
Linux Plumbers Conference Student Day

September 16, 2008 © 2006, 2007 IBM Corporation

Concurrency and Race Conditions

Paul E. McKenney, Ph.D.
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

How I Got This Way

 Born in Pt. Townsend, WA; raised in Silverton, OR
• I had no idea that one of my classmates was astronaut-to-be!

 BS in CS & in ME at Oregon State University, 1981
• Worked my way through with a job at the computer center

 Self-employed contract programmer in early 80s
• Building control systems, card-access security systems,

acoustic navigation systems. 64K address spaces; 640K
seemed unimaginably huge to me at the time!

 SRI International in late 80s
• UNIX systems administration, packet-radio research, Internet

protocol research
 Sequent Computer Systems through 90s

• Parallel UNIX kernel: memory allocation, RCU, ...
 IBM since 2000

• A bit of AIX, then Linux: recovering proprietary programmer

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Avoiding Concurrency Problems: Avoid Concurrency

 Do you need more than one CPU's worth of performance

• If not, be happy with sequential programming (for non-Java languages)

 Have you done straightforward algorithmic optimizations?

• If not, look into them

 Can you run multiple independent instances of your app?

• Do not be afraid to exploit cheap-shot concurrency!

 Can you use parallel infrastructure (DBMS, &c)?

• If so, leave the concurrency problems to the parallel infrastructure!

 Otherwise, you need to look concurrency in the face

 Of course, if you are doing a hobby project, feel free to go
wild with concurrency and much else besides!

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Why Concurrency?

 Higher performance
 Acceptable productivity
 Reasonable generality

 Or because it is fun!!!
• (Though your manager/professor/spouse/whatever might have

a different opinion on this point...)

 Reliability goes without saying, aside from this self-
referential bullet point
• If it doesn't have to be reliable: “return 0;” is simple and fast

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Concurrency Likely to be Somewhat Intuitive...

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Concurrency Likely to be Somewhat Intuitive...

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Concurrency Likely to be Somewhat Intuitive...

But this in no way implies that concurrent programming is intuitive...
Time unfolds sequentially, but sequential programming not universal!

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Concurrency Problem #1: Poor Performance

 This is a severe problem in cases where performance
was the only reason to exploit concurrency...

 Lots of effort, little (or no) result

 Why???

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: The Marketing Pitch

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Memory References

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Pipeline Flushes

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Atomic Instructions

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Memory Barriers

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Cache Misses

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

CPU Performance: Intel 2GHz Core Duo

Operation
Normal Increment (++) 3.25
Atomic Increment 20.91
Compare-And-Exchange Increment 34.70
Memory Barrier 25.23
Lock Round Trip 59.04
CPU-to-CPU Cache Miss 130.56

Min Cost (ns)

Larger machines usually incur larger penalties...
(1) Favor low-cost operations
(2) Use coarse-grained parallelism: embarrassingly parallel is good!

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Other Performance Obstacles

 TLB misses

 Context switches

 Interrupts and NMIs

 Page faults

 Thread creation/destruction

 Disk I/O

 Network latencies

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Parallel Design Patterns

Sequential
Program

Code
Locking

Data
Locking

Data
Ownership

Partition

Partition

Own

Fuse

Fuse

Disown

Parallel
Fastpath

RCU

Reader/Writer
Locking

Hierarchical
Locking

Allocator
Caches

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Problem With Code Locking

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

The Promise of Data Locking (Usually Fulfilled)

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Potential Data Locking Problem: Data Skew

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Data Ownership (Assuming Even Data Usage)

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Concurrency Problem #2: Human Error

 Deadlock:

• T1: spin_lock(&a); spin_lock(&b);

• T2: spin_lock(&b); spin_lock(&a);

 Data races with hand-coded locking primitives:
• while (l != -1)

► continue;
• l = me;
• /* critical section
• l = -1;

 Memory barriers require either weak memory ordering
or more than two x86 CPUs

• And beyond the scope of this talk in any case...

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Deadlock: Dining Philosophers Problem
Each philosopher requires two forks to eat.
Need to avoid starvation.

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Deadlock: Dining Philosophers Solution: Traditional

1

52

3 4

Locking hierarchy.
Pick up low-numbered fork first,
preventing deadlock.

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Deadlock: Dining Philosophers Solution: Paul

Zero contention.
All 5 can eat concurrently.
Excellent disease control.

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Deadlock: Dining Philosophers Solution

 Objections to Paul's solution:

• You can't just change the rules like that!!!
► There was no rule stating that forks could not be added...

• Dining Philosophers Problem valuable lock-hierarchy teaching
tool – you just destroyed it!!!
► Lock hierarchy is indeed very valuable and widely used, so the restriction

“there can only be five forks” does indeed have its place, even if it didn't
appear in this instance of the Dining Philosophers Problem.

► But the lesson of transforming the problem into perfectly partitionable form
is also very valuable, and given the wide availability of cheap
multiprocessors, most desperately needed.

• But what if each fork cost a million dollars?
► Then we would permit only two forks! Or make the philosophers eat with

their fingers... ☺

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Analysis of Hand-Coded Locking Primitive

w
h
ile

 (
l !

=
 1

)

co

n
tin

u
e
;

l =
 m

e
;

/*
 c

ri
tic

a
l s

e
ct

io
n
 *

/
l =

 -
1

while (l != 1)
 continue;

l = me;
/* critical section */
l = -1

Tools like Promela/spin
automate this process.

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Analysis of Hand-Coded Locking Primitive

 Moral: Use the system-provided locking primitives

 If the performance of the system-provided locking
primitives is insufficient:

• First revisit your design, striving for coarser-grained parallelism

• Only if that doesn't work consider getting fancy

 Getting fancy gives you lots of gray hair

• At least if you take the trouble to actually make it work reliably

 What does it take to create reliable synchronization
primitives?

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

The Geneva Convention Inapplicable To Software

 From the "Geneva Convention relative to the Treatment of
Prisoners of War (http://www.unhchr.ch/html/menu3/b/91.htmhttp://www.unhchr.ch/html/menu3/b/91.htm):

• Persons taking no active part in the hostilities, including members of
armed forces who have laid down their arms and those placed hors
de combat by sickness, wounds, detention, or any other cause, shall
in all circumstances be treated humanely, without any adverse
distinction founded on race, colour, religion or faith, sex, birth or
wealth, or any other similar criteria.

• To this end the following acts are and shall remain prohibited at any
time and in any place whatsoever with respect to the above-
mentioned persons:

► (a) Violence to life and person, in particular murder of all kinds,
mutilation, cruel treatment and torture;

 Some debate as to exactly who this covers, but for the moment,
inapplicable to software. So torture your software before it
tortures you!!!

http://www.unhchr.ch/html/menu3/b/91.htm

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Two Axioms and One Theorem

 The only bug-free programs are trivial programs.

 A reliable program has no known bugs

 Therefore, any reliable non-trivial program will have at
least one bug that you do not know about.

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Exercise (1/2)

 git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

 Initialize your CodeSamples directory:
• cd perfbook/CodeSamples

• make pthreads-x86

• cd intro

• make

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Exercise (2/2)

 Find and fix the bug in CodeSamples/intro/initrace.c
• Search for “---”, look at the following six lines
• “make” and “./initrace 2” to test

 Write a program to evaluate the performance of your
fixed program vs. unconditionally acquiring the lock

 What is the purpose of the “while” loop immediately
preceding the first “---”?
• What happens if you delete it from the original program?
• What happens if you delete it after fixing the original program?

 Design a lockless queue that permits a single thread
enqueuing concurrently with a single thread dequeuing
• Relax the enqueue restriction, so that your design permits

concurrent enqueues, but only a single dequeue
• Relax the dequeue restriction

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Summary

 Avoiding concurrency is fair game

• As long as a single CPU provides enough power for you

• And as long as you are not using Java...

 Using simple-minded concurrency is fair game

• Embarrassing parallelism is an embarrassment of riches

 If simple-minded concurrency is unworkable, data
locking is your friend

 If data locking is unworkable, care is required

• Data ownership, RCU, reference counting, ...

• Remember that any thread can pause at any point for any
duration!!!

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

To Probe Deeper

 Parallel Design Patterns
• http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf

 Other Parallel Algorithms and Tools
• http://www.rdrop.com/users/paulmck/scalability/

 What is RCU?
• Fundamentally: http://lwn.net/Articles/262464/
• Usage: http://lwn.net/Articles/263130/
• API: http://lwn.net/Articles/264090/
• Linux-kernel usage: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

• Other RCU stuff: http://www.rdrop.com/users/paulmck/RCU/

 Parallel Performance Programming (very raw draft)
• git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://www.rdrop.com/users/paulmck/scalability/paper/mutexdesignpat.pdf
http://www.rdrop.com/users/paulmck/scalability/
http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/

© 2006, 2007 IBM CorporationConcurrency and Race Conditions

Linux Plumbers Conference Student Day

Legal Statement

 This work represents the views of the authors and does
not necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

