
© 2009 IBM Corporation

Verifying Parallel Software:
Can Theory Meet Practice?

Paul E. McKenney – IBM Distinguished Engineer, Linux Technology Center

25 Jan 2011 linux.conf.au Multicore and Parallel Computing MiniConf

© 2009 IBM Corporation2

Table of contents

Theoretical Correctness Criteria
– Linearizability: A critique
– Commutativity: A critique
– Lock freedom and wait freedom: A critique

Don't forget the simple stuff!!!

How does the Linux kernel community cope?

An important question

Summary of recommendations

Verifying Parallel Software: Can Theory Meet Practice?

© 2009 IBM Corporation3

Linearizability: A Critique

© 2009 IBM Corporation4

Linearizability Can Be Expensive

Linearizability: A Critique

The added cost of linearizability should not be controversial

1996 paper entitled “Linearizable counting networks” by
Herlihy, Shavit, and Waarts:

–“Finally, we prove that these trade-offs are inescapable: an ideal
linearizable counting algorithm is impossible. Since ideal non-
linearizable counting algorithms exist, these results establish a
substantial complexity gap between linearizable and non-linearizable
counting.”

There are therefore performance, scalability, and energy-
efficiency benefits to abandoning linearizability

© 2009 IBM Corporation5

Is the Universe Linearizable?

Linearizability: A Critique

© 2009 IBM Corporation6

Is the Universe Linearizable?

Linearizability: A Critique

After you!!!

No, after you!!!

We had better give
Pluto a turn!

No, 'fraid not!!!

© 2009 IBM Corporation7

Is Linearizability Useless?

Linearizability: A Critique

© 2009 IBM Corporation8

Is Linearizability Useless?

Linearizability: A Critique

Of course not!!!
–Where it applies, linearizability simplifies analysis and verification
–Linearizability applies much of the time
–In the concurrent programmer's toolbox, it is analogous to the hammer

• Great tool, but not a replacement for screwdriver or wrench

But linearizability is not always the right tool for the job
–For small critical code paths, the additional complexity of analysis

without linearizability can be very worthwhile
–For code that interfaces to the outside world, linearizability can be a

useless and expensive fiction
• Network routing tables are the poster child for this case

–For statistics gathering, linearizability can be useless and expensive

Linearizability is often the right tool for the job, but not always

© 2009 IBM Corporation9

Where is Non-Linearizability Most Important?

Linearizability: A Critique

Applications requiring extreme real-time response

Non-strongly non-commutative algorithms with extreme
performance and scalability requirements (Attiya et al. 2011)

–Operating system kernels, server applications

Statistics gathering

Yes, you can sometimes transform algorithms to preserve
linearizability at the cost of more-complex semantics

© 2009 IBM Corporation10

Where is Non-Linearizability Most Important?

Linearizability: A Critique

Applications requiring extreme real-time response

Non-strongly non-commutative algorithms with extreme
performance and scalability requirements (Attiya et al. 2011)

–Operating system kernels, server applications

Statistics gathering

Yes, you can sometimes transform algorithms to preserve
linearizability at the cost of more-complex semantics

You can also describe planetary movements using epicycles

© 2009 IBM Corporation11

What Is Needed Going Forward?

Linearizability: A Critique

A major motivation for linearizability is simplification of proofs
–But practitioners' proofs are often carried out mechanically
–Adopting state-space-reduction techniques from hardware validation is

likely to be quite fruitful

Low-level search for parallelism likely to result in low gains
–More significant gains available at the application level

• Larger units of work results in lower communication overhead, which in turn results in
 better performance and scalability

• See Patterson's “The Trouble with Multicore” in July 2010 IEEE Spectrum
–Application-level parallelism will require higher-level criteria

• These will tend to be application specific: specialization has many benefits

© 2009 IBM Corporation12

But Just How Application-Level Opportunity Is There?
Lots of Them!!!

HW

FW

OS Kernel

System Utilities & Libraries

Middleware (e.g., DBMS)

Application
P

er
fo

rm
an

ce G
en

era lity

Productivity

What Additional Approaches Can There Be?

There is great variety at the application level

© 2009 IBM Corporation13

Commutativity: A Critique

© 2009 IBM Corporation14

Is Commutativity Useless?

Commutativity: A Critique

© 2009 IBM Corporation15

Is Commutativity Useless?

Commutativity: A Critique

Of course not: Commutativity can be quite useful
–Statistical counters, searches and non-conflicting updates

But its area of applicability appears to be limited
–For example. searches do not commute with conflicting updates
–But there are important use cases that don't care:

• Network packet routing: by the time the update arrives, packets have already been
going the wrong way, perhaps for minutes

• Security policy updates: in some cases, uncertainty in time of update is OK
• Detection of new hardware: the timeframe that matters is often human reaction time

–In many cases, just wait for the period of uncertainty to complete

And strong non-commutativity seems much more interesting
–Use cases are non-commutative, but not strongly non-commutative
–“Laws of Order” by Attiya, Guerraoui, Hendler, Kuznetsov, Michael, and

Vechev contains interesting results in this area

© 2009 IBM Corporation16

What Is Needed Going Forward?

Commutativity: A Critique

 Identify non-strongly non-commutative algorithms that can
make use of inexpensive operations

Bite the bullet and relax linearizability requirements where it
makes sense to do so

–If you please that non-linearizability never makes sense:

© 2009 IBM Corporation17

What Is Needed Going Forward?

Commutativity: A Critique

 Identify non-strongly non-commutative algorithms that can
make use of inexpensive operations

Bite the bullet and relax linearizability requirements where it
makes sense to do so

–If you believe that non-linearizability never makes sense:
–Please let me be the first to inform you that the 1980s ended long ago

© 2009 IBM Corporation18

Lock Freedom and Wait Freedom: A Critique

© 2009 IBM Corporation19

Are Lock Freedom and Wait Freedom Useless?

Lock Freedom and Wait Freedom: A Critique

Absolutely not!!!

Lock-free & wait-free algorithms heavily used in practice
–For example, in real-time systems and performance-critical software

At least in the special cases where they are simple and fast
–Simple stacks and queues
–Statistical counters
–RCU read-side primitives (and update-side primitives in some cases)

General lock-free/wait-free constructs fare less well
–Before you tell me that software transactional memory is a good

example of a lock-free/wait-free construct, keep in mind that the semi-
reasonably performing STMs use locking

• And the fastest of these (e.g., swissTM) place significant burdens on developers

© 2009 IBM Corporation20

What Is Needed Going Forward?

Lock Freedom and Wait Freedom: A Critique

Greater focus on semi-non-blocking and semi-wait-freedom
–Example: non-blocking enqueue with blocking dequeue

• Michael and Scott: “Non-blocking algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors”

–Example: wait-free RCU readers with blocking RCU updaters
• http://www.rdrop.com/paulmck/RCU
• Non-blocking RCU updates are possible in some situations

–Such algorithms are well suited for situations where real-time response
is required only on some code paths

• For example, real-time threads queuing data for a non-real-time logging thread

Combining non-blocking and wait-free algorithms with other
concurrency-control mechanisms

–Many software artifacts require a variety of approaches

© 2009 IBM Corporation21

Theoretical Correctness Criteria

© 2009 IBM Corporation22

What Is Needed Going Forward For Correctness Criteria?

Theoretical Correctness Criteria

Rethink the name “correctness criteria”

We have seen that correct algorithms can be non-
linearizable, non-deterministic, non-wait-free, and non-lock-
free

Therefore, shouldn't we say “properties” rather than
“correctness criteria”?

© 2009 IBM Corporation23

Don't Forget The Simple Stuff!!!

© 2009 IBM Corporation24

Understand The Properties of Underlying Software and Hardware

Don't Forget The Simple Stuff!!!

Would you trust:
–A bridge designed by someone who didn't understand that concrete,

while strong in compression, is weak in tension?
–A home heating system designed by someone who didn't understand

that would houses burn?
–A home in the rainy Pacific Northwest designed by someone who

didn't understand that wood rots in temperate rain forests?
–A space shuttle designed by someone who didn't understand the low-

temperature properties of O-rings?

© 2009 IBM Corporation25

Understand The Properties of Underlying Software and Hardware

Don't Forget The Simple Stuff!!!

Would you trust:
–A bridge designed by someone who didn't understand that concrete,

while strong in compression, is weak in tension?
–A home heating system designed by someone who didn't understand

that would houses burn?
–A home in the rainy Pacific Northwest designed by someone who

didn't understand that wood rots in temperate rain forests?
–A space shuttle designed by someone who didn't understand the low-

temperature properties of O-rings?

 If not, why would you trust an algorithm designed by
someone who didn't understand hardware properties?

© 2009 IBM Corporation26

Understand The Properties of Underlying Software and Hardware

Don't Forget The Simple Stuff!!!

Would you trust:
–A bridge designed by someone who didn't understand that concrete,

while strong in compression, is weak in tension?
–A home heating system designed by someone who didn't understand

that would houses burn?
–A home in the rainy Pacific Northwest designed by someone who

didn't understand that wood rots in temperate rain forests?
–A space shuttle designed by someone who didn't understand the low-

temperature properties of O-rings?

 If not, why would you trust an algorithm designed by
someone who didn't understand hardware properties?

–Yes, these properties have changed over time
–And these changes have dramatically affected algorithm design

© 2009 IBM Corporation27

Don't Forget Simple Techniques

Don't Forget The Simple Stuff!!!

Partitioning is simple, but can be extremely effective

Batching is simple, but amortizes synchronization overhead

Sequential execution is simple, and should be used when the
resulting performance is sufficient

Pipelining is simple, but can greatly reduce synchronization
overhead

Never be afraid to exploit important special cases:
–Read-only and read-most situations, partitionable common-case

execution, privatizable data, …

Finding bottlenecks should be simple, but often isn't

© 2009 IBM Corporation28

How Does the Linux Kernel Community Cope?

© 2009 IBM Corporation29

Linux Kernel Scalability

How Does the Linux Kernel Community Cope?

Not perfect by any means, but...

Boyd-Wickizer et al.: “An Analysis of Linux Scalability to Many
Cores”

© 2009 IBM Corporation30

Kernel-Community Approaches to Concurrency (Subset 1/2)

How Does the Linux Kernel Community Cope?

Organizational mechanisms
–Maintainers and quality assurance: recognition and responsibility
–Informal apprenticeship/mentoring model
–Design/code review required for acceptance
–Aggressive pursuit of modularity and simplicity

Use sane idioms and abstractions
–Locking, sequence locking, sleep/wakeup, memory fences, RCU, ...
–Conventional use of memory-ordering primitives, for example:

• Susmit's message passing (MP): sync + dependency
• Susmit's write-to-read causailty (WRC): sync + dependency

–This avoids Susmit's PPOCA, RSW, RDW, …
• Hard to even express in core kernel code

–Needing to know too much about the underlying memory model
indicates broken abstraction, broken design, or both

© 2009 IBM Corporation31

Kernel-Community Approaches to Concurrency (Subset 2/2)

How Does the Linux Kernel Community Cope?

 Static source-code analysis
– “checkpatch.pl” to enforce coding standards
– “sparse” static analyzer to check lock acquire/release mismatches
– “coccinelle” to automate inspection and generation of bug fixes

 Dynamic analysis
– “lockdep” deadlock detector (also checks for misuse of RCU)
– Tracing and performance analysis
– Assertions

 Aggressive automation
– “git” source-code control system: from weeks to minutes for rebases and merges

 Testing
– In-kernel test facilities such as rcutorture
– Out-of-kernel test suites

© 2009 IBM Corporation32

Kernel-Community Approaches to Concurrency

How Does the Linux Kernel Community Cope?

To err is human, and therefore...
–People/organizational mechanisms are at least as
important as concurrency technology

–Use multiple error-detection mechanisms
–For core of RCU, validation starts at the very beginning:

• Write a design document: safety factors and conservative design
• Consult with experts, update design as needed
• Write code in pen on paper: Recopy until last two copies identical
• Do proofs of correctness for anything non-obvious
• Do full-up functional and stress testing
• Document the resulting code (e.g., publish on LWN)

–If I do all this, then there are probably only a few bugs left
• And I detect those at least half the time

© 2009 IBM Corporation33

An Important Question

© 2009 IBM Corporation34

Given a Randomly Selected Human Being...

An Important Question

Any human being: head of state, rock star, street
person, farmer, researcher, student, CEO, diplomat,
janitor, plumber, housewife, toddler, juvenile delinquent,
bureaucrat, mafia don, warlord, mercenary soldier,
terrorist, policeman, lawyer, doctor, kernel hacker,
hardware architect, concurrency-theory researcher,
application developer, …

What one change would you make to this person's life?

© 2009 IBM Corporation35

How To Help Someone

An Important Question

 I am perhaps overly proud of my contributions to the Linux
kernel community

 I have been able to contribute because I have been:
–a kernel hacker myself for almost 20 years
–a member of the Linux kernel community for almost 10 years

© 2009 IBM Corporation36

How To Help Someone

An Important Question

 I am perhaps overly proud of my contributions to the Linux
kernel community

 I have been able to contribute because I have been:
–a kernel hacker myself for almost 20 years
–a member of the Linux kernel community for almost 10 years

To reliably make a positive change to people's lives, you
must live among them

 I hope that this workshop helps us get to know one another

© 2009 IBM Corporation37

Summary of Recommendations

© 2009 IBM Corporation38

Some Recommendations From Two Decades of Parallel Experience

 Adopt HW-validation state-space-reduction techniques for non-linearizability

 Develop high-level application-specific criteria to validate large applications

 Identify non-strongly non-commutative algorithms that can use inexpensive operations

 Relax linearizability requirements where it makes sense to do so

 More focus on semi-non-blocking and semi-wait-free algorithms

 Combine non-blocking and wait-free algorithms with other mechanisms

 Call a spade a spade: “properties” rather than “correctness criteria”

 Understand the underlying hardware and software

 Don't forget the simple stuff
– “Embarrassingly parallel” is an embarrassment only to those who fail to exploit it
– The simpler the theory, the more likely you are to get it right!!!

Summary of Recommendations

© 2009 IBM Corporation39

Legal Statement

 This work represents the view of the author and does not necessarily represent the view of
IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks of others.

© 2009 IBM Corporation40

QUESTIONS?

Multi-Core Memory Models and Concurrency Theory: View from the Linux Community

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

