcu: Defer reporting RCU-preempt quiescent states when disabled
2.27c744e32a9a rcu: Allow processing deferred QSes for exiting RCU-preempt readers
3.fcc878e4dfb7 rcu: Remove now-unused ->b.exp_need_qs field from the rcu_special union
4.d28139c4e967 rcu: Apply RCU-bh QSes to RCU-sched and RCU-preempt when safe
5.ba1c64c27239 rcu: Report expedited grace periods at context-switch time
6.fced9c8cfe6b rcu: Avoid resched_cpu() when rescheduling the current CPU
7.05f415715ce4 rcu: Speed up expedited GPs when interrupting RCU reader
8.94fb70aa876b rcu: Make expedited IPI handler return after handling critical section

Adjusts for RCU-bh

© 2019 IBM Corporation104

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Merge Grace-Period Counters (1/2)

1. de30ad512a66 rcu: Introduce grace-period sequence numbers

2. dee4f42298bb rcu: Move rcu_gp_slow() to ->gp_seq

3. 17ef2fe97c8c rcu: Make rcutorture's batches-completed API use ->gp_seq

4. 78c5a67f1788 rcu: Convert rcu_check_gp_kthread_starvation() to GP sequence number

5. c9a24e2d0c7d rcu: Make quiescent-state reporting use ->gp_seq

6. e4be81a2ed3a rcu: Convert conditional grace-period primitives to ->gp_seq

7. 67e14c1e39d2 rcu: Move RCU's grace-period-change code to ->gp_seq

8. a66ae8ae35de rcu: Convert rcu_gpnum_ovf() to ->gp_seq

9. e05720b0977b rcu: Move rcu_implicit_dynticks_qs() to ->gp_seq

10.03c8cb765a74 rcu: Move rcu_try_advance_all_cbs() to ->gp_seq

11.e0da2374c388 rcu: Move rcu_nocb_gp_get() to ->gp_seq

12.ba04107fc901 rcu: Move rcu_gp_in_progress() to ->gp_seq

13.8aa670cdacc1 rcu: Convert ->rcu_iw_gpnum to ->gp_seq

14.d43a5d32e125 rcu: Convert ->completedqs to ->gp_seq

15.29365e563b1e rcu: Convert grace-period requests to ->gp_seq

16.471f87c3d91b rcu: Make RCU CPU stall warnings use ->gp_seq

17.aebc82644b2c rcutorture: Convert rcutorture_get_gp_data() to ->gp_seq

18.7a1d0f23ad70 rcu: Move from ->need_future_gp[] to ->gp_seq_needed

19.ab5e869c1f7a rcu: Make rcu_nocb_wait_gp() check if GP already requested

20.477351f7829d rcu: Convert rcu_grace_period tracepoint to gp_seq

© 2019 IBM Corporation105

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Merge Grace-Period Counters (2/2)

1. abd13fdd9516 rcu: Convert rcu_future_grace_period tracepoint to gp_seq

2. 598ce09480ef rcu: Convert rcu_preempt_task tracepoint to ->gp_seq

3. 865aa1e08d8a rcu: Convert rcu_unlock_preempted_task tracepoint to ->gp_seq

4. db023296f011 rcu: Convert rcu_quiescent_state_report tracepoint to ->gp_seq

5. fee5997c1756 rcu: Convert rcu_fqs tracepoint to ->gp_seq

6. ff3bb6f4d062 rcu: Remove ->gpnum and ->completed

7. e44e73ca47b4 rcu: Make simple callback acceleration refer to rdp->gp_seq_needed

8. 5b55072f22ba rcu: Produce last "CleanupMore" trace only if late-breaking request

9. 5ca0905f6787 rcu: Fix cpustart tracepoint gp_seq number

10.2e3e5e550101 rcu: Make rcu_start_this_gp() check for grace period already started

11.d72193123c81 rcutorture: Correctly handle grace-period sequence wrap

12.3d18469a2bb3 rcu: Regularize resetting of rcu_data wrap indicator

13.b73de91d6a4c rcu: Rename the grace-period-request variables and parameters

14.2ee5aca54622 rcu: Make rcu_seq_diff() more exact

15.adbccddb4a16 rcu: Fix rcu_{node,data} comments about gp_seq_needed

© 2019 IBM Corporation106

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Funnel-Lock Grace-Period Start

1. a2165e416878 rcu: Don't funnel-lock above leaf node if GP in progress

2. df2bf8f7f776 rcu: Use better variable names in funnel locking loop

3. 226ca5e76692 rcu: Identify grace period is in progress as we advance up the tree

© 2019 IBM Corporation107

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Fix Pre-Existing rcutorture Failures

1. 962aff03c315 rcu: Clean up handling of tasks blocked across full-rcu_node offline

2. c50cbe535c97 rcu: Fix an obsolete ->qsmaskinit comment

3. 5554788e1d42 rcu: Suppress false-positive offline-CPU lockdep-RCU splat

4. fece27760ff5 rcu: Suppress false-positive preempted-task splats

5. 99990da1b3c0 rcu: Suppress more involved false-positive preempted-task splats

6. 0b107d24d936 rcu: Suppress false-positive splats from mid-init task resume

7. ec2c29765a4a rcu: Fix grace-period hangs from mid-init task resume

8. 1e64b15a4b10 rcu: Fix grace-period hangs due to race with CPU offline

9. c7cd161ecb21 rcu: Assign higher prio to RCU threads if rcutorture is built-in

10.450efca7182a rcutorture: Disable RT throttling for boost tests

11.3b745c8969c7 rcutorture: Make boost test more robust

12.4babd855fd61 rcutorture: Add support to detect if boost kthread prio is too low

13.e746b558572e rcutorture: Warn on bad torture type for built-in tests

14.f0288064425f rcuperf: Warn on bad perf type for built-in tests

15.894d45bbf7e7 rcu: Convert rcu_state.ofl_lock to raw_spinlock_t

© 2019 IBM Corporation108

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Add Debugging Code

1. 4bc8d55574dd rcu: Add debugging info to assertion

2. 26d950a94513 rcu: Diagnostics for grace-period startup hangs

3. c74859d1eb2d rcu: Make rcu_report_unblock_qs_rnp() warn on violated preconditions

4. 77cfc7bf24ba rcu: Fix typo and add additional debug

5. 1f3e5f51b933 rcu: Add RCU-preempt check for waiting on newly onlined CPU

6. f34f2f5852e5 rcu: Move grace-period pre-init delay after pre-init

7. ff3cee39088b rcu: Add up-tree information to dump_blkd_tasks() diagnostics

8. 577389423187 rcu: Add CPU online/offline state to dump_blkd_tasks()

9. fea3f222d352 rcu: Record ->gp_state for both phases of grace-period initialization

10.f2e2df59786d rcu: Add diagnostics for offline CPUs failing to report QS

11.b06ae25a1e2b rcu: Use RCU CPU stall timeout for rcu_check_gp_start_stall()

12.47199a081253 rcu: Add diagnostics for rcutorture writer stall warning

13.89b4cd4b9ebf rcu: Print stall-warning NMI dyntick state in hexadecimal

14.028be12b294e rcutorture: Change units of onoff_interval to jiffies

15.691960197e8d rcu: Add state name to show_rcu_gp_kthreads() output

16.c669c014d1da rcu: Add jiffies-since-GP-activity to show_rcu_gp_kthreads()

17.7ae47dfb7e2a rcu: Improve diagnostics for failed RCU grace-period start

© 2019 IBM Corporation109

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Add rcutorture Quiescent-State Deferral Tests (1/3)

1. 6b06aa723ed7 rcutorture: Extract common code from rcu_torture_reader()

2. 8da9a59523b6 rcutorture: Use atomic increment for n_rcu_torture_timers

3. 3025520ec424 rcutorture: Use per-CPU random state for rcu_torture_timer()

4. 241b42522abb rcutorture: Make rcu_torture_timer() use rcu_torture_one_read()

5. 2397d072f76b rcutorture: Handle extended read-side critical sections

6. bf1bef50bee1 rcutorture: Emphasize testing of single reader protection type

7. 444da518fd55 rcutorture: Force occasional reader waits

8. 1b27291b1ea4 rcutorture: Add forward-progress tests for RCU grace periods

9. 119248bec9d3 rcutorture: Also use GP sequence to judge forward progress

10.152f4afbfd58 rcutorture: Avoid no-test complaint if too few forward-progress tries

11.08a7a2ec6834 rcutorture: Vary forward-progress test interval

12.9fdcb9afe082 rcutorture: Add self-propagating callback to forward-progress testing

13.3cff54a830f7 rcutorture: Increase rcu_read_delay() longdelay_ms

14.1e69676592ed rcutorture: Limit reader duration if irq or bh disabled

15.fecad5091f35 rcutorture: Reduce priority of forward-progress testing

16.c04dd09bd38c rcutorture: Adjust number of reader kthreads per CPU-hotplug operations

17.f4de46ed5bbc rcutorture: Print forward-progress test interval on error

18.474e59b476b3 rcutorture: Check GP completion at stutter end

19.7c590fcca66b rcutorture: Maintain self-propagating CB only during forward-progress test

20.c0335743c5d8 rcutorture: Test extended "rcu" read-side critical sections

© 2019 IBM Corporation110

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Add rcutorture Quiescent-State Deferral Tests (2/3)

1. 2ceebc035082 rcutorture: Add RCU-bh and RCU-sched support for extended readers

2. 72ce30dd1f9b rcu: Stop testing RCU-bh and RCU-sched

3. c770c82a2382 rcutorture: Remove the "rcu_bh" and "sched" torture types

4. 620d246065cd rcuperf: Remove the "rcu_bh" and "sched" torture types

5. de3875d30233 rcu: Remove now-unused rcutorture APIs

6. c116dba68d19 rcutorture: Dump reader protection sequence if failures or close calls

7. 4871848531af rcutorture: Add call_rcu() flooding forward-progress tests

8. fc6f9c57787e rcutorture: Remove cbflood facility

9. 6b3de7a172bc rcutorture: Break up too-long rcu_torture_fwd_prog() function

10.5ab7ab8362fa rcutorture: Affinity forward-progress test to avoid housekeeping CPUs

11.61670adcb4a9 rcutorture: Prepare for asynchronous access to rcu_fwd_startat

12.e0aff9735557 rcutorture: Dump grace-period diagnostics upon forward-progress OOM

13.bfcfcffc5f23 rcu: Print per-CPU callback counts for forward-progress failures

14.8dd3b54689d9 rcutorture: Print GP age upon forward-progress failure

15.1a682754c7ed rcutorture: Print histogram of CB invocation at OOM time

16.c51d7b5e6c94 rcutorture: Print time since GP end upon forward-progress failure

17.73d665b1410a rcutorture: Print forward-progress test age upon failure

18.2667ccce9328 rcutorture: Recover from OOM during forward-progress tests

19.2e57bf97a685 rcutorture: Use 100ms buckets for forward-progress callback histograms

20.5ac7cdc29897 rcutorture: Don't do busted forward-progress testing

© 2019 IBM Corporation111

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Add rcutorture Quiescent-State Deferral Tests (3/3)

1. da3d56fb3dd6 rcu: Add sysrq rcu_node-dump capability

2. a0a2c92a5543 rcutorture: Record grace periods in forward-progress histogram

© 2019 IBM Corporation112

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (1/6)

1. 65cfe3583b61 rcu: Define RCU-bh update API in terms of RCU

2. 82fcecfa8185 rcu: Update comments and help text for no more RCU-bh updaters

3. 45975c7d21a1 rcu: Define RCU-sched API in terms of RCU for Tree RCU PREEMPT builds

4. 709fdce7545c rcu: Express Tiny RCU updates in terms of RCU rather than RCU-sched

5. 358be2d3685c rcu: Remove RCU_STATE_INITIALIZER()

6. ec5dd444b678 rcu: Eliminate rcu_state structure's ->call field

7. da1df50d1617 rcu: Remove rcu_state structure's ->rda field

8. 16fc9c600b3c rcu: Remove rcu_state_p pointer to default rcu_state structure

9. 2280ee5a7d3e rcu: Remove rcu_data_p pointer to default rcu_data structure

10.b50912d0b5e0 rcu: Remove rsp parameter from rcu_report_qs_rnp()

11.aff4e9ede52b rcu: Remove rsp parameter from rcu_report_qs_rsp()

12.139ad4da5ab5 rcu: Remove rsp parameter from rcu_report_unblock_qs_rnp()

13.33085c469aea rcu: Remove rsp parameter from rcu_report_qs_rdp()

14.de8e87305a1a rcu: Remove rsp parameter from rcu_gp_in_progress()

15.336a4f6c451e rcu: Remove rsp parameter from rcu_get_root()

16.ad3832e974eb rcu: Remove rsp parameter from record_gp_stall_check_time()

17.8fd119b6522f rcu: Remove rsp parameter from rcu_check_gp_kthread_starvation()

18.33dbdbf02538 rcu: Remove rsp parameter from rcu_dump_cpu_stacks()

19.e1741c69d427 rcu: Remove rsp parameter from rcu_stall_kick_kthreads()

20.a91e7e58b101 rcu: Remove rsp parameter from print_other_cpu_stall()

© 2019 IBM Corporation113

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (2/6)

1. 4e8b8e08f931 rcu: Remove rsp parameter from print_cpu_stall()

2. ea12ff2b7d97 rcu: Remove rsp parameter from check_cpu_stall()

3. 3481f2eab095 rcu: Remove rsp parameter from rcu_future_gp_cleanup()

4. 532c00c97f16 rcu: Remove rsp parameter from rcu_gp_kthread_wake()

5. 02f501423d0d rcu: Remove rsp parameter from rcu_accelerate_cbs()

6. c6e09b97b933 rcu: Remove rsp parameter from rcu_accelerate_cbs_unlocked()

7. 834f56bf54e8 rcu: Remove rsp parameter from rcu_advance_cbs()

8. c7e48f7ba382 rcu: Remove rsp parameter from __note_gp_changes()

9. 15cabdffbbf6 rcu: Remove rsp parameter from note_gp_changes()

10.22212332c1f3 rcu: Remove rsp parameter from rcu_gp_slow()

11.0854a05c9fa5 rcu: Remove rsp parameter from rcu_gp_kthread() and friends

12.8087d3e3c453 rcu: Remove rsp parameter from rcu_check_quiescent_state()

13.780cd590836f rcu: Remove rsp parameter from CPU hotplug functions

14.5bb5d09cc4f8 rcu: Remove rsp parameter from rcu_do_batch()

15.e9ecb780fe7d rcu: Remove rsp parameter from force-quiescent-state functions

16.b96f9dc4fb64 rcu: Remove rsp parameter from rcu_check_gp_start_stall()

17.b049fdf8e3b9 rcu: Remove rsp parameter from __rcu_process_callbacks()

18.5c7d89676bc5 rcu: Remove rsp parameter from __call_rcu() and friend

19.98ece508b545 rcu: Remove rsp parameter from __rcu_pending()

20.8344b871b1d5 rcu: Remove rsp parameter from _rcu_barrier() and friends

© 2019 IBM Corporation114

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (3/6)

1. 53b46303da84 rcu: Remove rsp parameter from rcu_boot_init_percpu_data() and friends

2. b8bb1f63cf9a rcu: Remove rsp parameter from rcu_init_one() and friends

3. a2887cd85f38 rcu: Remove rsp parameter from rcu_print_detail_task_stall()

4. 81ab59a3ad86 rcu: Remove rsp parameter from dump_blkd_tasks() and friend

5. 6dbfdc1409cf rcu: Remove rsp parameter from rcu_spawn_one_boost_kthread()

6. b21ebed95101 rcu: Remove rsp parameter from print_cpu_stall_info()

7. 4580b0541bea rcu: Remove rsp parameter from no-CBs CPU functions

8. 63d4c8c97948 rcu: Remove rsp parameter from expedited grace-period functions

9. aedf4ba98416 rcu: Remove rsp parameter from rcu_node tree accessor macros

10.88d1bead858d rcu: Remove rcu_data structure's ->rsp field

11.564a9ae6046c rcu: Remove last non-flavor-traversal rsp local variable from tree_plugin.h

12.b97d23c51c9f rcu: Remove for_each_rcu_flavor() flavor-traversal macro

13.f7dd7d44fd2d rcu: Simplify rcutorture_get_gp_data()

14.7cba4775ba79 rcu: Restructure rcu_check_gp_kthread_starvation()

15.4c6ed43708bb rcu: Eliminate stall-warning use of rsp

16.9cbc5b97029b rcu: Eliminate grace-period management code use of rsp

17.3c779dfef2c4 rcu: Eliminate callback-invocation/invocation use of rsp

18.67a0edbf3c4d rcu: Eliminate quiescent-state and grace-period-nonstart use of rsp

19.ec9f5835f74c rcu: Eliminate RCU-barrier use of rsp

20.eb7a6653887b rcu: Eliminate initialization-time use of rsp

© 2019 IBM Corporation115

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (4/6)

1. 8ff0b9078091 rcu: Fix typo in force_qs_rnp()'s parameter's parameter

2. 4e95020cdd34 rcu: Inline increment_cpu_stall_ticks() into its sole caller

3. 4c7e9c1434c6 rcu: Consolidate RCU-bh update-side function definitions

4. a8bb74acd8ef rcu: Consolidate RCU-sched update-side function definitions

5. 2bd8b1a2afc4 rcu: Clean up flavor-related definitions and comments in rcupdate.h

6. aff5f0369e31 rcu: Clean up flavor-related definitions and comments in rculist.h

7. df8561a0d7e4 rcu: Clean up flavor-related definitions and comments in rcupdate_wait.h

8. 8c1cf2da6f8a rcu: Clean up flavor-related definitions and comments in Kconfig

9. 7f87c036fea3 rcu: Clean up flavor-related definitions and comments in rcu.h

10.62a1a945368f rcu: Clean up flavor-related definitions and comments in rcutorture.c

11.6eb95cc4507a rcu: Clean up flavor-related definitions and comments in srcutree.h

12.679d3f30923e rcu: Clean up flavor-related definitions and comments in tiny.c

13.49918a54e63c rcu: Clean up flavor-related definitions and comments in tree.c

14.8fa946d42855 rcu: Clean up flavor-related definitions and comments in tree_exp.h

15.0ae86a272656 rcu: Clean up flavor-related definitions and comments in tree_plugin.h

16.06462efc808c rcu: Clean up flavor-related definitions and comments in update.c

17.4d232dfe1df3 rcu: Remove !PREEMPT code from rcu_note_voluntary_context_switch()

18.395a2f097ebd rcu: Define rcu_all_qs() only in !PREEMPT builds

19.dd46a7882c2c rcu: Inline _rcu_barrier() into its sole remaining caller

20.7e28c5af4ef6 rcu: Eliminate ->rcu_qs_ctr from the rcu_dynticks structure

© 2019 IBM Corporation116

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (5/6)

1. 31ab604bf323 rcu: Remove unused rcu_dynticks_snap() from Tiny RCU

2. cc72046cc3cc rcu: Merge rcu_dynticks structure into rcu_data structure

3. 0fd79e7521bc rcu: Switch ->tick_nohz_enabled_snap to rcu_data structure

4. 5998a75adbf4 rcu: Switch last accelerate/advance to rcu_data structure

5. c458a89e964d rcu: Switch lazy counts to rcu_data structure

6. 2dba13f0b6c2 rcu: Switch urgent quiescent-state requests to rcu_data structure

7. 4c5273bf2b5e rcu: Switch dyntick nesting counters to rcu_data structure

8. dc5a4f2932f1 rcu: Switch ->dynticks to rcu_data structure, remove rcu_dynticks

9. 8d8a9d0e7eda rcu: Remove obsolete ->dynticks_fqs and ->cond_resched_completed

10.75a8f7224522 rcu: Remove unused rcu_state externs

11.309ba859b950 rcu: Eliminate synchronize_rcu_mult()

12.d3ff3891b2ed rcu: Consolidate the RCU update functions invoked by sync.c

13.ee77e3c7a6e5 rcu: Rename and comment changes due to only one rcuo kthread per CPU

14.8d72091d7397 rcu: Inline force_quiescent_state() into rcu_force_quiescent_state()

15.841d84621ec5 rcu: Eliminate RCU_BH_FLAVOR and RCU_SCHED_FLAVOR

16.8f9832faa774 rcu: Inline rcu_kthread_do_work() into its sole remaining caller

17.9df74c360d7f rcu: Determine expedited-GP IPI handler at build time

18.e0cf0c15f468 rcu: Consolidate PREEMPT and !PREEMPT synchronize_rcu_expedited()

19.8c705b1ca46a rcu: Consolidate PREEMPT and !PREEMPT synchronize_rcu()

20.b4f7db989227 rcu: Inline _synchronize_rcu_expedited() into synchronize_rcu_expedited()

© 2019 IBM Corporation117

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Remove RCU-bh & RCU-sched and Simplify (6/6)

1. 004e0b8e9598 rcu: Discard separate per-CPU callback counts

2. f8e7680f01a2 rcu: Move rcu_cpu_kthread_task to rcu_data structure

3. c059f5df36fa rcu: Move rcu_cpu_kthread_status to rcu_data structure

4. dedda98c12b9 rcu: Remove unused rcu_cpu_kthread_loops per-CPU variable

5. 07c7c7c1370d rcu: Move rcu_cpu_has_work to rcu_data structure

6. 3de462dd756c rcu: Remove unused rcu_cpu_kthread_cpu per-CPU variable

7. e98376367759 rcu: Remove wrapper definitions for obsolete RCU update functions

© 2019 IBM Corporation118

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Drive-By Optimizations

1. 18390aeae701 rcu: Make rcu_gp_cleanup() write only once to ->gp_flags

2. 8d672fa6bf68 rcu: Make rcu_init_new_rnp() stop upon already-set bit

3. 91f63ced7dc4 rcu: Replace smp_wmb() with smp_store_release() for stall check

4. 928164351e70 rcu: Prevent useless FQS scan after all CPUs have checked in

5. 17a8212b8de2 rcu: Remove failsafe check for lost quiescent state

6. e05121ba5b81 rcu: Remove CPU-hotplug failsafe from force-quiescent-state code path

7. 3949fa9bac09 rcu: Make rcu_read_unlock_special() static

8. 15651201fa05 rcu: Mark task as .need_qs less aggressively

9. 3b57a3994f33 rcu: Inline rcu_dynticks_momentary_idle() into its sole caller

10.164ba3fc4864 rcu: Remove unused rcu_kick_nohz_cpu() function

11.ab6b82147f47 rcu: Remove unused local variable "cpu"

12.95394e69c42f rcu: Remove "inline" from panic_on_rcu_stall() and rcu_blocking_is_gp()

13.eac45e586cd3 rcu: Remove "inline" from rcu_torture_print_module_parms()

14.9622179519c5 rcu: Remove "inline" from rcu_perf_print_module_parms()

15.51fbb910f52c rcu: Remove __maybe_unused from rcu_cpu_has_callbacks()

16.117f683c6e01 rcu: Replace this_cpu_ptr() with __this_cpu_read()

17.f041d479a9cf rcu: Prevent needless ->gp_seq_needed update in __note_gp_changes()

© 2019 IBM Corporation119

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

And Murphy Will Always Be With Us!

© 2019 IBM Corporation120

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Near Misses: Saved by Community Processes!

0day finds a few issues
–Build issue: Idle-loop entry change
–Build issue: Definitions for 32-bit kernels

• And many other fat-finger issues on various architectures
–Boot-time issue: Infinite recursion through synchronize_rcu()
–Runtime issue with rcu_read_unlock_special() recursion

• Prompting a change in rcutorture testing scenarios
–Runtime issue: Intermittent deadlock
–Runtime issue: Intermittent spinlock recursion
–Runtime issue: RCU readers from idle (several of these)
–Runtime issue: Overly aggressive rcutorture testing
–And much else besides

Good review comments: Joel Fernandes now official reviewer

© 2019 IBM Corporation121

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Other Consequences

© 2019 IBM Corporation122

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Other Consequences

What effect did this work have on RCU's reliability?

According to rcutorture, it is actually more reliable
–And rcutorture has become significantly more nasty
–Which is a very good thing

But this work did introduce some bugs

© 2019 IBM Corporation123

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Other Consequences

What effect did this work have on RCU's reliability?

According to rcutorture, it is actually more reliable
–And rcutorture has become significantly more nasty
–Which is a very good thing

But this work did introduce some bugs

Estimate reliability based on proxy: Median age of RCU code
–One of those rare situations where older is usually more reliable...

© 2019 IBM Corporation124

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Median Age of RCU Code

© 2019 IBM Corporation126

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Median Age of RCU Code

30% decrease in median age: Should we be worried?

© 2019 IBM Corporation128

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Median Age of RCU Code

But longer-term trend is not too bad...
But there are undoubtedly still many bugs to find!!!

Tree SRCU

This work

Simplifications

© 2019 IBM Corporation129

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Other Consequences

What effect did this work have on RCU's reliability?

According to rcutorture, it is more reliable
–And rcutorture has become significantly more nasty
–Which is a very good thing

But this work did introduce some bugs

Estimate reliability based on proxy: Median age of RCU code
–One of those rare situations where older is usually more reliable...

And it is sometimes also interesting to look at fixes

© 2019 IBM Corporation130

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Recently Fixed Bugs and RCU Versions

Reported by Thomas Gleixner and Sebastian Andrzej Siewior
–Unnecessary preempt_disable, unrelated bug (v4.19 in 2018)

Reported by David Woodhouse and Marius Hillenbrand
–RCU stalled by KVM, unrelated bug (v4.12 in 2017)

Dennis Krein
–SRCU omitted lock from Tree SRCU rewrite (v4.12 in 2017)

Sebastian Andrzej Siewior
–SRCU -rt issue from Tree SRCU rewrite (v4.12 in 2017)

© 2019 IBM Corporation131

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Recently Fixed Bugs and RCU Versions

Reported by Thomas Gleixner and Sebastian Andrzej Siewior
–Unnecessary preempt_disable, unrelated bug (v4.19 in 2018)

Reported by David Woodhouse and Marius Hillenbrand
–RCU stalled by KVM, unrelated bug (v4.12 in 2017)

Dennis Krein
–SRCU omitted lock from Tree SRCU rewrite (v4.12 in 2017)

Sebastian Andrzej Siewior
–SRCU -rt issue from Tree SRCU rewrite (v4.12 in 2017)

Jun Zhang, Bo He, Jin Xiao, and Jie A Bai
–Unrelated self-wakeup bug (v3.16 in 2014)

© 2019 IBM Corporation132

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Recently Fixed Bugs and RCU Versions

Reported by Thomas Gleixner and Sebastian Andrzej Siewior
–Unnecessary preempt_disable, unrelated bug (v4.19 in 2018)

Reported by David Woodhouse and Marius Hillenbrand
–RCU stalled by KVM, unrelated bug (v4.12 in 2017)

Dennis Krein
–SRCU omitted lock from Tree SRCU rewrite (v4.12 in 2017)

Sebastian Andrzej Siewior
–SRCU -rt issue from Tree SRCU rewrite (v4.12 in 2017)

Jun Zhang, Bo He, Jin Xiao, and Jie A Bai
–Unrelated self-wakeup bug (v3.16 in 2014)

Reported by Sebastian Andrzej Siewior
–Failure of rcutorture to test GP hangs after offline (v3.3 in 2011)

© 2019 IBM Corporation133

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Expectations

More forward-progress bugs due to higher utilizations
–But this is due to changes in workload, not RCU flavor consolidation
–Nevertheless, area of current focus

At least one more Tree SRCU bug
–Tree SRCU seems to have doubled RCU's bug rate, give or take

Several RCU flavor consolidation bugs
–Not counting various nits

The usual influx of bugs that I don't expect at all...

© 2019 IBM Corporation134

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Expectations

More forward-progress bugs due to higher utilizations
–But this is due to changes in workload, not RCU flavor consolidation
–Nevertheless, area of current focus

At least one more Tree SRCU bug
–Tree SRCU seems to have doubled RCU's bug rate, give or take

Several RCU flavor consolidation bugs
–Not counting various nits

The usual influx of bugs that I don't expect at all...

Because Murphy Never Sleeps!!!

© 2019 IBM Corporation135

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Summary

© 2019 IBM Corporation136

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Summary

Making your software do exactly what you want it to is a
difficult undertaking

–And it is insufficient: You might be confused about requirements

Ease-of-use issues can result in security holes
–Testing and reliability statistics are subject to misuse “Black Swans”
–On the other hand, fixing these issues can simplify your code

RCU currently seems to be in pretty good shape
–But recent change means opportunity for formal verification
–And there is some risk due to lack of synchronize_sched()

© 2019 IBM Corporation137

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Summary

Making your software do exactly what you want it to is a
difficult undertaking

–And it is insufficient: You might be confused about requirements

Ease-of-use issues can result in security holes
–Testing and reliability statistics are subject to misuse “Black Swans”
–On the other hand, fixing these issues can simplify your code

RCU currently seems to be in pretty good shape
–But recent change means opportunity for formal verification
–And there is some risk due to lack of synchronize_sched()

Famous last words...

© 2019 IBM Corporation138

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2019 IBM Corporation139

RCU's First-Ever CVE, and How I Lived to Tell the Tale, January 23, 2019

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 90
	Slide 91
	Slide 92
	Slide 94
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 126
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

